This is a fork of the mbed port of axTLS

Dependents:   TLS_axTLS-Example HTTPSClientExample

Overview

This library is a fork from the mbed port of axTLS. It attempts to :

  • reduce the usage of dynamic memory
  • verify certificates with key size up to 2048 bits
  • provide a simple interface

Encryption

This library uses either RC4 or AES for encryption.

Memory usage

During the establishment of a connection, about 10KB of memory is allocated dynamically (it depends on certificates). Once the connection is established, the memory consumption is relatively low. This means that your program must not use too much static memory or allocate memory before you establish a TLS connection.

Certificates

Certificates are the major source of problem and will often be the reason why your program will crash. Due to memory constraint, there are some limitations on certificates :

  • Each certificate must not be bigger than 2KB
  • TLS client can only handle a chain of up to three certificates (excluding the root certificate). This means that the server must not send more than three certificates.

Also, this library can only load certificates following these specifications :

  • encoded in binary DER format (PKCS1)
  • The public key must use RSA only

Once the connection is established, you should free all loaded certificates by calling CertificateManager::clear(). This will free a few kilobytes (it depends on your certificates). In addition, to enable certificate verification during the connection, this library has a "precomputed mode". This mode uses much less memory than a normal certificate verification.

Normal mode

You need to copy the root certificate in binary-DER format on the mbed. Then in your code, let's say that your root certificate is saved on the mbed as "root.der", assuming that you include CertificateManager.h and that you created a LocalFileSystem, you can load this certificate as this ;

Load root certificate

CertificateManager::add("/local/root.der");
CertificateManager::load();

Do not forget that this mode takes quite a lot of memory ( the memory peak is high while verifying certificates) and will only work if the key size is not bigger than 1024 bits (otherwise it will crash while verifying certificates).

Precomputed mode

In this mode, you need to save the entire chain of certificates (in binary-DER format) including the root certificate on the mbed. In practice, this means that you must first retrieve all certificates that the server sends during a connection and then find the right root certificate. In your code, you must call CertificateManager::add for each certificate and in the right order : from the server certificate to the root certificate. Here is how you shoud load certificates in this mode :

Loadcertificates in precomputed mode

CertificateManager::add("/local/server1.der");
CertificateManager::add("/local/server2.der");
CertificateManager::add("/local/server3.der");
CertificateManager::add("/local/root.der");
CertificateManager::load(true);

Using this mode, you should be able to verify certificates with key size up to 2048 bits.

How do I find these certificates ?

I posted an entry in my notebook detailing how to get certificates from a server. You should be able to get all certificates you need except the root certificate. Here is a way how to get the root certificate on windows :

  1. Open (double-click) the last certificate sent by the server
  2. Go to details panel and click on the entry called Issuer. The first line gives you the name of this certificate and the second line indicates the company who created this certificate
  3. Open firefox
  4. Go to options, advanced panel and click on View Certificates
  5. Go to Authorities panel
  6. Choose the certificate whose name match the issuer of the last certificate sent by the server
  7. Export this certificate to binary-DER format.

Connect to mbed.org !

