This is a fork of the mbed port of axTLS

Dependents:   TLS_axTLS-Example HTTPSClientExample

Overview

This library is a fork from the mbed port of axTLS. It attempts to :

  • reduce the usage of dynamic memory
  • verify certificates with key size up to 2048 bits
  • provide a simple interface

Encryption

This library uses either RC4 or AES for encryption.

Memory usage

During the establishment of a connection, about 10KB of memory is allocated dynamically (it depends on certificates). Once the connection is established, the memory consumption is relatively low. This means that your program must not use too much static memory or allocate memory before you establish a TLS connection.

Certificates

Certificates are the major source of problem and will often be the reason why your program will crash. Due to memory constraint, there are some limitations on certificates :

  • Each certificate must not be bigger than 2KB
  • TLS client can only handle a chain of up to three certificates (excluding the root certificate). This means that the server must not send more than three certificates.

Also, this library can only load certificates following these specifications :

  • encoded in binary DER format (PKCS1)
  • The public key must use RSA only

Once the connection is established, you should free all loaded certificates by calling CertificateManager::clear(). This will free a few kilobytes (it depends on your certificates). In addition, to enable certificate verification during the connection, this library has a "precomputed mode". This mode uses much less memory than a normal certificate verification.

Normal mode

You need to copy the root certificate in binary-DER format on the mbed. Then in your code, let's say that your root certificate is saved on the mbed as "root.der", assuming that you include CertificateManager.h and that you created a LocalFileSystem, you can load this certificate as this ;

Load root certificate

CertificateManager::add("/local/root.der");
CertificateManager::load();

Do not forget that this mode takes quite a lot of memory ( the memory peak is high while verifying certificates) and will only work if the key size is not bigger than 1024 bits (otherwise it will crash while verifying certificates).

Precomputed mode

In this mode, you need to save the entire chain of certificates (in binary-DER format) including the root certificate on the mbed. In practice, this means that you must first retrieve all certificates that the server sends during a connection and then find the right root certificate. In your code, you must call CertificateManager::add for each certificate and in the right order : from the server certificate to the root certificate. Here is how you shoud load certificates in this mode :

Loadcertificates in precomputed mode

CertificateManager::add("/local/server1.der");
CertificateManager::add("/local/server2.der");
CertificateManager::add("/local/server3.der");
CertificateManager::add("/local/root.der");
CertificateManager::load(true);

Using this mode, you should be able to verify certificates with key size up to 2048 bits.

How do I find these certificates ?

I posted an entry in my notebook detailing how to get certificates from a server. You should be able to get all certificates you need except the root certificate. Here is a way how to get the root certificate on windows :

  1. Open (double-click) the last certificate sent by the server
  2. Go to details panel and click on the entry called Issuer. The first line gives you the name of this certificate and the second line indicates the company who created this certificate
  3. Open firefox
  4. Go to options, advanced panel and click on View Certificates
  5. Go to Authorities panel
  6. Choose the certificate whose name match the issuer of the last certificate sent by the server
  7. Export this certificate to binary-DER format.

Connect to mbed.org !

Import programTLS_axTLS-Example

Establishing a connection to mbed.org using TLS

Committer:
feb11
Date:
Thu Sep 12 15:18:04 2013 +0000
Revision:
0:85fceccc1a7c
intial import

Who changed what in which revision?

