This is a fork of the mbed port of axTLS

Dependents:   TLS_axTLS-Example HTTPSClientExample

Overview

This library is a fork from the mbed port of axTLS. It attempts to :

  • reduce the usage of dynamic memory
  • verify certificates with key size up to 2048 bits
  • provide a simple interface

Encryption

This library uses either RC4 or AES for encryption.

Memory usage

During the establishment of a connection, about 10KB of memory is allocated dynamically (it depends on certificates). Once the connection is established, the memory consumption is relatively low. This means that your program must not use too much static memory or allocate memory before you establish a TLS connection.

Certificates

Certificates are the major source of problem and will often be the reason why your program will crash. Due to memory constraint, there are some limitations on certificates :

  • Each certificate must not be bigger than 2KB
  • TLS client can only handle a chain of up to three certificates (excluding the root certificate). This means that the server must not send more than three certificates.

Also, this library can only load certificates following these specifications :

  • encoded in binary DER format (PKCS1)
  • The public key must use RSA only

Once the connection is established, you should free all loaded certificates by calling CertificateManager::clear(). This will free a few kilobytes (it depends on your certificates). In addition, to enable certificate verification during the connection, this library has a "precomputed mode". This mode uses much less memory than a normal certificate verification.

Normal mode

You need to copy the root certificate in binary-DER format on the mbed. Then in your code, let's say that your root certificate is saved on the mbed as "root.der", assuming that you include CertificateManager.h and that you created a LocalFileSystem, you can load this certificate as this ;

Load root certificate

CertificateManager::add("/local/root.der");
CertificateManager::load();

Do not forget that this mode takes quite a lot of memory ( the memory peak is high while verifying certificates) and will only work if the key size is not bigger than 1024 bits (otherwise it will crash while verifying certificates).

Precomputed mode

In this mode, you need to save the entire chain of certificates (in binary-DER format) including the root certificate on the mbed. In practice, this means that you must first retrieve all certificates that the server sends during a connection and then find the right root certificate. In your code, you must call CertificateManager::add for each certificate and in the right order : from the server certificate to the root certificate. Here is how you shoud load certificates in this mode :

Loadcertificates in precomputed mode

CertificateManager::add("/local/server1.der");
CertificateManager::add("/local/server2.der");
CertificateManager::add("/local/server3.der");
CertificateManager::add("/local/root.der");
CertificateManager::load(true);

Using this mode, you should be able to verify certificates with key size up to 2048 bits.

How do I find these certificates ?

I posted an entry in my notebook detailing how to get certificates from a server. You should be able to get all certificates you need except the root certificate. Here is a way how to get the root certificate on windows :

  1. Open (double-click) the last certificate sent by the server
  2. Go to details panel and click on the entry called Issuer. The first line gives you the name of this certificate and the second line indicates the company who created this certificate
  3. Open firefox
  4. Go to options, advanced panel and click on View Certificates
  5. Go to Authorities panel
  6. Choose the certificate whose name match the issuer of the last certificate sent by the server
  7. Export this certificate to binary-DER format.

Connect to mbed.org !

Import programTLS_axTLS-Example

Establishing a connection to mbed.org using TLS

Committer:
feb11
Date:
Thu Sep 12 15:18:04 2013 +0000
Revision:
0:85fceccc1a7c
intial import

Who changed what in which revision?

