USB Mouse (relative) example for mbed NXP LPC11U24 beta

USB_HID_STACK/USBBusInterface_LPC11U.c

Committer:
chris
Date:
2011-11-09
Revision:
1:e089be2a6aa1
Parent:
0:163560051396

File content as of revision 1:e089be2a6aa1:

/* USBBusInterface_LPC11U.c */
/* USB Bus Interface for NXP LPC11Uxx */
/* Copyright (c) 2011 ARM Limited. All rights reserved. */

/* Reference: */
/* NXP UM10462 LPC11U1x User manual Rev. 1 � 14 April 2011 */

#ifdef TARGET_LPC11U24

#include "USBBusInterface.h"
#include "USBUtils.h"
#include "USBEvents.h"


/* Valid physical endpoint numbers are 0 to (NUMBER_OF_PHYSICAL_ENDPOINTS-1) */
#define LAST_PHYSICAL_ENDPOINT (NUMBER_OF_PHYSICAL_ENDPOINTS-1)
/* Convert physical endpoint number to register bit */
#define EP(endpoint) (1UL<<endpoint)
/* Convert physical to logical */
#define PHY_TO_LOG(endpoint)    ((endpoint)>>1)
/* Get endpoint direction */
#define IN_EP(endpoint)     ((endpoint) & 1U ? true : false)
#define OUT_EP(endpoint)    ((endpoint) & 1U ? false : true)

/* USB RAM */
#define USB_RAM_START (0x20004000)
#define USB_RAM_SIZE  (0x00000800)

/* SYSAHBCLKCTRL */
#define CLK_USB     (1UL<<14)
#define CLK_USBRAM  (1UL<<27)

/* USB Information register */
#define FRAME_NR(a)     ((a) & 0x7ff)   /* Frame number */

/* USB Device Command/Status register */
#define DEV_ADDR_MASK   (0x7f)          /* Device address */
#define DEV_ADDR(a)     ((a) & DEV_ADDR_MASK)
#define DEV_EN          (1UL<<7)        /* Device enable */
#define SETUP           (1UL<<8)        /* SETUP token received */
#define PLL_ON          (1UL<<9)        /* PLL enabled in suspend */
#define DCON            (1UL<<16)       /* Device status - connect */
#define DSUS            (1UL<<17)       /* Device status - suspend */
#define DCON_C          (1UL<<24)       /* Connect change */
#define DSUS_C          (1UL<<25)       /* Suspend change */
#define DRES_C          (1UL<<26)       /* Reset change */
#define VBUSDEBOUNCED   (1UL<<28)       /* Vbus detected */

/* Endpoint Command/Status list */
#define CMDSTS_A                 (1UL<<31)          /* Active */
#define CMDSTS_D                 (1UL<<30)          /* Disable */
#define CMDSTS_S                 (1UL<<29)          /* Stall */
#define CMDSTS_TR                (1UL<<28)          /* Toggle Reset */
#define CMDSTS_RF                (1UL<<27)          /* Rate Feedback mode */
#define CMDSTS_TV                (1UL<<27)          /* Toggle Value */
#define CMDSTS_T                 (1UL<<26)          /* Endpoint Type */
#define CMDSTS_NBYTES(n)         (((n)&0x3ff)<<16)  /* Number of bytes */
#define CMDSTS_ADDRESS_OFFSET(a) (((a)>>6)&0xffff)  /* Buffer start address */

#define BYTES_REMAINING(s)       (((s)>>16)&0x3ff)  /* Bytes remaining after transfer */

/* USB Non-endpoint interrupt sources */
#define FRAME_INT   (1UL<<30)
#define DEV_INT     (1UL<<31)