UserRevisionLine numberNew contents of line
feb11 0:85fceccc1a7c 1 /*
feb11 0:85fceccc1a7c 2 * Copyright (c) 2007, Cameron Rich
feb11 0:85fceccc1a7c 3 *
feb11 0:85fceccc1a7c 4 * All rights reserved.
feb11 0:85fceccc1a7c 5 *
feb11 0:85fceccc1a7c 6 * Redistribution and use in source and binary forms, with or without
feb11 0:85fceccc1a7c 7 * modification, are permitted provided that the following conditions are met:
feb11 0:85fceccc1a7c 8 *
feb11 0:85fceccc1a7c 9 * * Redistributions of source code must retain the above copyright notice,
feb11 0:85fceccc1a7c 10 * this list of conditions and the following disclaimer.
feb11 0:85fceccc1a7c 11 * * Redistributions in binary form must reproduce the above copyright notice,
feb11 0:85fceccc1a7c 12 * this list of conditions and the following disclaimer in the documentation
feb11 0:85fceccc1a7c 13 * and/or other materials provided with the distribution.
feb11 0:85fceccc1a7c 14 * * Neither the name of the axTLS project nor the names of its contributors
feb11 0:85fceccc1a7c 15 * may be used to endorse or promote products derived from this software
feb11 0:85fceccc1a7c 16 * without specific prior written permission.
feb11 0:85fceccc1a7c 17 *
feb11 0:85fceccc1a7c 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
feb11 0:85fceccc1a7c 19 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
feb11 0:85fceccc1a7c 20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
feb11 0:85fceccc1a7c 21 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
feb11 0:85fceccc1a7c 22 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
feb11 0:85fceccc1a7c 23 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
feb11 0:85fceccc1a7c 24 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
feb11 0:85fceccc1a7c 25 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
feb11 0:85fceccc1a7c 26 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
feb11 0:85fceccc1a7c 27 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
feb11 0:85fceccc1a7c 28 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
feb11 0:85fceccc1a7c 29 */
feb11 0:85fceccc1a7c 30
feb11 0:85fceccc1a7c 31 /**
feb11 0:85fceccc1a7c 32 * SHA1 implementation - as defined in FIPS PUB 180-1 published April 17, 1995.
feb11 0:85fceccc1a7c 33 * This code was originally taken from RFC3174
feb11 0:85fceccc1a7c 34 */
feb11 0:85fceccc1a7c 35
feb11 0:85fceccc1a7c 36 #include <string.h>
feb11 0:85fceccc1a7c 37 #include "os_port.h"
feb11 0:85fceccc1a7c 38 #include "crypto.h"
feb11 0:85fceccc1a7c 39
feb11 0:85fceccc1a7c 40 /*
feb11 0:85fceccc1a7c 41 * Define the SHA1 circular left shift macro
feb11 0:85fceccc1a7c 42 */
feb11 0:85fceccc1a7c 43 #define SHA1CircularShift(bits,word) \
feb11 0:85fceccc1a7c 44 (((word) << (bits)) | ((word) >> (32-(bits))))
feb11 0:85fceccc1a7c 45
feb11 0:85fceccc1a7c 46 /* ----- static functions ----- */
feb11 0:85fceccc1a7c 47 static void SHA1PadMessage(SHA1_CTX *ctx);
feb11 0:85fceccc1a7c 48 static void SHA1ProcessMessageBlock(SHA1_CTX *ctx);
feb11 0:85fceccc1a7c 49
feb11 0:85fceccc1a7c 50 /**
feb11 0:85fceccc1a7c 51 * Initialize the SHA1 context
feb11 0:85fceccc1a7c 52 */
