This library implements some hash and cryptographic algorithms.

Dependents:   mBuinoBlinky PB_Emma_Ethernet SLOTrashHTTP Garagem ... more

This library implements the following algorithms :

  • RC4
  • AES (AES-128, AES-192, AES-256)
  • DES
  • Triple DES (EDE)
  • MD2
  • MD4
  • MD5
  • SHA-1
  • SHA-2 (SHA-224, SHA-256, SHA-384, SHA-512)

The hash algorithms have been optimized for the mbed and you should get decent performance. However, I did not optimize the ciphers. Also, I did not test extensively these algorithms : it should work but you may find some bugs. Block ciphers support two modes : ECB and CBC.

Warning

If you are using SHA-384 or SHA-512, be aware that it produces large binary files and the compilation (using the online compiler) takes much longer to execute. It may happen that the compiler stops because it timed-out. In this case, just compile again and it should work.

Computing hash

You can compute the hash of some data in two different ways. The first one is the easiest, each hash algorithm has a static method that takes some data and compute the hash from it.

Computing hash using method 1

#include "Crypto.h"
#include "mbed.h"

static const char msg[] = "mbed is great !";

int main()
{
    uint8_t hash[16];
    MD2::computeHash(hash, (uint8_t*)msg, strlen(msg));
    printf("hash: ");
    for(int i = 0; i < 16; ++i)
        printf("%02x", hash[i]);
    printf("\n");
    
    return 0;
}

The second one is slightly slower (around 2-3% slower) but it allows you to compute the hash of some data in several steps (by calling update method). This is the method you should use if you need to compute the hash from a large source and you don't have enough memory to store it in a single buffer.

Computing hash using method 2

#include "Crypto.h"
#include "mbed.h"

static const char msg[] = "mbed is great !";

int main()
{
    uint8_t hash[16];
    MD2 h;
    h.update((uint8_t*)msg, strlen(msg));
    h.finalize(hash);
    printf("hash: ");
    for(int i = 0; i < 16; ++i)
        printf("%02x", hash[i]);
    printf("\n");
    
    return 0;
}

TODO

  • optimize ciphers
  • add doc
Revision:
3:85c6ee25cf3e
Parent:
2:473bac39ae7c
Child:
4:0da19393bd57
--- a/SHA2_32.cpp	Mon Sep 09 16:16:24 2013 +0000
+++ b/SHA2_32.cpp	Wed Sep 11 17:22:40 2013 +0000
@@ -23,47 +23,19 @@
     0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
 };
 