/* One entry for a double-buffered logical endpoint in the endpoint */
/* command/status list. Endpoint 0 is single buffered, out[1] is used */
/* for the SETUP packet and in[1] is not used */
typedef __packed struct {
    uint32_t out[2];
    uint32_t in[2];
    } EP_COMMAND_STATUS;

typedef __packed struct {
    uint8_t out[MAX_PACKET_SIZE_EP0];
    uint8_t in[MAX_PACKET_SIZE_EP0];
    uint8_t setup[SETUP_PACKET_SIZE];
    } CONTROL_TRANSFER;

typedef __packed struct {
    uint32_t    maxPacket;
    uint32_t    buffer[2];
    uint32_t    options;
    } EP_STATE;

static volatile EP_STATE endpointState[NUMBER_OF_PHYSICAL_ENDPOINTS];

/* Pointer to the endpoint command/status list */
static EP_COMMAND_STATUS *ep = NULL;

/* Pointer to endpoint 0 data (IN/OUT and SETUP) */
static CONTROL_TRANSFER *ct = NULL;

/* Shadow DEVCMDSTAT register to avoid accidentally clearing flags or */
/* initiating a remote wakeup event. */
static volatile uint32_t devCmdStat;

/* Pointers used to allocate USB RAM */
static uint32_t usbRamPtr = USB_RAM_START;
static uint32_t epRamPtr = 0; /* Buffers for endpoints > 0 start here */

/*
 *  USBBusInterface API
 */

bool USBBusInterface_init(void)
{
    NVIC_DisableIRQ(USB_IRQn);

    /* USB_VBUS input, Pull down, Hysteresis enabled */
    //LPC_IOCON->PIO0_3 = 0x00000029;
    /* nUSB_CONNECT output */
    LPC_IOCON->PIO0_6 = 0x00000001;

    /* Enable clocks (USB registers, USB RAM) */
    LPC_SYSCON->SYSAHBCLKCTRL |= CLK_USB | CLK_USBRAM;

    /* Ensure device disconnected (DCON not set) */
    LPC_USB->DEVCMDSTAT = 0;
    /* Device must be disconnected for at least 2.5uS */
    /* to ensure that the USB host sees the device as */
    /* disconnected if the target CPU is reset. */
    wait(0.3);
    

    /* Reserve space in USB RAM for endpoint command/status list */
    /* Must be 256 byte aligned */
    usbRamPtr = ROUND_UP_TO_MULTIPLE(usbRamPtr, 256);
    ep = (EP_COMMAND_STATUS *)usbRamPtr;
    usbRamPtr += (sizeof(EP_COMMAND_STATUS) * NUMBER_OF_LOGICAL_ENDPOINTS);
    LPC_USB->EPLISTSTART = (uint32_t)(ep) & 0xffffff00;

    /* Reserve space in USB RAM for Endpoint 0 */
    /* Must be 64 byte aligned */
    usbRamPtr = ROUND_UP_TO_MULTIPLE(usbRamPtr, 64);
    ct = (CONTROL_TRANSFER *)usbRamPtr;
    usbRamPtr += sizeof(CONTROL_TRANSFER);
    LPC_USB->DATABUFSTART =(uint32_t)(ct) & 0xffc00000;

    /* Setup command/status list for EP0 */
    ep[0].out[0] = 0;
    ep[0].in[0] =  0;
    ep[0].out[1] = CMDSTS_ADDRESS_OFFSET((uint32_t)ct->setup);

    /* Route all interrupts to IRQ, some can be routed to  */
    /* USB_FIQ if you wish. */
    LPC_USB->INTROUTING = 0;

    /* Set device address 0, enable USB device, no remote wakeup */
    devCmdStat = DEV_ADDR(0) | DEV_EN | DSUS;
    LPC_USB->DEVCMDSTAT = devCmdStat;

    /* Enable interrupts for device events and EP0 */
    LPC_USB->INTEN = DEV_INT | EP(EP0IN) | EP(EP0OUT);
    NVIC_EnableIRQ(USB_IRQn);
    

    /* Successful */
    return true;
}

void USBBusInterface_uninit(void)
{
    /* Ensure device disconnected (DCON not set) */
    LPC_USB->DEVCMDSTAT = 0;