feb11 0:85fceccc1a7c 53 void SHA1_Init(SHA1_CTX *ctx)
feb11 0:85fceccc1a7c 54 {
feb11 0:85fceccc1a7c 55 ctx->Length_Low = 0;
feb11 0:85fceccc1a7c 56 ctx->Length_High = 0;
feb11 0:85fceccc1a7c 57 ctx->Message_Block_Index = 0;
feb11 0:85fceccc1a7c 58 ctx->Intermediate_Hash[0] = 0x67452301;
feb11 0:85fceccc1a7c 59 ctx->Intermediate_Hash[1] = 0xEFCDAB89;
feb11 0:85fceccc1a7c 60 ctx->Intermediate_Hash[2] = 0x98BADCFE;
feb11 0:85fceccc1a7c 61 ctx->Intermediate_Hash[3] = 0x10325476;
feb11 0:85fceccc1a7c 62 ctx->Intermediate_Hash[4] = 0xC3D2E1F0;
feb11 0:85fceccc1a7c 63 }
feb11 0:85fceccc1a7c 64
feb11 0:85fceccc1a7c 65 /**
feb11 0:85fceccc1a7c 66 * Accepts an array of octets as the next portion of the message.
feb11 0:85fceccc1a7c 67 */
feb11 0:85fceccc1a7c 68 void SHA1_Update(SHA1_CTX *ctx, const uint8_t *msg, int len)
feb11 0:85fceccc1a7c 69 {
feb11 0:85fceccc1a7c 70 while (len--)
feb11 0:85fceccc1a7c 71 {
feb11 0:85fceccc1a7c 72 ctx->Message_Block[ctx->Message_Block_Index++] = (*msg & 0xFF);
feb11 0:85fceccc1a7c 73 ctx->Length_Low += 8;
feb11 0:85fceccc1a7c 74
feb11 0:85fceccc1a7c 75 if (ctx->Length_Low == 0)
feb11 0:85fceccc1a7c 76 ctx->Length_High++;
feb11 0:85fceccc1a7c 77
feb11 0:85fceccc1a7c 78 if (ctx->Message_Block_Index == 64)
feb11 0:85fceccc1a7c 79 SHA1ProcessMessageBlock(ctx);
feb11 0:85fceccc1a7c 80
feb11 0:85fceccc1a7c 81 msg++;
feb11 0:85fceccc1a7c 82 }
feb11 0:85fceccc1a7c 83 }
feb11 0:85fceccc1a7c 84
feb11 0:85fceccc1a7c 85 /**
feb11 0:85fceccc1a7c 86 * Return the 160-bit message digest into the user's array
feb11 0:85fceccc1a7c 87 */
feb11 0:85fceccc1a7c 88 void SHA1_Final(uint8_t *digest, SHA1_CTX *ctx)
feb11 0:85fceccc1a7c 89 {
feb11 0:85fceccc1a7c 90 int i;
feb11 0:85fceccc1a7c 91
feb11 0:85fceccc1a7c 92 SHA1PadMessage(ctx);
feb11 0:85fceccc1a7c 93 memset(ctx->Message_Block, 0, 64);
feb11 0:85fceccc1a7c 94 ctx->Length_Low = 0; /* and clear length */
feb11 0:85fceccc1a7c 95 ctx->Length_High = 0;
feb11 0:85fceccc1a7c 96
feb11 0:85fceccc1a7c 97 for (i = 0; i < SHA1_SIZE; i++)
feb11 0:85fceccc1a7c 98 {
feb11 0:85fceccc1a7c 99 digest[i] = ctx->Intermediate_Hash[i>>2] >> 8 * ( 3 - ( i & 0x03 ) );
feb11 0:85fceccc1a7c 100 }
feb11 0:85fceccc1a7c 101 }
feb11 0:85fceccc1a7c 102
feb11 0:85fceccc1a7c 103 /**
feb11 0:85fceccc1a7c 104 * Process the next 512 bits of the message stored in the array.
feb11 0:85fceccc1a7c 105 */
feb11 0:85fceccc1a7c 106 static void SHA1ProcessMessageBlock(SHA1_CTX *ctx)
feb11 0:85fceccc1a7c 107 {
feb11 0:85fceccc1a7c 108 const uint32_t K[] = { /* Constants defined in SHA-1 */
feb11 0:85fceccc1a7c 109 0x5A827999,
feb11 0:85fceccc1a7c 110 0x6ED9EBA1,
feb11 0:85fceccc1a7c 111 0x8F1BBCDC,
feb11 0:85fceccc1a7c 112 0xCA62C1D6
feb11 0:85fceccc1a7c 113 };
feb11 0:85fceccc1a7c 114 int t; /* Loop counter */
feb11 0:85fceccc1a7c 115 uint32_t temp; /* Temporary word value */
feb11 0:85fceccc1a7c 116 uint32_t W[80]; /* Word sequence */
feb11 0:85fceccc1a7c 117 uint32_t A, B, C, D, E; /* Word buffers */
feb11 0:85fceccc1a7c 118
feb11 0:85fceccc1a7c 119 /*
feb11 0:85fceccc1a7c 120 * Initialize the first 16 words in the array W
feb11 0:85fceccc1a7c 121 */
