mbed library with additional peripherals for ST F401 board

Fork of mbed-src by mbed official

This mbed LIB has additional peripherals for ST F401 board

  • UART2 : PA_3 rx, PA_2 tx
  • UART3 : PC_7 rx, PC_6 tx
  • I2C2 : PB_3 SDA, PB_10 SCL
  • I2C3 : PB_4 SDA, PA_8 SCL

targets/cmsis/TARGET_NXP/TARGET_LPC408X/TOOLCHAIN_GCC_CR/startup_lpc407x_8x.cpp

Committer:
mbed_official
Date:
2013-12-24
Revision:
67:78dfdb5b4d9e
Parent:
15:4892fe388435

File content as of revision 67:78dfdb5b4d9e:

//*****************************************************************************
//   +--+       
//   | ++----+   
//   +-++    |  
//     |     |  
//   +-+--+  |   
//   | +--+--+  
//   +----+    Copyright (c) 2012 Code Red Technologies Ltd.
//
// LPC407x_8x Microcontroller Startup code for use with Red Suite
//
// Version : 120624
//
// Software License Agreement
// 
// The software is owned by Code Red Technologies and/or its suppliers, and is 
// protected under applicable copyright laws.  All rights are reserved.  Any 
// use in violation of the foregoing restrictions may subject the user to criminal 
// sanctions under applicable laws, as well as to civil liability for the breach
// of the terms and conditions of this license.
// 
// THIS SOFTWARE IS PROVIDED "AS IS".  NO WARRANTIES, WHETHER EXPRESS, IMPLIED
// OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE.
// USE OF THIS SOFTWARE FOR COMMERCIAL DEVELOPMENT AND/OR EDUCATION IS SUBJECT
// TO A CURRENT END USER LICENSE AGREEMENT (COMMERCIAL OR EDUCATIONAL) WITH
// CODE RED TECHNOLOGIES LTD. 
//
//*****************************************************************************
#if defined (__cplusplus)
#ifdef __REDLIB__
#error Redlib does not support C++
#else
//*****************************************************************************
//
// The entry point for the C++ library startup
//
//*****************************************************************************
extern "C" {
	extern void __libc_init_array(void);
}
#endif
#endif

#define WEAK __attribute__ ((weak))
#define ALIAS(f) __attribute__ ((weak, alias (#f)))

//#if defined (__USE_CMSIS)
#include "LPC407x_8x_177x_8x.h"
//#endif

//*****************************************************************************
#if defined (__cplusplus)
extern "C" {
#endif

//*****************************************************************************
//
// Forward declaration of the default handlers. These are aliased.
// When the application defines a handler (with the same name), this will 
// automatically take precedence over these weak definitions
//
//*****************************************************************************
     void ResetISR(void);
WEAK void NMI_Handler(void);
WEAK void HardFault_Handler(void);
WEAK void MemManage_Handler(void);
WEAK void BusFault_Handler(void);
WEAK void UsageFault_Handler(void);
WEAK void SVC_Handler(void);
WEAK void DebugMon_Handler(void);
WEAK void PendSV_Handler(void);
WEAK void SysTick_Handler(void);
WEAK void IntDefaultHandler(void);