Import programTLS_axTLS-Example

Establishing a connection to mbed.org using TLS

Revision:
0:85fceccc1a7c
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/axTLS/crypto/rsa.c	Thu Sep 12 15:18:04 2013 +0000
@@ -0,0 +1,272 @@
+/*
+ * Copyright (c) 2007, Cameron Rich
+ * 
+ * All rights reserved.
+ * 
+ * Redistribution and use in source and binary forms, with or without 
+ * modification, are permitted provided that the following conditions are met:
+ *
+ * * Redistributions of source code must retain the above copyright notice, 
+ *   this list of conditions and the following disclaimer.
+ * * Redistributions in binary form must reproduce the above copyright notice, 
+ *   this list of conditions and the following disclaimer in the documentation 
+ *   and/or other materials provided with the distribution.
+ * * Neither the name of the axTLS project nor the names of its contributors 
+ *   may be used to endorse or promote products derived from this software 
+ *   without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
+ * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+ * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+ * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+ * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+ * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+ * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+ * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+/**
+ * Implements the RSA public encryption algorithm. Uses the bigint library to
+ * perform its calculations.
+ */
+
+#include <stdio.h>
+#include <string.h>
+#include <time.h>
+#include <stdlib.h>
+#include "os_port.h"
+#include "crypto.h"
+
+void RSA_priv_key_new(RSA_CTX **ctx, 
+        const uint8_t *modulus, int mod_len,
+        const uint8_t *pub_exp, int pub_len,
+        const uint8_t *priv_exp, int priv_len
+#if CONFIG_BIGINT_CRT
+      , const uint8_t *p, int p_len,
+        const uint8_t *q, int q_len,
+        const uint8_t *dP, int dP_len,
+        const uint8_t *dQ, int dQ_len,
+        const uint8_t *qInv, int qInv_len
+#endif
+    )
+{
+    RSA_CTX *rsa_ctx;
+    BI_CTX *bi_ctx;
+    RSA_pub_key_new(ctx, modulus, mod_len, pub_exp, pub_len);
+    rsa_ctx = *ctx;
+    bi_ctx = rsa_ctx->bi_ctx;
+    rsa_ctx->d = bi_import(bi_ctx, priv_exp, priv_len);
+    bi_permanent(rsa_ctx->d);
+
+#ifdef CONFIG_BIGINT_CRT
+    rsa_ctx->p = bi_import(bi_ctx, p, p_len);
+    rsa_ctx->q = bi_import(bi_ctx, q, q_len);
+    rsa_ctx->dP = bi_import(bi_ctx, dP, dP_len);
+    rsa_ctx->dQ = bi_import(bi_ctx, dQ, dQ_len);
+    rsa_ctx->qInv = bi_import(bi_ctx, qInv, qInv_len);
+    bi_permanent(rsa_ctx->dP);
+    bi_permanent(rsa_ctx->dQ);
+    bi_permanent(rsa_ctx->qInv);
+    bi_set_mod(bi_ctx, rsa_ctx->p, BIGINT_P_OFFSET);
+    bi_set_mod(bi_ctx, rsa_ctx->q, BIGINT_Q_OFFSET);
+#endif
+}
+
+void RSA_pub_key_new(RSA_CTX **ctx, 
+        const uint8_t *modulus, int mod_len,
+        const uint8_t *pub_exp, int pub_len)
+{
+    RSA_CTX *rsa_ctx;
+    BI_CTX *bi_ctx;
+
+    if (*ctx)   /* if we load multiple certs, dump the old one */
+        RSA_free(*ctx);
+
+    bi_ctx = bi_initialize();
+    *ctx = (RSA_CTX *)calloc(1, sizeof(RSA_CTX));
+    rsa_ctx = *ctx;
+    rsa_ctx->bi_ctx = bi_ctx;
+    rsa_ctx->num_octets = mod_len;
+    rsa_ctx->m = bi_import(bi_ctx, modulus, mod_len);
+    bi_set_mod(bi_ctx, rsa_ctx->m, BIGINT_M_OFFSET);
+    rsa_ctx->e = bi_import(bi_ctx, pub_exp, pub_len);
+    bi_permanent(rsa_ctx->e);
+}
+
+/**
+ * Free up any RSA context resources.
+ */
+void RSA_free(RSA_CTX *rsa_ctx)
+{
+    BI_CTX *bi_ctx;
+    if (rsa_ctx == NULL)                /* deal with ptrs that are null */
+        return;
+
+    bi_ctx = rsa_ctx->bi_ctx;
+
+    bi_depermanent(rsa_ctx->e);
+    bi_free(bi_ctx, rsa_ctx->e);
+    bi_free_mod(rsa_ctx->bi_ctx, BIGINT_M_OFFSET);
+
+    if (rsa_ctx->d)
+    {
+        bi_depermanent(rsa_ctx->d);
+        bi_free(bi_ctx, rsa_ctx->d);
+#ifdef CONFIG_BIGINT_CRT
+        bi_depermanent(rsa_ctx->dP);
+        bi_depermanent(rsa_ctx->dQ);
+        bi_depermanent(rsa_ctx->qInv);
+        bi_free(bi_ctx, rsa_ctx->dP);
+        bi_free(bi_ctx, rsa_ctx->dQ);
+        bi_free(bi_ctx, rsa_ctx->qInv);
+        bi_free_mod(rsa_ctx->bi_ctx, BIGINT_P_OFFSET);