feb11 0:85fceccc1a7c 122 for (t = 0; t < 16; t++)
feb11 0:85fceccc1a7c 123 {
feb11 0:85fceccc1a7c 124 W[t] = ctx->Message_Block[t * 4] << 24;
feb11 0:85fceccc1a7c 125 W[t] |= ctx->Message_Block[t * 4 + 1] << 16;
feb11 0:85fceccc1a7c 126 W[t] |= ctx->Message_Block[t * 4 + 2] << 8;
feb11 0:85fceccc1a7c 127 W[t] |= ctx->Message_Block[t * 4 + 3];
feb11 0:85fceccc1a7c 128 }
feb11 0:85fceccc1a7c 129
feb11 0:85fceccc1a7c 130 for (t = 16; t < 80; t++)
feb11 0:85fceccc1a7c 131 {
feb11 0:85fceccc1a7c 132 W[t] = SHA1CircularShift(1,W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16]);
feb11 0:85fceccc1a7c 133 }
feb11 0:85fceccc1a7c 134
feb11 0:85fceccc1a7c 135 A = ctx->Intermediate_Hash[0];
feb11 0:85fceccc1a7c 136 B = ctx->Intermediate_Hash[1];
feb11 0:85fceccc1a7c 137 C = ctx->Intermediate_Hash[2];
feb11 0:85fceccc1a7c 138 D = ctx->Intermediate_Hash[3];
feb11 0:85fceccc1a7c 139 E = ctx->Intermediate_Hash[4];
feb11 0:85fceccc1a7c 140
feb11 0:85fceccc1a7c 141 for (t = 0; t < 20; t++)
feb11 0:85fceccc1a7c 142 {
feb11 0:85fceccc1a7c 143 temp = SHA1CircularShift(5,A) +
feb11 0:85fceccc1a7c 144 ((B & C) | ((~B) & D)) + E + W[t] + K[0];
feb11 0:85fceccc1a7c 145 E = D;
feb11 0:85fceccc1a7c 146 D = C;
feb11 0:85fceccc1a7c 147 C = SHA1CircularShift(30,B);
feb11 0:85fceccc1a7c 148
feb11 0:85fceccc1a7c 149 B = A;
feb11 0:85fceccc1a7c 150 A = temp;
feb11 0:85fceccc1a7c 151 }
feb11 0:85fceccc1a7c 152
feb11 0:85fceccc1a7c 153 for (t = 20; t < 40; t++)
feb11 0:85fceccc1a7c 154 {
feb11 0:85fceccc1a7c 155 temp = SHA1CircularShift(5,A) + (B ^ C ^ D) + E + W[t] + K[1];
feb11 0:85fceccc1a7c 156 E = D;
feb11 0:85fceccc1a7c 157 D = C;
feb11 0:85fceccc1a7c 158 C = SHA1CircularShift(30,B);
feb11 0:85fceccc1a7c 159 B = A;
feb11 0:85fceccc1a7c 160 A = temp;
feb11 0:85fceccc1a7c 161 }
feb11 0:85fceccc1a7c 162
feb11 0:85fceccc1a7c 163 for (t = 40; t < 60; t++)
feb11 0:85fceccc1a7c 164 {
feb11 0:85fceccc1a7c 165 temp = SHA1CircularShift(5,A) +
feb11 0:85fceccc1a7c 166 ((B & C) | (B & D) | (C & D)) + E + W[t] + K[2];
feb11 0:85fceccc1a7c 167 E = D;
feb11 0:85fceccc1a7c 168 D = C;
feb11 0:85fceccc1a7c 169 C = SHA1CircularShift(30,B);
feb11 0:85fceccc1a7c 170 B = A;
feb11 0:85fceccc1a7c 171 A = temp;
feb11 0:85fceccc1a7c 172 }
feb11 0:85fceccc1a7c 173
feb11 0:85fceccc1a7c 174 for (t = 60; t < 80; t++)
feb11 0:85fceccc1a7c 175 {
feb11 0:85fceccc1a7c 176 temp = SHA1CircularShift(5,A) + (B ^ C ^ D) + E + W[t] + K[3];
feb11 0:85fceccc1a7c 177 E = D;
feb11 0:85fceccc1a7c 178 D = C;
feb11 0:85fceccc1a7c 179 C = SHA1CircularShift(30,B);
feb11 0:85fceccc1a7c 180 B = A;
feb11 0:85fceccc1a7c 181 A = temp;
feb11 0:85fceccc1a7c 182 }
feb11 0:85fceccc1a7c 183
feb11 0:85fceccc1a7c 184 ctx->Intermediate_Hash[0] += A;
feb11 0:85fceccc1a7c 185 ctx->Intermediate_Hash[1] += B;
feb11 0:85fceccc1a7c 186 ctx->Intermediate_Hash[2] += C;
feb11 0:85fceccc1a7c 187 ctx->Intermediate_Hash[3] += D;
feb11 0:85fceccc1a7c 188 ctx->Intermediate_Hash[4] += E;
feb11 0:85fceccc1a7c 189 ctx->Message_Block_Index = 0;
feb11 0:85fceccc1a7c 190 }
feb11 0:85fceccc1a7c 191
feb11 0:85fceccc1a7c 192 /*
feb11 0:85fceccc1a7c 193 * According to the standard, the message must be padded to an even