    /* Disable USB interrupts */
    NVIC_DisableIRQ(USB_IRQn);
}

void USBBusInterface_connect(void)
{
    devCmdStat |= DCON;
    LPC_USB->DEVCMDSTAT = devCmdStat;
}

void USBBusInterface_disconnect(void)
{
    devCmdStat &= ~DCON;
    LPC_USB->DEVCMDSTAT = devCmdStat;
}

void USBBusInterface_configureDevice(void)
{
}

void USBBusInterface_unconfigureDevice(void)
{
}

void USBBusInterface_EP0setup(uint8_t *buffer)
{
    /* Copy setup packet data */
    USBMemCopy(buffer, ct->setup, SETUP_PACKET_SIZE);
}

void USBBusInterface_EP0read(void)
{
    /* Start an endpoint 0 read */

    /* The USB ISR will call USBDevice_EP0out() when a packet has been read, */
    /* the USBDevice layer then calls USBBusInterface_EP0getReadResult() to */
    /* read the data. */

    ep[0].out[0] = CMDSTS_A |CMDSTS_NBYTES(MAX_PACKET_SIZE_EP0) \
        | CMDSTS_ADDRESS_OFFSET((uint32_t)ct->out);
}

uint32_t USBBusInterface_EP0getReadResult(uint8_t *buffer)
{
    /* Complete an endpoint 0 read */
    uint32_t bytesRead;

    /* Find how many bytes were read */
    bytesRead = MAX_PACKET_SIZE_EP0 - BYTES_REMAINING(ep[0].out[0]);

    /* Copy data */
    USBMemCopy(buffer, ct->out, bytesRead);
    return bytesRead;
}

void USBBusInterface_EP0write(uint8_t *buffer, uint32_t size)
{
    /* Start and endpoint 0 write */

    /* The USB ISR will call USBDevice_EP0in() when the data has */
    /* been written, the USBDevice layer then calls */
    /* USBBusInterface_EP0getWriteResult() to complete the transaction. */

    /* Copy data */
    USBMemCopy(ct->in, buffer, size);

    /* Start transfer */
    ep[0].in[0] = CMDSTS_A | CMDSTS_NBYTES(size) \
        | CMDSTS_ADDRESS_OFFSET((uint32_t)ct->in);
}

void USBBusInterface_EP0getWriteResult(void)
{
    /* Complete an endpoint 0 write */

    /* Nothing required for this target */
    return;
}

void USBBusInterface_EP0stall(void)
{
    ep[0].in[0] = CMDSTS_S;
    ep[0].out[0] = CMDSTS_S;
}

void USBBusInterface_setAddress(uint8_t address)
{
    devCmdStat &= ~DEV_ADDR_MASK;
    devCmdStat |= DEV_ADDR(address);
    LPC_USB->DEVCMDSTAT = devCmdStat;
}

EP_STATUS USBBusInterface_endpointWrite(uint8_t endpoint, uint8_t *data, uint32_t size)
{
    uint32_t flags = 0;
    uint32_t bf;

    /* Validate parameters */
    if (data == NULL)
    {
        return EP_INVALID;
    }

    if (endpoint > LAST_PHYSICAL_ENDPOINT)
    {
        return EP_INVALID;
    }

    if ((endpoint==EP0IN) || (endpoint==EP0OUT))
    {
        return EP_INVALID;
    }

    if (size > endpointState[endpoint].maxPacket)
    {
        return EP_INVALID;
    }

    if (LPC_USB->EPBUFCFG & EP(endpoint))
    {
        /* Double buffered */ /* TODO: FIX THIS */
        if (LPC_USB->EPINUSE & EP(endpoint))
        {
            bf = 1;
        }
        else
        {
            bf = 0;
        }
    }
    else
    {
        /* Single buffered */
        bf = 0;
    }