//*****************************************************************************
//
// Forward declaration of the specific IRQ handlers. These are aliased
// to the IntDefaultHandler, which is a 'forever' loop. When the application
// defines a handler (with the same name), this will automatically take 
// precedence over these weak definitions
//
//*****************************************************************************
void WDT_IRQHandler(void) ALIAS(IntDefaultHandler);
void TIMER0_IRQHandler(void) ALIAS(IntDefaultHandler);
void TIMER1_IRQHandler(void) ALIAS(IntDefaultHandler);
void TIMER2_IRQHandler(void) ALIAS(IntDefaultHandler);
void TIMER3_IRQHandler(void) ALIAS(IntDefaultHandler);
void UART0_IRQHandler(void) ALIAS(IntDefaultHandler);
void UART1_IRQHandler(void) ALIAS(IntDefaultHandler);
void UART2_IRQHandler(void) ALIAS(IntDefaultHandler);
void UART3_IRQHandler(void) ALIAS(IntDefaultHandler);
void PWM1_IRQHandler(void) ALIAS(IntDefaultHandler);
void I2C0_IRQHandler(void) ALIAS(IntDefaultHandler);
void I2C1_IRQHandler(void) ALIAS(IntDefaultHandler);
void I2C2_IRQHandler(void) ALIAS(IntDefaultHandler);
void SPI_IRQHandler(void) ALIAS(IntDefaultHandler);
void SSP0_IRQHandler(void) ALIAS(IntDefaultHandler);
void SSP1_IRQHandler(void) ALIAS(IntDefaultHandler);
void PLL0_IRQHandler(void) ALIAS(IntDefaultHandler);
void RTC_IRQHandler(void) ALIAS(IntDefaultHandler);
void EINT0_IRQHandler(void) ALIAS(IntDefaultHandler);
void EINT1_IRQHandler(void) ALIAS(IntDefaultHandler);
void EINT2_IRQHandler(void) ALIAS(IntDefaultHandler);
void EINT3_IRQHandler(void) ALIAS(IntDefaultHandler);
void ADC_IRQHandler(void) ALIAS(IntDefaultHandler);
void BOD_IRQHandler(void) ALIAS(IntDefaultHandler);
void USB_IRQHandler(void) ALIAS(IntDefaultHandler);
void CAN_IRQHandler(void) ALIAS(IntDefaultHandler);
void DMA_IRQHandler(void) ALIAS(IntDefaultHandler);
void I2S_IRQHandler(void) ALIAS(IntDefaultHandler);
void ENET_IRQHandler(void) ALIAS(IntDefaultHandler);
void RIT_IRQHandler(void) ALIAS(IntDefaultHandler);
void MCPWM_IRQHandler(void) ALIAS(IntDefaultHandler);
void QEI_IRQHandler(void) ALIAS(IntDefaultHandler);
void PLL1_IRQHandler(void) ALIAS(IntDefaultHandler);
void USBActivity_IRQHandler(void) ALIAS(IntDefaultHandler);
void CANActivity_IRQHandler(void) ALIAS(IntDefaultHandler);
void MCI_IRQHandler(void) ALIAS(IntDefaultHandler);
void UART4_IRQHandler(void) ALIAS(IntDefaultHandler);
void SSP2_IRQHandler(void) ALIAS(IntDefaultHandler);
void LCD_IRQHandler(void) ALIAS(IntDefaultHandler);
void GPIO_IRQHandler(void) ALIAS(IntDefaultHandler);
void PWM0_IRQHandler(void) ALIAS(IntDefaultHandler);
void EEPROM_IRQHandler(void) ALIAS(IntDefaultHandler);

//*****************************************************************************
//
// The entry point for the application.
// __main() is the entry point for Redlib based applications
// main() is the entry point for Newlib based applications
//
//*****************************************************************************
#if defined (__REDLIB__)
extern void __main(void);
#endif
extern int main(void);
//*****************************************************************************
//
// External declaration for the pointer to the stack top from the Linker Script
//
//*****************************************************************************
extern void _vStackTop(void);

//*****************************************************************************
#if defined (__cplusplus)
} // extern "C"
#endif
//*****************************************************************************
//
// The vector table.
// This relies on the linker script to place at correct location in memory.
//
//*****************************************************************************
extern void (* const g_pfnVectors[])(void);
__attribute__ ((section(".isr_vector")))
void (* const g_pfnVectors[])(void) = {
	// Core Level - CM3
	&_vStackTop, // The initial stack pointer
	ResetISR,							// The reset handler
	NMI_Handler,							// The NMI handler
	HardFault_Handler,						// The hard fault handler
	MemManage_Handler,						// The MPU fault handler
	BusFault_Handler,						// The bus fault handler
	UsageFault_Handler,						// The usage fault handler
	0,								// Reserved
	0,								// Reserved
	0,								// Reserved
	0,								// Reserved
	SVC_Handler,							// SVCall handler
	DebugMon_Handler,						// Debug monitor handler
	0,								// Reserved
	PendSV_Handler,							// The PendSV handler
	SysTick_Handler,						// The SysTick handler

