Servo example

Dependencies:   Stepper mbed Servo UniServ

Committer:
boro
Date:
Mon Mar 25 13:31:53 2019 +0000
Revision:
0:7e83e43a76b2
Servo example

Who changed what in which revision?

UserRevisionLine numberNew contents of line
boro 0:7e83e43a76b2 1 /*
boro 0:7e83e43a76b2 2 * EncoderCounter.cpp
boro 0:7e83e43a76b2 3 * Copyright (c) 2018, ZHAW
boro 0:7e83e43a76b2 4 * All rights reserved.
boro 0:7e83e43a76b2 5 */
boro 0:7e83e43a76b2 6
boro 0:7e83e43a76b2 7 #include "EncoderCounter.h"
boro 0:7e83e43a76b2 8
boro 0:7e83e43a76b2 9 using namespace std;
boro 0:7e83e43a76b2 10
boro 0:7e83e43a76b2 11 /**
boro 0:7e83e43a76b2 12 * Creates and initializes the driver to read the quadrature
boro 0:7e83e43a76b2 13 * encoder counter of the STM32 microcontroller.
boro 0:7e83e43a76b2 14 * @param a the input pin for the channel A.
boro 0:7e83e43a76b2 15 * @param b the input pin for the channel B.
boro 0:7e83e43a76b2 16 */
boro 0:7e83e43a76b2 17 EncoderCounter::EncoderCounter(PinName a, PinName b) {
boro 0:7e83e43a76b2 18
boro 0:7e83e43a76b2 19 // check pins
boro 0:7e83e43a76b2 20
boro 0:7e83e43a76b2 21 if ((a == PA_0) && (b == PA_1)) {
boro 0:7e83e43a76b2 22
boro 0:7e83e43a76b2 23 // pinmap OK for TIM2 CH1 and CH2
boro 0:7e83e43a76b2 24
boro 0:7e83e43a76b2 25 TIM = TIM2;
boro 0:7e83e43a76b2 26
boro 0:7e83e43a76b2 27 // configure general purpose I/O registers
boro 0:7e83e43a76b2 28
boro 0:7e83e43a76b2 29 GPIOA->MODER &= ~GPIO_MODER_MODER0; // reset port A0
boro 0:7e83e43a76b2 30 GPIOA->MODER |= GPIO_MODER_MODER0_1; // set alternate mode of port A0
boro 0:7e83e43a76b2 31 GPIOA->PUPDR &= ~GPIO_PUPDR_PUPDR0; // reset pull-up/pull-down on port A0
boro 0:7e83e43a76b2 32 GPIOA->PUPDR |= GPIO_PUPDR_PUPDR0_1; // set input as pull-down
boro 0:7e83e43a76b2 33 GPIOA->AFR[0] &= ~(0xF << 4*0); // reset alternate function of port A0
boro 0:7e83e43a76b2 34 GPIOA->AFR[0] |= 1 << 4*0; // set alternate funtion 1 of port A0
boro 0:7e83e43a76b2 35
boro 0:7e83e43a76b2 36 GPIOA->MODER &= ~GPIO_MODER_MODER1; // reset port A1
boro 0:7e83e43a76b2 37 GPIOA->MODER |= GPIO_MODER_MODER1_1; // set alternate mode of port A1
boro 0:7e83e43a76b2 38 GPIOA->PUPDR &= ~GPIO_PUPDR_PUPDR1; // reset pull-up/pull-down on port A1
boro 0:7e83e43a76b2 39 GPIOA->PUPDR |= GPIO_PUPDR_PUPDR1_1; // set input as pull-down
boro 0:7e83e43a76b2 40 GPIOA->AFR[0] &= ~(0xF << 4*1); // reset alternate function of port A1
boro 0:7e83e43a76b2 41 GPIOA->AFR[0] |= 1 << 4*1; // set alternate funtion 1 of port A1
boro 0:7e83e43a76b2 42
boro 0:7e83e43a76b2 43 // configure reset and clock control registers
boro 0:7e83e43a76b2 44
boro 0:7e83e43a76b2 45 RCC->APB1RSTR |= RCC_APB1RSTR_TIM2RST; //reset TIM2 controller
boro 0:7e83e43a76b2 46 RCC->APB1RSTR &= ~RCC_APB1RSTR_TIM2RST;
boro 0:7e83e43a76b2 47
boro 0:7e83e43a76b2 48 RCC->APB1ENR |= RCC_APB1ENR_TIM2EN; // TIM2 clock enable
boro 0:7e83e43a76b2 49
boro 0:7e83e43a76b2 50 } else if ((a == PA_6) && (b == PC_7)) {
boro 0:7e83e43a76b2 51
boro 0:7e83e43a76b2 52 // pinmap OK for TIM3 CH1 and CH2
boro 0:7e83e43a76b2 53
boro 0:7e83e43a76b2 54 TIM = TIM3;
boro 0:7e83e43a76b2 55
boro 0:7e83e43a76b2 56 // configure reset and clock control registers