    /* Check if already active */
    if (ep[PHY_TO_LOG(endpoint)].in[bf] & CMDSTS_A)
    {
        return EP_INVALID;
    }

    /* Check if stalled */
    if (ep[PHY_TO_LOG(endpoint)].in[bf] & CMDSTS_S)
    {
        return EP_STALLED;
    }

    /* Copy data to USB RAM */
    USBMemCopy((uint8_t *)endpointState[endpoint].buffer[bf], data, size);

    /* Add options */
    if (endpointState[endpoint].options & RATE_FEEDBACK_MODE)
    {
        flags |= CMDSTS_RF;
    }

    if (endpointState[endpoint].options & ISOCHRONOUS)
    {
        flags |= CMDSTS_T;
    }

    /* Add transfer */
    ep[PHY_TO_LOG(endpoint)].in[bf] = CMDSTS_ADDRESS_OFFSET( \
            endpointState[endpoint].buffer[bf]) \
            | CMDSTS_NBYTES(size) | CMDSTS_A | flags;

    return EP_PENDING;
}

EP_STATUS USBBusInterface_endpointWriteResult(uint8_t endpoint)
{
    uint32_t bf;
    /* Validate parameters */

    if (endpoint > LAST_PHYSICAL_ENDPOINT)
    {
        return EP_INVALID;
    }

    if (OUT_EP(endpoint))
    {
        return EP_INVALID;
    }

    if (LPC_USB->EPBUFCFG & EP(endpoint))
    {
        /* Double buffered */    /* TODO: FIX THIS */
        if (LPC_USB->EPINUSE & EP(endpoint))
        {
            bf = 1;
        }
        else
        {
            bf = 0;
        }
    }
    else
    {
        /* Single buffered */
        bf = 0;
    }

    /* Check if endpoint still active */
    if (ep[PHY_TO_LOG(endpoint)].in[bf] & CMDSTS_A)
    {
        return EP_PENDING;
    }

    /* Check if stalled */
    if (ep[PHY_TO_LOG(endpoint)].in[bf] & CMDSTS_S)
    {
        return EP_STALLED;
    }

    return EP_COMPLETED;
}

void USBBusInterface_stallEndpoint(uint8_t endpoint)
{

    // TODO: should this clear active bit?

    if (IN_EP(endpoint))
    {
        ep[PHY_TO_LOG(endpoint)].in[0] |= CMDSTS_S;
        ep[PHY_TO_LOG(endpoint)].in[1] |= CMDSTS_S;
    }
    else
    {
        ep[PHY_TO_LOG(endpoint)].out[0] |= CMDSTS_S;
        ep[PHY_TO_LOG(endpoint)].out[1] |= CMDSTS_S;
    }
}

void USBBusInterface_unstallEndpoint(uint8_t endpoint)
{
    if (LPC_USB->EPBUFCFG & EP(endpoint))
    {
        /* Double buffered */
        if (IN_EP(endpoint))
        {
            ep[PHY_TO_LOG(endpoint)].in[0] = 0; /* S = 0 */
            ep[PHY_TO_LOG(endpoint)].in[1] = 0; /* S = 0 */

            if (LPC_USB->EPINUSE & EP(endpoint))
            {
                ep[PHY_TO_LOG(endpoint)].in[1] = CMDSTS_TR; /* S =0, TR=1, TV = 0 */
            }
            else
            {
                ep[PHY_TO_LOG(endpoint)].in[0] = CMDSTS_TR; /* S =0, TR=1, TV = 0 */
            }
        }
        else
        {
            ep[PHY_TO_LOG(endpoint)].out[0] = 0; /* S = 0 */
            ep[PHY_TO_LOG(endpoint)].out[1] = 0; /* S = 0 */