+        bi_free_mod(rsa_ctx->bi_ctx, BIGINT_Q_OFFSET);
+#endif
+    }
+
+    bi_terminate(bi_ctx);
+    free(rsa_ctx);
+}
+
+/**
+ * @brief Use PKCS1.5 for decryption/verification.
+ * @param ctx [in] The context
+ * @param in_data [in] The data to encrypt (must be < modulus size-11)
+ * @param out_data [out] The encrypted data.
+ * @param is_decryption [in] Decryption or verify operation.
+ * @return  The number of bytes that were originally encrypted. -1 on error.
+ * @see http://www.rsasecurity.com/rsalabs/node.asp?id=2125
+ */
+int RSA_decrypt(const RSA_CTX *ctx, const uint8_t *in_data, 
+                            uint8_t *out_data, int is_decryption)
+{
+    const int byte_size = ctx->num_octets;
+    int i, size;
+    bigint *decrypted_bi, *dat_bi;
+    uint8_t *block = (uint8_t *)alloca(byte_size);
+
+    memset(out_data, 0, byte_size); /* initialise */
+
+    /* decrypt */
+    dat_bi = bi_import(ctx->bi_ctx, in_data, byte_size);
+#ifdef CONFIG_SSL_CERT_VERIFICATION
+    decrypted_bi = is_decryption ?  /* decrypt or verify? */
+            RSA_private(ctx, dat_bi) : RSA_public(ctx, dat_bi);
+#else   /* always a decryption */
+    decrypted_bi = RSA_private(ctx, dat_bi);
+#endif
+
+    /* convert to a normal block */
+    bi_export(ctx->bi_ctx, decrypted_bi, block, byte_size);
+
+    i = 10; /* start at the first possible non-padded byte */
+
+#ifdef CONFIG_SSL_CERT_VERIFICATION
+    if (is_decryption == 0) /* PKCS1.5 signing pads with "0xff"s */
+    {
+        while (block[i++] == 0xff && i < byte_size);
+
+        if (block[i-2] != 0xff)
+            i = byte_size;     /*ensure size is 0 */   
+    }
+    else                    /* PKCS1.5 encryption padding is random */
+#endif
+    {
+        while (block[i++] && i < byte_size);
+    }
+    size = byte_size - i;
+
+    /* get only the bit we want */
+    if (size > 0)
+        memcpy(out_data, &block[i], size);
+    
+    return size ? size : -1;
+}
+
+/**
+ * Performs m = c^d mod n
+ */
+bigint *RSA_private(const RSA_CTX *c, bigint *bi_msg)
+{
+    printf("RSA private\n");
+#ifdef CONFIG_BIGINT_CRT
+    return bi_crt(c->bi_ctx, bi_msg, c->dP, c->dQ, c->p, c->q, c->qInv);
+#else
+    BI_CTX *ctx = c->bi_ctx;
+    ctx->mod_offset = BIGINT_M_OFFSET;
+    return bi_mod_power(ctx, bi_msg, c->d);
+#endif
+}
+
+#ifdef CONFIG_SSL_FULL_MODE
+/**
+ * Used for diagnostics.
+ */
+void RSA_print(const RSA_CTX *rsa_ctx) 
+{
+    if (rsa_ctx == NULL)
+        return;
+
+    printf("-----------------   RSA DEBUG   ----------------\n");
+    printf("Size:\t%d\n", rsa_ctx->num_octets);
+    bi_print("Modulus", rsa_ctx->m);
+    bi_print("Public Key", rsa_ctx->e);
+    bi_print("Private Key", rsa_ctx->d);
+}
+#endif
+
+#if defined(CONFIG_SSL_CERT_VERIFICATION) || defined(CONFIG_SSL_GENERATE_X509_CERT)
+/**
+ * Performs c = m^e mod n
+ */
+bigint *RSA_public(const RSA_CTX * c, bigint *bi_msg)
+{
+    c->bi_ctx->mod_offset = BIGINT_M_OFFSET;
+    return bi_mod_power(c->bi_ctx, bi_msg, c->e);
+}
+
+/**
+ * Use PKCS1.5 for encryption/signing.
+ * see http://www.rsasecurity.com/rsalabs/node.asp?id=2125
+ */
+int RSA_encrypt(const RSA_CTX *ctx, const uint8_t *in_data, uint16_t in_len, 
+        uint8_t *out_data, int is_signing)
+{
+    int byte_size = ctx->num_octets;
+    int num_pads_needed = byte_size-in_len-3;
+    bigint *dat_bi, *encrypt_bi;
+    /* note: in_len+11 must be > byte_size */
+    out_data[0] = 0;     /* ensure encryption block is < modulus */
+    if (is_signing)
+    {
+        out_data[1] = 1;        /* PKCS1.5 signing pads with "0xff"'s */
+        memset(&out_data[2], 0xff, num_pads_needed);
+    }
+    else /* randomize the encryption padding with non-zero bytes */   
+    {
+        out_data[1] = 2;
+        get_random_NZ(num_pads_needed, &out_data[2]);
+    }
+
+    out_data[2+num_pads_needed] = 0;
+    memcpy(&out_data[3+num_pads_needed], in_data, in_len);
+
+    /* now encrypt it */
+    dat_bi = bi_import(ctx->bi_ctx, out_data, byte_size);
+
+    encrypt_bi = is_signing ? RSA_private(ctx, dat_bi) : 
+                              RSA_public(ctx, dat_bi);
+
+    bi_export(ctx->bi_ctx, encrypt_bi, out_data, byte_size);
+    /* save a few bytes of memory */
+    bi_clear_cache(ctx->bi_ctx);
+
+    return byte_size;
+}
+
+#endif  /* CONFIG_SSL_CERT_VERIFICATION */
+
+