boro 0:7e83e43a76b2 57
boro 0:7e83e43a76b2 58 RCC->AHB1ENR |= RCC_AHB1ENR_GPIOCEN; // manually enable port C (port A enabled by mbed library)
boro 0:7e83e43a76b2 59
boro 0:7e83e43a76b2 60 // configure general purpose I/O registers
boro 0:7e83e43a76b2 61
boro 0:7e83e43a76b2 62 GPIOA->MODER &= ~GPIO_MODER_MODER6; // reset port A6
boro 0:7e83e43a76b2 63 GPIOA->MODER |= GPIO_MODER_MODER6_1; // set alternate mode of port A6
boro 0:7e83e43a76b2 64 GPIOA->PUPDR &= ~GPIO_PUPDR_PUPDR6; // reset pull-up/pull-down on port A6
boro 0:7e83e43a76b2 65 GPIOA->PUPDR |= GPIO_PUPDR_PUPDR6_1; // set input as pull-down
boro 0:7e83e43a76b2 66 GPIOA->AFR[0] &= ~(0xF << 4*6); // reset alternate function of port A6
boro 0:7e83e43a76b2 67 GPIOA->AFR[0] |= 2 << 4*6; // set alternate funtion 2 of port A6
boro 0:7e83e43a76b2 68
boro 0:7e83e43a76b2 69 GPIOC->MODER &= ~GPIO_MODER_MODER7; // reset port C7
boro 0:7e83e43a76b2 70 GPIOC->MODER |= GPIO_MODER_MODER7_1; // set alternate mode of port C7
boro 0:7e83e43a76b2 71 GPIOC->PUPDR &= ~GPIO_PUPDR_PUPDR7; // reset pull-up/pull-down on port C7
boro 0:7e83e43a76b2 72 GPIOC->PUPDR |= GPIO_PUPDR_PUPDR7_1; // set input as pull-down
boro 0:7e83e43a76b2 73 GPIOC->AFR[0] &= ~0xF0000000; // reset alternate function of port C7
boro 0:7e83e43a76b2 74 GPIOC->AFR[0] |= 2 << 4*7; // set alternate funtion 2 of port C7
boro 0:7e83e43a76b2 75
boro 0:7e83e43a76b2 76 // configure reset and clock control registers
boro 0:7e83e43a76b2 77
boro 0:7e83e43a76b2 78 RCC->APB1RSTR |= RCC_APB1RSTR_TIM3RST; //reset TIM3 controller
boro 0:7e83e43a76b2 79 RCC->APB1RSTR &= ~RCC_APB1RSTR_TIM3RST;
boro 0:7e83e43a76b2 80
boro 0:7e83e43a76b2 81 RCC->APB1ENR |= RCC_APB1ENR_TIM3EN; // TIM3 clock enable
boro 0:7e83e43a76b2 82
boro 0:7e83e43a76b2 83 } else if ((a == PB_6) && (b == PB_7)) {
boro 0:7e83e43a76b2 84
boro 0:7e83e43a76b2 85 // pinmap OK for TIM4 CH1 and CH2
boro 0:7e83e43a76b2 86
boro 0:7e83e43a76b2 87 TIM = TIM4;
boro 0:7e83e43a76b2 88
boro 0:7e83e43a76b2 89 // configure reset and clock control registers
boro 0:7e83e43a76b2 90
boro 0:7e83e43a76b2 91 RCC->AHB1ENR |= RCC_AHB1ENR_GPIOBEN; // manually enable port B (port A enabled by mbed library)
boro 0:7e83e43a76b2 92
boro 0:7e83e43a76b2 93 // configure general purpose I/O registers
boro 0:7e83e43a76b2 94
boro 0:7e83e43a76b2 95 GPIOB->MODER &= ~GPIO_MODER_MODER6; // reset port B6
boro 0:7e83e43a76b2 96 GPIOB->MODER |= GPIO_MODER_MODER6_1; // set alternate mode of port B6
boro 0:7e83e43a76b2 97 GPIOB->PUPDR &= ~GPIO_PUPDR_PUPDR6; // reset pull-up/pull-down on port B6
boro 0:7e83e43a76b2 98 GPIOB->PUPDR |= GPIO_PUPDR_PUPDR6_1; // set input as pull-down
boro 0:7e83e43a76b2 99 GPIOB->AFR[0] &= ~(0xF << 4*6); // reset alternate function of port B6
boro 0:7e83e43a76b2 100 GPIOB->AFR[0] |= 2 << 4*6; // set alternate funtion 2 of port B6
boro 0:7e83e43a76b2 101
boro 0:7e83e43a76b2 102 GPIOB->MODER &= ~GPIO_MODER_MODER7; // reset port B7
boro 0:7e83e43a76b2 103 GPIOB->MODER |= GPIO_MODER_MODER7_1; // set alternate mode of port B7
boro 0:7e83e43a76b2 104 GPIOB->PUPDR &= ~GPIO_PUPDR_PUPDR7; // reset pull-up/pull-down on port B7
boro 0:7e83e43a76b2 105 GPIOB->PUPDR |= GPIO_PUPDR_PUPDR7_1; // set input as pull-down