feb11 0:85fceccc1a7c 194 * 512 bits. The first padding bit must be a '1'. The last 64
feb11 0:85fceccc1a7c 195 * bits represent the length of the original message. All bits in
feb11 0:85fceccc1a7c 196 * between should be 0. This function will pad the message
feb11 0:85fceccc1a7c 197 * according to those rules by filling the Message_Block array
feb11 0:85fceccc1a7c 198 * accordingly. It will also call the ProcessMessageBlock function
feb11 0:85fceccc1a7c 199 * provided appropriately. When it returns, it can be assumed that
feb11 0:85fceccc1a7c 200 * the message digest has been computed.
feb11 0:85fceccc1a7c 201 *
feb11 0:85fceccc1a7c 202 * @param ctx [in, out] The SHA1 context
feb11 0:85fceccc1a7c 203 */
feb11 0:85fceccc1a7c 204 static void SHA1PadMessage(SHA1_CTX *ctx)
feb11 0:85fceccc1a7c 205 {
feb11 0:85fceccc1a7c 206 /*
feb11 0:85fceccc1a7c 207 * Check to see if the current message block is too small to hold
feb11 0:85fceccc1a7c 208 * the initial padding bits and length. If so, we will pad the
feb11 0:85fceccc1a7c 209 * block, process it, and then continue padding into a second
feb11 0:85fceccc1a7c 210 * block.
feb11 0:85fceccc1a7c 211 */
feb11 0:85fceccc1a7c 212 if (ctx->Message_Block_Index > 55)
feb11 0:85fceccc1a7c 213 {
feb11 0:85fceccc1a7c 214 ctx->Message_Block[ctx->Message_Block_Index++] = 0x80;
feb11 0:85fceccc1a7c 215 while(ctx->Message_Block_Index < 64)
feb11 0:85fceccc1a7c 216 {
feb11 0:85fceccc1a7c 217 ctx->Message_Block[ctx->Message_Block_Index++] = 0;
feb11 0:85fceccc1a7c 218 }
feb11 0:85fceccc1a7c 219
feb11 0:85fceccc1a7c 220 SHA1ProcessMessageBlock(ctx);
feb11 0:85fceccc1a7c 221
feb11 0:85fceccc1a7c 222 while (ctx->Message_Block_Index < 56)
feb11 0:85fceccc1a7c 223 {
feb11 0:85fceccc1a7c 224 ctx->Message_Block[ctx->Message_Block_Index++] = 0;
feb11 0:85fceccc1a7c 225 }
feb11 0:85fceccc1a7c 226 }
feb11 0:85fceccc1a7c 227 else
feb11 0:85fceccc1a7c 228 {
feb11 0:85fceccc1a7c 229 ctx->Message_Block[ctx->Message_Block_Index++] = 0x80;
feb11 0:85fceccc1a7c 230 while(ctx->Message_Block_Index < 56)
feb11 0:85fceccc1a7c 231 {
feb11 0:85fceccc1a7c 232
feb11 0:85fceccc1a7c 233 ctx->Message_Block[ctx->Message_Block_Index++] = 0;
feb11 0:85fceccc1a7c 234 }
feb11 0:85fceccc1a7c 235 }
feb11 0:85fceccc1a7c 236
feb11 0:85fceccc1a7c 237 /*
feb11 0:85fceccc1a7c 238 * Store the message length as the last 8 octets
feb11 0:85fceccc1a7c 239 */
feb11 0:85fceccc1a7c 240 ctx->Message_Block[56] = ctx->Length_High >> 24;
feb11 0:85fceccc1a7c 241 ctx->Message_Block[57] = ctx->Length_High >> 16;
feb11 0:85fceccc1a7c 242 ctx->Message_Block[58] = ctx->Length_High >> 8;
feb11 0:85fceccc1a7c 243 ctx->Message_Block[59] = ctx->Length_High;
feb11 0:85fceccc1a7c 244 ctx->Message_Block[60] = ctx->Length_Low >> 24;
feb11 0:85fceccc1a7c 245 ctx->Message_Block[61] = ctx->Length_Low >> 16;
feb11 0:85fceccc1a7c 246 ctx->Message_Block[62] = ctx->Length_Low >> 8;
feb11 0:85fceccc1a7c 247 ctx->Message_Block[63] = ctx->Length_Low;
feb11 0:85fceccc1a7c 248 SHA1ProcessMessageBlock(ctx);
feb11 0:85fceccc1a7c 249 }
feb11 0:85fceccc1a7c 250
feb11 0:85fceccc1a7c 251