-static uint32_t rotLeft(uint32_t w, uint8_t n)
-{
-    return (w << n) | (w >> (32-n));
-}
-
-static uint32_t rotRight(uint32_t w, uint8_t n)
-{
-    return rotLeft(w,32-n);
-}
-
-static uint32_t CH(uint32_t x, uint32_t y, uint32_t z)
-{
-    return (x & y) ^ ((~x) & z);
-}
-
-static uint32_t MAJ(uint32_t x, uint32_t y, uint32_t z)
-{
-    return (x & y) ^ (x & z) ^ (y & z);
-}
-
-static uint32_t BSIG0(uint32_t x)
-{
-    return rotRight(x,2) ^ rotRight(x,13) ^ rotRight(x,22);
-}
-
-static uint32_t BSIG1(uint32_t x)
-{
-    return rotRight(x,6) ^ rotRight(x,11) ^ rotRight(x,25);
-}
-
-static uint32_t SSIG0(uint32_t x)
-{
-    return rotRight(x,7) ^ rotRight(x,18) ^ (x >> 3);
-}
- 
-static uint32_t SSIG1(uint32_t x)
-{
-    return rotRight(x,17) ^ rotRight(x,19) ^ (x >> 10);
-}
-
-
+#define ROTL(W,N) (((W) << (N)) | ((W) >> (32-(N))))
+#define ROTR(W,N) (((W) >> (N)) | ((W) << (32-(N))))
+#define CH(X,Y,Z) (((X) & (Y)) ^ ((~(X)) & (Z)))
+#define MAJ(X,Y,Z) (((X) & (Y)) ^ ((X) & (Z)) ^ ((Y) & (Z)))
+#define BSIG0(X) (ROTR(X,2) ^ ROTR(X,13) ^ ROTR(X,22))
+#define BSIG1(X) (ROTR(X,6) ^ ROTR(X,11) ^ ROTR(X,25))
+#define SSIG0(X) (ROTR((X),7) ^ ROTR((X),18) ^ ((X) >> 3))
+#define SSIG1(X) (ROTR((X),17) ^ ROTR((X),19) ^ ((X) >> 10))
+#define R(A,B,C,D,E,F,G,H,T)  T1 = H + BSIG1(E) + CH(E,F,G) + K[T] + w[T]; \
+                              T2 = BSIG0(A) + MAJ(A,B,C); \
+                              D += T1; \
+                              H = T1 + T2;
+        
 static const uint32_t H[] =
 {
     // SHA-224
@@ -138,62 +110,46 @@
         padding = 56 - (totalBufferLength % 64);
     else
         padding = 56 + (64 - (totalBufferLength % 64));
-    uint8_t val = 0x80;
-    add(&val, 1);
-    val = 0;
-    for(int i = 0; i < padding-1; ++i)
-        add(&val,1);
-    totalBufferLength -= padding;
-    uint64_t lengthBit = totalBufferLength * 8;
+
+    buffer[bufferLength++] = 0x80;
+    padding--;
+    if(padding+bufferLength == 56)
+        memset(&buffer[bufferLength], 0, padding);
+    else
+    {
+        memset(&buffer[bufferLength], 0, 64-bufferLength);
+        computeBlock(&h0, &h1, &h2, &h3, &h4, &h5, &h6, &h7, buffer);
+        memset(buffer, 0, bufferLength);
+    }
+    
+    uint64_t lengthBit = totalBufferLength << 3;
     uint32_t lengthBitLow = lengthBit;
     uint32_t lengthBitHigh = lengthBit >> 32;
-    uint8_t tmp[4];
-    tmp[0] = lengthBitHigh >> 24;
-    tmp[1] = lengthBitHigh >> 16;
-    tmp[2] = lengthBitHigh >> 8;
-    tmp[3] = lengthBitHigh;
-    add(tmp, 4);
-    tmp[0] = lengthBitLow >> 24;
-    tmp[1] = lengthBitLow >> 16;
-    tmp[2] = lengthBitLow >> 8;
-    tmp[3] = lengthBitLow;
-    add(tmp, 4);
+    lengthBitLow = __rev(lengthBitLow);
+    lengthBitHigh = __rev(lengthBitHigh);
+    memcpy(&buffer[60], &lengthBitLow, 4);    
+    memcpy(&buffer[56], &lengthBitHigh, 4);    
+    computeBlock(&h0, &h1, &h2, &h3, &h4, &h5, &h6, &h7, buffer);
 
-    digest[0] = h0 >> 24;
-    digest[1] = h0 >> 16;
-    digest[2] = h0 >> 8;
-    digest[3] = h0;
-    digest[4] = h1 >> 24;
-    digest[5] = h1 >> 16;
-    digest[6] = h1 >> 8;
-    digest[7] = h1;
-    digest[8] = h2 >> 24;
-    digest[9] = h2 >> 16;
-    digest[10] = h2 >> 8;
-    digest[11] = h2;
-    digest[12] = h3 >> 24;
-    digest[13] = h3 >> 16;
-    digest[14] = h3 >> 8;
-    digest[15] = h3;
-    digest[16] = h4 >> 24;
-    digest[17] = h4 >> 16;
-    digest[18] = h4 >> 8;
-    digest[19] = h4;
-    digest[20] = h5 >> 24;
-    digest[21] = h5 >> 16;
-    digest[22] = h5 >> 8;
-    digest[23] = h5;
-    digest[24] = h6 >> 24;
-    digest[25] = h6 >> 16;
-    digest[26] = h6 >> 8;
-    digest[27] = h6;
-
+    h0 = __rev(h0);
+    h1 = __rev(h1);
+    h2 = __rev(h2);
+    h3 = __rev(h3);
+    h4 = __rev(h4);
+    h5 = __rev(h5);
+    h6 = __rev(h6);
+    memcpy(digest, &h0, 4);
+    memcpy(&digest[4], &h1, 4);
+    memcpy(&digest[8], &h2, 4);
+    memcpy(&digest[12], &h3, 4);
+    memcpy(&digest[16], &h4, 4);
+    memcpy(&digest[20], &h5, 4);
+    memcpy(&digest[24], &h6, 4);
+    
     if(type == SHA_256)
     {
-        digest[28] = h7 >> 24;
-        digest[29] = h7 >> 16;
-        digest[30] = h7 >> 8;
-        digest[31] = h7;
+        h7 = __rev(h7);
+        memcpy(&digest[28], &h7, 4);
     }
     