UserRevisionLine numberNew contents of line
feb11 0:85fceccc1a7c 1 /*
feb11 0:85fceccc1a7c 2 * Copyright (c) 2007, Cameron Rich
feb11 0:85fceccc1a7c 3 *
feb11 0:85fceccc1a7c 4 * All rights reserved.
feb11 0:85fceccc1a7c 5 *
feb11 0:85fceccc1a7c 6 * Redistribution and use in source and binary forms, with or without
feb11 0:85fceccc1a7c 7 * modification, are permitted provided that the following conditions are met:
feb11 0:85fceccc1a7c 8 *
feb11 0:85fceccc1a7c 9 * * Redistributions of source code must retain the above copyright notice,
feb11 0:85fceccc1a7c 10 * this list of conditions and the following disclaimer.
feb11 0:85fceccc1a7c 11 * * Redistributions in binary form must reproduce the above copyright notice,
feb11 0:85fceccc1a7c 12 * this list of conditions and the following disclaimer in the documentation
feb11 0:85fceccc1a7c 13 * and/or other materials provided with the distribution.
feb11 0:85fceccc1a7c 14 * * Neither the name of the axTLS project nor the names of its contributors
feb11 0:85fceccc1a7c 15 * may be used to endorse or promote products derived from this software
feb11 0:85fceccc1a7c 16 * without specific prior written permission.
feb11 0:85fceccc1a7c 17 *
feb11 0:85fceccc1a7c 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
feb11 0:85fceccc1a7c 19 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
feb11 0:85fceccc1a7c 20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
feb11 0:85fceccc1a7c 21 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
feb11 0:85fceccc1a7c 22 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
feb11 0:85fceccc1a7c 23 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
feb11 0:85fceccc1a7c 24 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
feb11 0:85fceccc1a7c 25 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
feb11 0:85fceccc1a7c 26 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
feb11 0:85fceccc1a7c 27 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
feb11 0:85fceccc1a7c 28 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
feb11 0:85fceccc1a7c 29 */
feb11 0:85fceccc1a7c 30
feb11 0:85fceccc1a7c 31 /**
feb11 0:85fceccc1a7c 32 * @file crypto.h
feb11 0:85fceccc1a7c 33 */
feb11 0:85fceccc1a7c 34
feb11 0:85fceccc1a7c 35 #ifndef HEADER_CRYPTO_H
feb11 0:85fceccc1a7c 36 #define HEADER_CRYPTO_H
feb11 0:85fceccc1a7c 37
feb11 0:85fceccc1a7c 38 #ifdef __cplusplus
feb11 0:85fceccc1a7c 39 extern "C" {
feb11 0:85fceccc1a7c 40 #endif
feb11 0:85fceccc1a7c 41
feb11 0:85fceccc1a7c 42 #include "bigint_impl.h"
feb11 0:85fceccc1a7c 43 #include "bigint.h"
feb11 0:85fceccc1a7c 44
feb11 0:85fceccc1a7c 45 #ifndef STDCALL
feb11 0:85fceccc1a7c 46 #define STDCALL
feb11 0:85fceccc1a7c 47 #endif
feb11 0:85fceccc1a7c 48 #ifndef EXP_FUNC
feb11 0:85fceccc1a7c 49 #define EXP_FUNC
feb11 0:85fceccc1a7c 50 #endif
feb11 0:85fceccc1a7c 51
feb11 0:85fceccc1a7c 52
feb11 0:85fceccc1a7c 53 /* enable features based on a 'super-set' capbaility. */
feb11 0:85fceccc1a7c 54 #if defined(CONFIG_SSL_FULL_MODE)
feb11 0:85fceccc1a7c 55
feb11 0:85fceccc1a7c 56 #ifndef CONFIG_SSL_ENABLE_CLIENT
feb11 0:85fceccc1a7c 57 #define CONFIG_SSL_ENABLE_CLIENT
feb11 0:85fceccc1a7c 58 #endif
feb11 0:85fceccc1a7c 59
feb11 0:85fceccc1a7c 60 #ifndef CONFIG_SSL_CERT_VERIFICATION
feb11 0:85fceccc1a7c 61 #define CONFIG_SSL_CERT_VERIFICATION