            if (LPC_USB->EPINUSE & EP(endpoint))
            {
                ep[PHY_TO_LOG(endpoint)].out[1] = CMDSTS_TR; /* S =0, TR=1, TV = 0 */
            }
            else
            {
                ep[PHY_TO_LOG(endpoint)].out[0] = CMDSTS_TR; /* S =0, TR=1, TV = 0 */
            }
        }
    }
    else
    {
        /* Single buffered */
        if (IN_EP(endpoint))
        {
            ep[PHY_TO_LOG(endpoint)].in[0] = CMDSTS_TR; /* S=0, TR=1, TV = 0 */
        }
        else
        {
            ep[PHY_TO_LOG(endpoint)].out[0] = CMDSTS_TR; /* S=0, TR=1, TV = 0 */
        }
    }
}

bool USBBusInterface_getEndpointStallState(unsigned char endpoint)
{
    if (IN_EP(endpoint))
    {
        if (LPC_USB->EPINUSE & EP(endpoint))
        {
            if (ep[PHY_TO_LOG(endpoint)].in[1] & CMDSTS_S)
            {
                return true;
            }
        }
        else
        {
            if (ep[PHY_TO_LOG(endpoint)].in[0] & CMDSTS_S)
            {
                return true;
            }
        }
    }
    else
    {
        if (LPC_USB->EPINUSE & EP(endpoint))
        {
            if (ep[PHY_TO_LOG(endpoint)].out[1] & CMDSTS_S)
            {
                return true;
            }
        }
        else
        {
            if (ep[PHY_TO_LOG(endpoint)].out[0] & CMDSTS_S)
            {
                return true;
            }
        }
    }

    return false;
}

bool USBBusInterface_realiseEndpoint(uint8_t endpoint, uint32_t maxPacket, uint32_t options)
{
    uint32_t tmpEpRamPtr;

/*
    *
    *   Support for double buffered endpoints needs to be fixed/finished in this
    *   software - force single buffered for now.
    *
*/
    options |= SINGLE_BUFFERED; /* TODO - FIX THIS */

    if (endpoint > LAST_PHYSICAL_ENDPOINT)
    {
        return false;
    }

    /* Not applicable to the control endpoints */
    if ((endpoint==EP0IN) || (endpoint==EP0OUT))
    {
        return false;
    }

    /* Allocate buffers in USB RAM */
    tmpEpRamPtr = epRamPtr;

    /* Must be 64 byte aligned */
    tmpEpRamPtr = ROUND_UP_TO_MULTIPLE(tmpEpRamPtr, 64);

    if ((tmpEpRamPtr + maxPacket) > (USB_RAM_START + USB_RAM_SIZE))
    {
        /* Out of memory */
        return false;
    }

    /* Allocate first buffer */
    endpointState[endpoint].buffer[0] = tmpEpRamPtr;
    tmpEpRamPtr += maxPacket;

    if (!(options & SINGLE_BUFFERED))
    {
        /* Must be 64 byte aligned */
        tmpEpRamPtr = ROUND_UP_TO_MULTIPLE(tmpEpRamPtr, 64);
    
        if ((tmpEpRamPtr + maxPacket) > (USB_RAM_START + USB_RAM_SIZE))
        {
            /* Out of memory */
            return false;
        }

        /* Allocate second buffer */
        endpointState[endpoint].buffer[1] = tmpEpRamPtr;
        tmpEpRamPtr += maxPacket;
    }

    /* Commit to this USB RAM allocation */
    epRamPtr = tmpEpRamPtr;

    /* Remaining endpoint state values */
    endpointState[endpoint].maxPacket = maxPacket;
    endpointState[endpoint].options = options;

    /* Enable double buffering if required */
    if (options & SINGLE_BUFFERED)
    {
        LPC_USB->EPBUFCFG &= ~EP(endpoint);
    }
    else
    {
        /* Double buffered */
        LPC_USB->EPBUFCFG |= EP(endpoint);
    }