boro 0:7e83e43a76b2 106 GPIOB->AFR[0] &= ~0xF0000000; // reset alternate function of port B7
boro 0:7e83e43a76b2 107 GPIOB->AFR[0] |= 2 << 4*7; // set alternate funtion 2 of port B7
boro 0:7e83e43a76b2 108
boro 0:7e83e43a76b2 109 // configure reset and clock control registers
boro 0:7e83e43a76b2 110
boro 0:7e83e43a76b2 111 RCC->APB1RSTR |= RCC_APB1RSTR_TIM4RST; //reset TIM4 controller
boro 0:7e83e43a76b2 112 RCC->APB1RSTR &= ~RCC_APB1RSTR_TIM4RST;
boro 0:7e83e43a76b2 113
boro 0:7e83e43a76b2 114 RCC->APB1ENR |= RCC_APB1ENR_TIM4EN; // TIM4 clock enable
boro 0:7e83e43a76b2 115
boro 0:7e83e43a76b2 116 } else {
boro 0:7e83e43a76b2 117
boro 0:7e83e43a76b2 118 printf("pinmap not found for peripheral\n");
boro 0:7e83e43a76b2 119 }
boro 0:7e83e43a76b2 120
boro 0:7e83e43a76b2 121 // configure general purpose timer 3 or 4
boro 0:7e83e43a76b2 122
boro 0:7e83e43a76b2 123 TIM->CR1 = 0x0000; // counter disable
boro 0:7e83e43a76b2 124 TIM->CR2 = 0x0000; // reset master mode selection
boro 0:7e83e43a76b2 125 TIM->SMCR = TIM_SMCR_SMS_1 | TIM_SMCR_SMS_0; // counting on both TI1 & TI2 edges
boro 0:7e83e43a76b2 126 TIM->CCMR1 = TIM_CCMR1_CC2S_0 | TIM_CCMR1_CC1S_0;
boro 0:7e83e43a76b2 127 TIM->CCMR2 = 0x0000; // reset capture mode register 2
boro 0:7e83e43a76b2 128 TIM->CCER = TIM_CCER_CC2E | TIM_CCER_CC1E;
boro 0:7e83e43a76b2 129 TIM->CNT = 0x0000; // reset counter value
boro 0:7e83e43a76b2 130 TIM->ARR = 0xFFFF; // auto reload register
boro 0:7e83e43a76b2 131 TIM->CR1 = TIM_CR1_CEN; // counter enable
boro 0:7e83e43a76b2 132 }
boro 0:7e83e43a76b2 133
boro 0:7e83e43a76b2 134 EncoderCounter::~EncoderCounter() {}
boro 0:7e83e43a76b2 135
boro 0:7e83e43a76b2 136 /**
boro 0:7e83e43a76b2 137 * Resets the counter value to zero.
boro 0:7e83e43a76b2 138 */
boro 0:7e83e43a76b2 139 void EncoderCounter::reset() {
boro 0:7e83e43a76b2 140
boro 0:7e83e43a76b2 141 TIM->CNT = 0x0000;
boro 0:7e83e43a76b2 142 }
boro 0:7e83e43a76b2 143
boro 0:7e83e43a76b2 144 /**
boro 0:7e83e43a76b2 145 * Resets the counter value to a given offset value.
boro 0:7e83e43a76b2 146 * @param offset the offset value to reset the counter to.
boro 0:7e83e43a76b2 147 */
boro 0:7e83e43a76b2 148 void EncoderCounter::reset(int16_t offset) {
boro 0:7e83e43a76b2 149
boro 0:7e83e43a76b2 150 TIM->CNT = -offset;
boro 0:7e83e43a76b2 151 }
boro 0:7e83e43a76b2 152
boro 0:7e83e43a76b2 153 /**
boro 0:7e83e43a76b2 154 * Reads the quadrature encoder counter value.
boro 0:7e83e43a76b2 155 * @return the quadrature encoder counter as a signed 16-bit integer value.
boro 0:7e83e43a76b2 156 */
boro 0:7e83e43a76b2 157 int16_t EncoderCounter::read() {
boro 0:7e83e43a76b2 158
boro 0:7e83e43a76b2 159 return static_cast<int16_t>(-TIM->CNT);
boro 0:7e83e43a76b2 160 }
boro 0:7e83e43a76b2 161
boro 0:7e83e43a76b2 162 /**
boro 0:7e83e43a76b2 163 * The empty operator is a shorthand notation of the <code>read()</code> method.
boro 0:7e83e43a76b2 164 */
boro 0:7e83e43a76b2 165 EncoderCounter::operator int16_t() {
boro 0:7e83e43a76b2 166
boro 0:7e83e43a76b2 167 return read();
boro 0:7e83e43a76b2 168 }
boro 0:7e83e43a76b2 169
boro 0:7e83e43a76b2 170
boro 0:7e83e43a76b2 171