feb11 0:85fceccc1a7c 62 #endif
feb11 0:85fceccc1a7c 63
feb11 0:85fceccc1a7c 64 #elif defined(CONFIG_SSL_ENABLE_CLIENT) && !defined(CONFIG_SSL_CERT_VERIFICATION)
feb11 0:85fceccc1a7c 65 #define CONFIG_SSL_CERT_VERIFICATION
feb11 0:85fceccc1a7c 66 #endif
feb11 0:85fceccc1a7c 67
feb11 0:85fceccc1a7c 68 /**************************************************************************
feb11 0:85fceccc1a7c 69 * AES declarations
feb11 0:85fceccc1a7c 70 **************************************************************************/
feb11 0:85fceccc1a7c 71
feb11 0:85fceccc1a7c 72 #define AES_MAXROUNDS 14
feb11 0:85fceccc1a7c 73 #define AES_BLOCKSIZE 16
feb11 0:85fceccc1a7c 74 #define AES_IV_SIZE 16
feb11 0:85fceccc1a7c 75
feb11 0:85fceccc1a7c 76 typedef struct aes_key_st
feb11 0:85fceccc1a7c 77 {
feb11 0:85fceccc1a7c 78 uint16_t rounds;
feb11 0:85fceccc1a7c 79 uint16_t key_size;
feb11 0:85fceccc1a7c 80 uint32_t ks[(AES_MAXROUNDS+1)*8];
feb11 0:85fceccc1a7c 81 uint8_t iv[AES_IV_SIZE];
feb11 0:85fceccc1a7c 82 } AES_CTX;
feb11 0:85fceccc1a7c 83
feb11 0:85fceccc1a7c 84 typedef enum
feb11 0:85fceccc1a7c 85 {
feb11 0:85fceccc1a7c 86 AES_MODE_128,
feb11 0:85fceccc1a7c 87 AES_MODE_256
feb11 0:85fceccc1a7c 88 } AES_MODE;
feb11 0:85fceccc1a7c 89
feb11 0:85fceccc1a7c 90 void AES_set_key(AES_CTX *ctx, const uint8_t *key,
feb11 0:85fceccc1a7c 91 const uint8_t *iv, AES_MODE mode);
feb11 0:85fceccc1a7c 92 void AES_cbc_encrypt(AES_CTX *ctx, const uint8_t *msg,
feb11 0:85fceccc1a7c 93 uint8_t *out, int length);
feb11 0:85fceccc1a7c 94 void AES_cbc_decrypt(AES_CTX *ks, const uint8_t *in, uint8_t *out, int length);
feb11 0:85fceccc1a7c 95 void AES_convert_key(AES_CTX *ctx);
feb11 0:85fceccc1a7c 96
feb11 0:85fceccc1a7c 97 /**************************************************************************
feb11 0:85fceccc1a7c 98 * RC4 declarations
feb11 0:85fceccc1a7c 99 **************************************************************************/
feb11 0:85fceccc1a7c 100
feb11 0:85fceccc1a7c 101 typedef struct
feb11 0:85fceccc1a7c 102 {
feb11 0:85fceccc1a7c 103 uint8_t x, y, m[256];
feb11 0:85fceccc1a7c 104 } RC4_CTX;
feb11 0:85fceccc1a7c 105
feb11 0:85fceccc1a7c 106 void RC4_setup(RC4_CTX *s, const uint8_t *key, int length);
feb11 0:85fceccc1a7c 107 void RC4_crypt(RC4_CTX *s, const uint8_t *msg, uint8_t *data, int length);
feb11 0:85fceccc1a7c 108
feb11 0:85fceccc1a7c 109 /**************************************************************************
feb11 0:85fceccc1a7c 110 * SHA1 declarations
feb11 0:85fceccc1a7c 111 **************************************************************************/
feb11 0:85fceccc1a7c 112
feb11 0:85fceccc1a7c 113 #define SHA1_SIZE 20
feb11 0:85fceccc1a7c 114
feb11 0:85fceccc1a7c 115 /*
feb11 0:85fceccc1a7c 116 * This structure will hold context information for the SHA-1
feb11 0:85fceccc1a7c 117 * hashing operation
feb11 0:85fceccc1a7c 118 */
feb11 0:85fceccc1a7c 119 typedef struct
feb11 0:85fceccc1a7c 120 {
feb11 0:85fceccc1a7c 121 uint32_t Intermediate_Hash[SHA1_SIZE/4]; /* Message Digest */
feb11 0:85fceccc1a7c 122 uint32_t Length_Low; /* Message length in bits */
feb11 0:85fceccc1a7c 123 uint32_t Length_High; /* Message length in bits */
feb11 0:85fceccc1a7c 124 uint16_t Message_Block_Index; /* Index into message block array */
feb11 0:85fceccc1a7c 125 uint8_t Message_Block[64]; /* 512-bit message blocks */