	// Chip Level - LPC17
	WDT_IRQHandler,							// 16, 0x40 - WDT
	TIMER0_IRQHandler,						// 17, 0x44 - TIMER0
	TIMER1_IRQHandler,						// 18, 0x48 - TIMER1
	TIMER2_IRQHandler,						// 19, 0x4c - TIMER2
	TIMER3_IRQHandler,						// 20, 0x50 - TIMER3
	UART0_IRQHandler,						// 21, 0x54 - UART0
	UART1_IRQHandler,						// 22, 0x58 - UART1
	UART2_IRQHandler,						// 23, 0x5c - UART2
	UART3_IRQHandler,						// 24, 0x60 - UART3
	PWM1_IRQHandler,						// 25, 0x64 - PWM1
	I2C0_IRQHandler,						// 26, 0x68 - I2C0
	I2C1_IRQHandler,						// 27, 0x6c - I2C1
	I2C2_IRQHandler,						// 28, 0x70 - I2C2
	IntDefaultHandler,						// 29, Not used
	SSP0_IRQHandler,						// 30, 0x78 - SSP0
	SSP1_IRQHandler,						// 31, 0x7c - SSP1
	PLL0_IRQHandler,						// 32, 0x80 - PLL0 (Main PLL)
	RTC_IRQHandler,							// 33, 0x84 - RTC
	EINT0_IRQHandler,						// 34, 0x88 - EINT0
	EINT1_IRQHandler,						// 35, 0x8c - EINT1
	EINT2_IRQHandler,						// 36, 0x90 - EINT2
	EINT3_IRQHandler,						// 37, 0x94 - EINT3
	ADC_IRQHandler,							// 38, 0x98 - ADC
	BOD_IRQHandler,							// 39, 0x9c - BOD
	USB_IRQHandler,							// 40, 0xA0 - USB
	CAN_IRQHandler,							// 41, 0xa4 - CAN
	DMA_IRQHandler,							// 42, 0xa8 - GP DMA
	I2S_IRQHandler,							// 43, 0xac - I2S
	ENET_IRQHandler,						// 44, 0xb0 - Ethernet
	MCI_IRQHandler,							// 45, 0xb4 - SD/MMC card I/F
	MCPWM_IRQHandler,						// 46, 0xb8 - Motor Control PWM
	QEI_IRQHandler,							// 47, 0xbc - Quadrature Encoder
	PLL1_IRQHandler,						// 48, 0xc0 - PLL1 (USB PLL)
	USBActivity_IRQHandler,						// 49, 0xc4 - USB Activity interrupt to wakeup
	CANActivity_IRQHandler, 					// 50, 0xc8 - CAN Activity interrupt to wakeup
	UART4_IRQHandler, 						// 51, 0xcc - UART4

	SSP2_IRQHandler, 						// 52, 0xd0 - SSP2
	LCD_IRQHandler, 						// 53, 0xd4 - LCD
	GPIO_IRQHandler, 						// 54, 0xd8 - GPIO
	PWM0_IRQHandler, 						// 55, 0xdc - PWM0
	EEPROM_IRQHandler, 						// 56, 0xe0 - EEPROM

};

//*****************************************************************************
// Functions to carry out the initialization of RW and BSS data sections. These
// are written as separate functions rather than being inlined within the
// ResetISR() function in order to cope with MCUs with multiple banks of
// memory.
//*****************************************************************************
__attribute__ ((section(".after_vectors")))
void data_init(unsigned int romstart, unsigned int start, unsigned int len) {
	unsigned int *pulDest = (unsigned int*) start;
	unsigned int *pulSrc = (unsigned int*) romstart;
	unsigned int loop;
	for (loop = 0; loop < len; loop = loop + 4)
		*pulDest++ = *pulSrc++;
}

__attribute__ ((section(".after_vectors")))
void bss_init(unsigned int start, unsigned int len) {
	unsigned int *pulDest = (unsigned int*) start;
	unsigned int loop;
	for (loop = 0; loop < len; loop = loop + 4)
		*pulDest++ = 0;
}

//*****************************************************************************
// The following symbols are constructs generated by the linker, indicating
// the location of various points in the "Global Section Table". This table is
// created by the linker via the Code Red managed linker script mechanism. It
// contains the load address, execution address and length of each RW data
// section and the execution and length of each BSS (zero initialized) section.
//*****************************************************************************
extern unsigned int __data_section_table;
extern unsigned int __data_section_table_end;
extern unsigned int __bss_section_table;
extern unsigned int __bss_section_table_end;

//*****************************************************************************
// Reset entry point for your code.
// Sets up a simple runtime environment and initializes the C/C++
// library.
//*****************************************************************************

extern "C" void software_init_hook(void) __attribute__((weak));

__attribute__ ((section(".after_vectors")))
void
ResetISR(void) {

    //
    // Copy the data sections from flash to SRAM.
    //
	unsigned int LoadAddr, ExeAddr, SectionLen;
	unsigned int *SectionTableAddr;