     // reset state
@@ -236,27 +192,102 @@
                         uint8_t *buffer)
 {
     uint32_t w[64];
-    for(int t = 0; t < 16; ++t)
-    {
-        w[t] = (buffer[t*4] << 24) | (buffer[t*4+1] << 16) | (buffer[t*4+2] << 8) | buffer[t*4+3]; 
-    }
+    uint32_t *buffer2 = (uint32_t*)buffer;
+    w[0] = __rev(buffer2[0]);
+    w[1] = __rev(buffer2[1]);
+    w[2] = __rev(buffer2[2]);
+    w[3] = __rev(buffer2[3]);
+    w[4] = __rev(buffer2[4]);
+    w[5] = __rev(buffer2[5]);
+    w[6] = __rev(buffer2[6]);
+    w[7] = __rev(buffer2[7]);
+    w[8] = __rev(buffer2[8]);
+    w[9] = __rev(buffer2[9]);
+    w[10] = __rev(buffer2[10]);
+    w[11] = __rev(buffer2[11]);
+    w[12] = __rev(buffer2[12]);
+    w[13] = __rev(buffer2[13]);
+    w[14] = __rev(buffer2[14]);
+    w[15] = __rev(buffer2[15]);
+
     for(int t = 16; t < 64; ++t)
         w[t] = SSIG1(w[t-2]) + w[t-7] + SSIG0(w[t-15]) + w[t-16];
     
-     uint32_t a = *h02, b = *h12, c = *h22, d = *h32, e = *h42, f = *h52, g = *h62, h = *h72;
-    for(int t = 0; t < 64; ++t)
-    {
-        uint32_t T1 = h + BSIG1(e) + CH(e,f,g) + K[t] + w[t];
-        uint32_t T2 = BSIG0(a) + MAJ(a,b,c);
-        h = g;
-        g = f;
-        f = e;
-        e = d + T1;
-        d = c;
-        c = b;
-        b = a;
-        a = T1 + T2;
-    }
+    uint32_t a = *h02, b = *h12, c = *h22, d = *h32, e = *h42, f = *h52, g = *h62, h = *h72;
+    uint32_t T1, T2;
+    
+    R(a,b,c,d,e,f,g,h,0)
+    R(h,a,b,c,d,e,f,g,1)
+    R(g,h,a,b,c,d,e,f,2)
+    R(f,g,h,a,b,c,d,e,3)
+    R(e,f,g,h,a,b,c,d,4)
+    R(d,e,f,g,h,a,b,c,5)
+    R(c,d,e,f,g,h,a,b,6)
+    R(b,c,d,e,f,g,h,a,7)
+
+    R(a,b,c,d,e,f,g,h,8)
+    R(h,a,b,c,d,e,f,g,9)
+    R(g,h,a,b,c,d,e,f,10)
+    R(f,g,h,a,b,c,d,e,11)
+    R(e,f,g,h,a,b,c,d,12)
+    R(d,e,f,g,h,a,b,c,13)
+    R(c,d,e,f,g,h,a,b,14)
+    R(b,c,d,e,f,g,h,a,15)
+    
+    R(a,b,c,d,e,f,g,h,16)
+    R(h,a,b,c,d,e,f,g,17)
+    R(g,h,a,b,c,d,e,f,18)
+    R(f,g,h,a,b,c,d,e,19)
+    R(e,f,g,h,a,b,c,d,20)
+    R(d,e,f,g,h,a,b,c,21)
+    R(c,d,e,f,g,h,a,b,22)
+    R(b,c,d,e,f,g,h,a,23)
+    
+    R(a,b,c,d,e,f,g,h,24)
+    R(h,a,b,c,d,e,f,g,25)
+    R(g,h,a,b,c,d,e,f,26)
+    R(f,g,h,a,b,c,d,e,27)
+    R(e,f,g,h,a,b,c,d,28)
+    R(d,e,f,g,h,a,b,c,29)
+    R(c,d,e,f,g,h,a,b,30)
+    R(b,c,d,e,f,g,h,a,31) 
+    
+    R(a,b,c,d,e,f,g,h,32)
+    R(h,a,b,c,d,e,f,g,33)
+    R(g,h,a,b,c,d,e,f,34)
+    R(f,g,h,a,b,c,d,e,35)
+    R(e,f,g,h,a,b,c,d,36)
+    R(d,e,f,g,h,a,b,c,37)
+    R(c,d,e,f,g,h,a,b,38)
+    R(b,c,d,e,f,g,h,a,39)
+    
+    R(a,b,c,d,e,f,g,h,40)
+    R(h,a,b,c,d,e,f,g,41)
+    R(g,h,a,b,c,d,e,f,42)
+    R(f,g,h,a,b,c,d,e,43)
+    R(e,f,g,h,a,b,c,d,44)
+    R(d,e,f,g,h,a,b,c,45)
+    R(c,d,e,f,g,h,a,b,46)
+    R(b,c,d,e,f,g,h,a,47)
+
+    R(a,b,c,d,e,f,g,h,48)
+    R(h,a,b,c,d,e,f,g,49)
+    R(g,h,a,b,c,d,e,f,50)
+    R(f,g,h,a,b,c,d,e,51)
+    R(e,f,g,h,a,b,c,d,52)
+    R(d,e,f,g,h,a,b,c,53)
+    R(c,d,e,f,g,h,a,b,54)
+    R(b,c,d,e,f,g,h,a,55)
+    
+    R(a,b,c,d,e,f,g,h,56)
+    R(h,a,b,c,d,e,f,g,57)
+    R(g,h,a,b,c,d,e,f,58)
+    R(f,g,h,a,b,c,d,e,59)
+    R(e,f,g,h,a,b,c,d,60)
+    R(d,e,f,g,h,a,b,c,61)
+    R(c,d,e,f,g,h,a,b,62)
+    R(b,c,d,e,f,g,h,a,63)
+    
     