feb11 0:85fceccc1a7c 126 } SHA1_CTX;
feb11 0:85fceccc1a7c 127
feb11 0:85fceccc1a7c 128 void SHA1_Init(SHA1_CTX *);
feb11 0:85fceccc1a7c 129 void SHA1_Update(SHA1_CTX *, const uint8_t * msg, int len);
feb11 0:85fceccc1a7c 130 void SHA1_Final(uint8_t *digest, SHA1_CTX *);
feb11 0:85fceccc1a7c 131
feb11 0:85fceccc1a7c 132 /**************************************************************************
feb11 0:85fceccc1a7c 133 * MD2 declarations
feb11 0:85fceccc1a7c 134 **************************************************************************/
feb11 0:85fceccc1a7c 135
feb11 0:85fceccc1a7c 136 #define MD2_SIZE 16
feb11 0:85fceccc1a7c 137
feb11 0:85fceccc1a7c 138 typedef struct
feb11 0:85fceccc1a7c 139 {
feb11 0:85fceccc1a7c 140 unsigned char cksum[16]; /* checksum of the data block */
feb11 0:85fceccc1a7c 141 unsigned char state[48]; /* intermediate digest state */
feb11 0:85fceccc1a7c 142 unsigned char buffer[16]; /* data block being processed */
feb11 0:85fceccc1a7c 143 int left; /* amount of data in buffer */
feb11 0:85fceccc1a7c 144 } MD2_CTX;
feb11 0:85fceccc1a7c 145
feb11 0:85fceccc1a7c 146 EXP_FUNC void STDCALL MD2_Init(MD2_CTX *ctx);
feb11 0:85fceccc1a7c 147 EXP_FUNC void STDCALL MD2_Update(MD2_CTX *ctx, const uint8_t *input, int ilen);
feb11 0:85fceccc1a7c 148 EXP_FUNC void STDCALL MD2_Final(uint8_t *digest, MD2_CTX *ctx);
feb11 0:85fceccc1a7c 149
feb11 0:85fceccc1a7c 150 /**************************************************************************
feb11 0:85fceccc1a7c 151 * MD5 declarations
feb11 0:85fceccc1a7c 152 **************************************************************************/
feb11 0:85fceccc1a7c 153
feb11 0:85fceccc1a7c 154 #define MD5_SIZE 16
feb11 0:85fceccc1a7c 155 #define MAX_KEYBLOCK_SIZE 136
feb11 0:85fceccc1a7c 156 typedef struct
feb11 0:85fceccc1a7c 157 {
feb11 0:85fceccc1a7c 158 uint32_t state[4]; /* state (ABCD) */
feb11 0:85fceccc1a7c 159 uint32_t count[2]; /* number of bits, modulo 2^64 (lsb first) */
feb11 0:85fceccc1a7c 160 uint8_t buffer[64]; /* input buffer */
feb11 0:85fceccc1a7c 161 } MD5_CTX;
feb11 0:85fceccc1a7c 162
feb11 0:85fceccc1a7c 163 EXP_FUNC void STDCALL MD5_Init(MD5_CTX *);
feb11 0:85fceccc1a7c 164 EXP_FUNC void STDCALL MD5_Update(MD5_CTX *, const uint8_t *msg, int len);
feb11 0:85fceccc1a7c 165 EXP_FUNC void STDCALL MD5_Final(uint8_t *digest, MD5_CTX *);
feb11 0:85fceccc1a7c 166
feb11 0:85fceccc1a7c 167 /**************************************************************************
feb11 0:85fceccc1a7c 168 * HMAC declarations
feb11 0:85fceccc1a7c 169 **************************************************************************/
feb11 0:85fceccc1a7c 170 void hmac_md5(const uint8_t *msg, int length, const uint8_t *key,
feb11 0:85fceccc1a7c 171 int key_len, uint8_t *digest);
feb11 0:85fceccc1a7c 172 void hmac_sha1(const uint8_t *msg, int length, const uint8_t *key,
feb11 0:85fceccc1a7c 173 int key_len, uint8_t *digest);
feb11 0:85fceccc1a7c 174
feb11 0:85fceccc1a7c 175 /**************************************************************************
feb11 0:85fceccc1a7c 176 * RSA declarations
feb11 0:85fceccc1a7c 177 **************************************************************************/
feb11 0:85fceccc1a7c 178
feb11 0:85fceccc1a7c 179 typedef struct
feb11 0:85fceccc1a7c 180 {