    /* Enable endpoint */
    USBBusInterface_unstallEndpoint(endpoint);
    return true;
}

void USBBusInterface_remoteWakeup(void)
{
    /* Clearing DSUS bit initiates a remote wakeup if the */
    /* device is currently enabled and suspended - otherwise */
    /* it has no effect. */
    LPC_USB->DEVCMDSTAT = devCmdStat & ~DSUS;
}

/*
 *  Configuration helper functions
 */

static void disableEndpoints(void)
{
    uint32_t logEp;

    /* Ref. Table 158 "When a bus reset is received, software */
    /* must set the disable bit of all endpoints to 1".*/

    for (logEp = 1; logEp < NUMBER_OF_LOGICAL_ENDPOINTS; logEp++)
    {
        ep[logEp].out[0] = CMDSTS_D;
        ep[logEp].out[1] = CMDSTS_D;
        ep[logEp].in[0] =  CMDSTS_D;
        ep[logEp].in[1] =  CMDSTS_D;
    }

    /* Start of USB RAM for endpoints > 0 */
    epRamPtr = usbRamPtr;
}

/*
 *  USB interrupt handler
 */

extern "C"
{
void USB_IRQHandler(void)
{
    /* Start of frame */
    if (LPC_USB->INTSTAT & FRAME_INT)
    {
        /* Clear SOF interrupt */
        LPC_USB->INTSTAT = FRAME_INT;

        /* SOF event, read frame number */
        USBDevice_SOF(FRAME_NR(LPC_USB->INFO));
    }

    /* Device state */
    if (LPC_USB->INTSTAT & DEV_INT)
    {
        LPC_USB->INTSTAT = DEV_INT;

        if (LPC_USB->DEVCMDSTAT & DCON_C)
        {
            /* Connect status changed */
            LPC_USB->DEVCMDSTAT = devCmdStat | DCON_C;

            USBDevice_connectStateChanged((LPC_USB->DEVCMDSTAT & DCON) != 0);
        }

        if (LPC_USB->DEVCMDSTAT & DSUS_C)
        {
            /* Suspend status changed */
            LPC_USB->DEVCMDSTAT = devCmdStat | DSUS_C;

            USBDevice_suspendStateChanged((LPC_USB->DEVCMDSTAT & DSUS) != 0);
        }

        if (LPC_USB->DEVCMDSTAT & DRES_C)
        {
            /* Bus reset */
            LPC_USB->DEVCMDSTAT = devCmdStat | DRES_C;

            /* Disable endpoints > 0 */
            disableEndpoints();

            /* Bus reset event */
            USBDevice_busReset();
        }
    }

    /* Endpoint 0 */
    if (LPC_USB->INTSTAT & EP(EP0OUT))
    {
        /* Clear EP0OUT/SETUP interrupt */
        LPC_USB->INTSTAT = EP(EP0OUT);

        /* Check if SETUP */
        if (LPC_USB->DEVCMDSTAT & SETUP)
        {
            /* Clear Active and Stall bits for EP0 */
            /* Documentation does not make it clear if we must use the */
            /* EPSKIP register to achieve this, Fig. 16 and NXP reference */
            /* code suggests we can just clear the Active bits - check with */
            /* NXP to be sure. */
            ep[0].in[0] = 0;
            ep[0].out[0] = 0;

            /* Clear EP0IN interrupt */
            LPC_USB->INTSTAT = EP(EP0IN);

            /* Clear SETUP (and INTONNAK_CI/O) in device status register */
            LPC_USB->DEVCMDSTAT = devCmdStat | SETUP;

            /* EP0 SETUP event (SETUP data received) */
            USBDevice_EP0setup();
        }
        else
        {
            /* EP0OUT ACK event (OUT data received) */
            USBDevice_EP0out();
        }
    }

    if (LPC_USB->INTSTAT & EP(EP0IN))
    {
        /* Clear EP0IN interrupt */
        LPC_USB->INTSTAT = EP(EP0IN);

        /* EP0IN ACK event (IN data sent) */
        USBDevice_EP0in();
    }
}
}

#endif