	// Load base address of Global Section Table
	SectionTableAddr = &__data_section_table;

    // Copy the data sections from flash to SRAM.
	while (SectionTableAddr < &__data_section_table_end) {
		LoadAddr = *SectionTableAddr++;
		ExeAddr = *SectionTableAddr++;
		SectionLen = *SectionTableAddr++;
		data_init(LoadAddr, ExeAddr, SectionLen);
	}
	// At this point, SectionTableAddr = &__bss_section_table;
	// Zero fill the bss segment
	while (SectionTableAddr < &__bss_section_table_end) {
		ExeAddr = *SectionTableAddr++;
		SectionLen = *SectionTableAddr++;
		bss_init(ExeAddr, SectionLen);
	}

#if defined (__VFP_FP__) && !defined (__SOFTFP__)
/*
 * Code to enable the Cortex-M4 FPU only included
 * if appropriate build options have been selected.
 * Code taken from Section 7.1, Cortex-M4 TRM (DDI0439C)
 */	 
    // Read CPACR (located at address 0xE000ED88)
    // Set bits 20-23 to enable CP10 and CP11 coprocessors
    // Write back the modified value to the CPACR
	asm volatile ("LDR.W R0, =0xE000ED88\n\t"
                  "LDR R1, [R0]\n\t"
                  "ORR R1, R1, #(0xF << 20)\n\t"
                  "STR R1, [R0]");	
#endif // (__VFP_FP__) && !(__SOFTFP__)

	// Check to see if we are running the code from a non-zero
    // address (eg RAM, external flash), in which case we need
    // to modify the VTOR register to tell the CPU that the
    // vector table is located at a non-0x0 address.

	// Note that we do not use the CMSIS register access mechanism,
	// as there is no guarantee that the project has been configured
	// to use CMSIS.
	unsigned int * pSCB_VTOR = (unsigned int *) 0xE000ED08;
	if ((unsigned int *)g_pfnVectors!=(unsigned int *) 0x00000000) {
		// CMSIS : SCB->VTOR = <address of vector table>
		*pSCB_VTOR = (unsigned int)g_pfnVectors;
	}

//#ifdef __USE_CMSIS
	SystemInit();
//#endif
  if (software_init_hook) // give control to the RTOS
    software_init_hook(); // this will also call __libc_init_array
  else {
#if defined (__cplusplus)
    //
    // Call C++ library initialisation
    //
    __libc_init_array();
#endif

#if defined (__REDLIB__)
    // Call the Redlib library, which in turn calls main()
    __main() ;
#else
    main();
#endif
  }
	//
	// main() shouldn't return, but if it does, we'll just enter an infinite loop 
	//
	while (1) {
		;
	}
}

//*****************************************************************************
// Default exception handlers. Override the ones here by defining your own
// handler routines in your application code.
//*****************************************************************************
__attribute__ ((section(".after_vectors")))
void NMI_Handler(void)
{
    while(1)
    {
    }
}
__attribute__ ((section(".after_vectors")))
void HardFault_Handler(void)
{
    while(1)
    {
    }
}
__attribute__ ((section(".after_vectors")))
void MemManage_Handler(void)
{
    while(1)
    {
    }
}
__attribute__ ((section(".after_vectors")))
void BusFault_Handler(void)
{
    while(1)
    {
    }
}
__attribute__ ((section(".after_vectors")))
void UsageFault_Handler(void)
{
    while(1)
    {
    }
}
__attribute__ ((section(".after_vectors")))
void SVC_Handler(void)
{
    while(1)
    {
    }
}
__attribute__ ((section(".after_vectors")))
void DebugMon_Handler(void)
{
    while(1)
    {
    }
}
__attribute__ ((section(".after_vectors")))
void PendSV_Handler(void)
{
    while(1)
    {
    }
}
__attribute__ ((section(".after_vectors")))
void SysTick_Handler(void)
{
    while(1)
    {
    }
}

//*****************************************************************************
//
// Processor ends up here if an unexpected interrupt occurs or a specific
// handler is not present in the application code.
//
//*****************************************************************************
__attribute__ ((section(".after_vectors")))
void IntDefaultHandler(void)
{
    while(1)
    {
    }
}

#include <stdlib.h>

void *operator new(size_t size)  {return malloc(size);}
void *operator new[](size_t size){return malloc(size);}

void operator delete(void *p)   {free(p);}
void operator delete[](void *p) {free(p);}