feb11 0:85fceccc1a7c 181 bigint *m; /* modulus */
feb11 0:85fceccc1a7c 182 bigint *e; /* public exponent */
feb11 0:85fceccc1a7c 183 bigint *d; /* private exponent */
feb11 0:85fceccc1a7c 184 #ifdef CONFIG_BIGINT_CRT
feb11 0:85fceccc1a7c 185 bigint *p; /* p as in m = pq */
feb11 0:85fceccc1a7c 186 bigint *q; /* q as in m = pq */
feb11 0:85fceccc1a7c 187 bigint *dP; /* d mod (p-1) */
feb11 0:85fceccc1a7c 188 bigint *dQ; /* d mod (q-1) */
feb11 0:85fceccc1a7c 189 bigint *qInv; /* q^-1 mod p */
feb11 0:85fceccc1a7c 190 #endif
feb11 0:85fceccc1a7c 191 int num_octets;
feb11 0:85fceccc1a7c 192 BI_CTX *bi_ctx;
feb11 0:85fceccc1a7c 193 } RSA_CTX;
feb11 0:85fceccc1a7c 194
feb11 0:85fceccc1a7c 195 void RSA_priv_key_new(RSA_CTX **rsa_ctx,
feb11 0:85fceccc1a7c 196 const uint8_t *modulus, int mod_len,
feb11 0:85fceccc1a7c 197 const uint8_t *pub_exp, int pub_len,
feb11 0:85fceccc1a7c 198 const uint8_t *priv_exp, int priv_len
feb11 0:85fceccc1a7c 199 #ifdef CONFIG_BIGINT_CRT
feb11 0:85fceccc1a7c 200 , const uint8_t *p, int p_len,
feb11 0:85fceccc1a7c 201 const uint8_t *q, int q_len,
feb11 0:85fceccc1a7c 202 const uint8_t *dP, int dP_len,
feb11 0:85fceccc1a7c 203 const uint8_t *dQ, int dQ_len,
feb11 0:85fceccc1a7c 204 const uint8_t *qInv, int qInv_len
feb11 0:85fceccc1a7c 205 #endif
feb11 0:85fceccc1a7c 206 );
feb11 0:85fceccc1a7c 207 void RSA_pub_key_new(RSA_CTX **rsa_ctx,
feb11 0:85fceccc1a7c 208 const uint8_t *modulus, int mod_len,
feb11 0:85fceccc1a7c 209 const uint8_t *pub_exp, int pub_len);
feb11 0:85fceccc1a7c 210 void RSA_free(RSA_CTX *ctx);
feb11 0:85fceccc1a7c 211 int RSA_decrypt(const RSA_CTX *ctx, const uint8_t *in_data, uint8_t *out_data,
feb11 0:85fceccc1a7c 212 int is_decryption);
feb11 0:85fceccc1a7c 213 bigint *RSA_private(const RSA_CTX *c, bigint *bi_msg);
feb11 0:85fceccc1a7c 214 //#if defined(CONFIG_SSL_CERT_VERIFICATION) || defined(CONFIG_SSL_GENERATE_X509_CERT)
feb11 0:85fceccc1a7c 215 bigint *RSA_sign_verify(BI_CTX *ctx, const uint8_t *sig, int sig_len,
feb11 0:85fceccc1a7c 216 bigint *modulus, bigint *pub_exp);
feb11 0:85fceccc1a7c 217 bigint *RSA_public(const RSA_CTX * c, bigint *bi_msg);
feb11 0:85fceccc1a7c 218 int RSA_encrypt(const RSA_CTX *ctx, const uint8_t *in_data, uint16_t in_len,
feb11 0:85fceccc1a7c 219 uint8_t *out_data, int is_signing);
feb11 0:85fceccc1a7c 220 void RSA_print(const RSA_CTX *ctx);
feb11 0:85fceccc1a7c 221 //#endif
feb11 0:85fceccc1a7c 222
feb11 0:85fceccc1a7c 223 /**************************************************************************
feb11 0:85fceccc1a7c 224 * RNG declarations
feb11 0:85fceccc1a7c 225 **************************************************************************/
feb11 0:85fceccc1a7c 226 EXP_FUNC void STDCALL RNG_initialize(void);
feb11 0:85fceccc1a7c 227 EXP_FUNC void STDCALL RNG_custom_init(const uint8_t *seed_buf, int size);
feb11 0:85fceccc1a7c 228 EXP_FUNC void STDCALL RNG_terminate(void);
feb11 0:85fceccc1a7c 229 EXP_FUNC void STDCALL get_random(int num_rand_bytes, uint8_t *rand_data);
feb11 0:85fceccc1a7c 230 void get_random_NZ(int num_rand_bytes, uint8_t *rand_data);
feb11 0:85fceccc1a7c 231
feb11 0:85fceccc1a7c 232 #ifdef __cplusplus
feb11 0:85fceccc1a7c 233 }
feb11 0:85fceccc1a7c 234 #endif
feb11 0:85fceccc1a7c 235
feb11 0:85fceccc1a7c 236 #endif
feb11 0:85fceccc1a7c 237
feb11 0:85fceccc1a7c 238