     *h02 += a;
     *h12 += b;
@@ -272,35 +303,32 @@
 {
     uint32_t h0 = H[type*8], h1 = H[type*8+1], h2 = H[type*8+2], h3 = H[type*8+3];
     uint32_t h4 = H[type*8+4], h5 = H[type*8+5], h6 = H[type*8+6], h7 = H[type*8+7];
-    int offset = 0;
-    while(length - offset >= 64)
-    {
-        computeBlock(&h0, &h1, &h2, &h3, &h4, &h5, &h6, &h7, &in[offset]);
-        offset += 64;
-    }
-    uint8_t bufferLength = length-offset;
-    uint8_t buffer[64];
-    memcpy(buffer, &in[offset],bufferLength); 
+    uint64_t lengthBit = length << 3;
     uint16_t padding;
     if(length % 64 < 56)
         padding = 56 - (length % 64);
     else
         padding = 56 + (64 - (length % 64));
-    buffer[bufferLength] = 0x80;
-    bufferLength++;
-    padding--;
-    while(padding > 0)
+        
+    while(length >= 64)
     {
-        if(bufferLength == 64)
-        {
-            computeBlock(&h0, &h1, &h2, &h3, &h4, &h5, &h6, &h7, buffer);
-            bufferLength = 0;
-        }
-        buffer[bufferLength] = 0;
-        bufferLength++;
-        padding--;
+        computeBlock(&h0, &h1, &h2, &h3, &h4, &h5, &h6, &h7, in);
+        length -= 64;
+        in += 64;
     }
-    uint64_t lengthBit = length * 8;
+    uint8_t buffer[64];
+    memcpy(buffer, in,length); 
+    buffer[length++] = 0x80;
+    padding--;
+    if(padding+length == 56)
+        memset(&buffer[length], 0, padding);
+    else
+    {
+        memset(&buffer[length], 0, 64-length);
+        computeBlock(&h0, &h1, &h2, &h3, &h4, &h5, &h6, &h7, buffer);
+        memset(buffer, 0, length);
+    }
+    
     uint32_t lengthBitLow = lengthBit;
     uint32_t lengthBitHigh = lengthBit >> 32;
     lengthBitLow = __rev(lengthBitLow);