MP3 PLAYER

Dependencies:   DebouncedInterrupt SDFileSystem SPI_TFT_ILI9341 ST_401_84MHZ TFT_fonts VS1053 mbed

Fork of MP3333 by FRA221_B18

Revision:
2:c4b198e96ded
Parent:
1:28ecafb2b832
Child:
3:c58fe0902900
--- a/main.cpp	Mon Dec 07 12:17:55 2015 +0000
+++ b/main.cpp	Tue Dec 08 19:52:20 2015 +0000
@@ -1,19 +1,16 @@
 #include "mbed.h"
 #include "player.h"
-#include "MPU9250.h"
-
+#include "DebouncedInterrupt.h"
+//#include "MPU9250.h"
+#include "SPI_TFT_ILI9341.h"
+#include "stdio.h"
+#include "string"
+#include "Arial12x12.h"
+#include "Arial24x23.h"
+#include "Arial28x28.h"
+#include "font_big.h"
 
-/*InterruptIn KEY_PS(D5);             //Play/Stop/Recording
-InterruptIn KEY_Pre(D6);           //Previous
-InterruptIn KEY_Next(D4);          //Next
-InterruptIn KEY_Up(D3);            //Volume up
-InterruptIn KEY_Down(D7);          //Volume dowm*/
-
-DigitalOut MyLED(D8);          //LED
-
-Player player;
-Ticker t;
-Timer timer;
+DigitalIn Mode(A5);
 
 extern char list[20][50];            //song list
 extern unsigned char vlume;     //vlume
@@ -22,81 +19,298 @@
 extern char index_MAX;          //how many song in all
 extern playerStatetype  playerState;
 
-int falltime;
+Serial pc(SERIAL_TX, SERIAL_RX);
+Player player;
+
+DebouncedInterrupt KEY_PS(D3);
+InterruptIn KEY_Next(D4);
+extern unsigned char p1[];
+extern unsigned char p2[];
+extern unsigned char p3[];
+int mark=10,list_nowplay=0;
+SPI_TFT_ILI9341 TFT(PA_7,PA_6,PA_5,PA_13,PA_14,PA_15,"TFT"); // mosi, miso, sclk, cs, reset, dc
 
-/*void LEDflip()
-{  
-    if (playerState == PS_PAUSE) MyLED = 0;
-	else if (playerState == PS_STOP) MyLED = 0;
-	else MyLED = !MyLED;
+float sum = 0;
+uint32_t sumCount = 0;
+char buffer[14];
+uint8_t dato_leido[2];
+uint8_t whoami;
+void riseFlip()
+{
+    if(playerState == PS_PAUSE)playerState = PS_PLAY;
+    else playerState = PS_PAUSE;
+    //a=!a;
 }
 
-void fallFlip()
-{
-    falltime=timer.read_ms();
-}
-
-void riseFlip()
+void letplay()
 {
-    if((timer.read_ms()-falltime)>1000)    //1s
-    {
-        playerState = PS_RECORDING;        //long press for recording
-    }
-    else
-    {
-        if(playerState == PS_PAUSE)playerState = PS_PLAY;       //play or pause
-        else playerState = PS_PAUSE; 
-    }   
+    TFT.cls();
+    TFT.foreground(White);
+    TFT.background(Black);
+    TFT.cls();
+    TFT.set_orientation(1);
+    TFT.Bitmap(60,1,200,173,p1);
 }
 
-
-void VolumeFlip()
+void angry()
 {
-    if(KEY_Up == 0)
-    {
-       vlume = (vlume-0x10 >= 0)?vlume-0x10:vlume;
-    }
-    
-    if(KEY_Down == 0)
-    {
-        vlume = (vlume+0x10<0xA0)?vlume+0x10:vlume;
-    }
-    printf("vlume : %d\r\n",10-vlume/0x10);
-    vlumeflag = 1;
+    TFT.cls();
+    TFT.foreground(White);
+    TFT.background(Black);
+    TFT.cls();
+    TFT.set_orientation(1);
+    TFT.Bitmap(60,1,200,173,p2);
+}
+
+void cry()
+{
+    TFT.cls();
+    TFT.foreground(White);
+    TFT.background(Black);
+    TFT.cls();
+    TFT.set_orientation(1);
+    TFT.Bitmap(60,1,200,173,p3);
 }
 
-
-void Pre_Next()
+void print_list()
 {
-    if(KEY_Next == 0)
-    {
-        index = (index+1 > index_MAX)?0:index+1;
-    }
-    
-    if(KEY_Pre == 0)
-    {
-        index = (index-1 < 0)?index_MAX:index-1;
-    }
-    playerState = PS_STOP; 
-}*/
+    int i=0,j=0;
+    TFT.claim(stdout);
+    TFT.cls();
+    TFT.foreground(White);
+    TFT.background(Black);
+    TFT.cls();
 
-int main() {
-    
-    /*KEY_PS.fall(&fallFlip);
-    KEY_PS.rise(&riseFlip);
-    KEY_Up.fall(&VolumeFlip);
-    KEY_Down.fall(&VolumeFlip);
-    KEY_Pre.fall(&Pre_Next);
-    KEY_Next.fall(&Pre_Next);
-    t.attach(&LEDflip,0.5);*/
-    
-    player.begin();
-    timer.start();
-
-    while(1)
-    {
-        player.playFile(list[index]);         
-    }
+    TFT.set_orientation(3);
+    TFT.set_font((unsigned char*) Arial28x28);
+    TFT.locate(150,120);
+    TFT.printf("Manual Mode:");
+    TFT.cls();
+    TFT.set_orientation(3);
+    TFT.set_font((unsigned char*) Arial12x12);
+    //list[5]='\0';
+    do {
+        TFT.locate(5,j);
+        TFT.printf("%2d . %s\r\n", i,list[i]);
+        i++;
+        j=j+23;
+    } while(i<5);
 
 }
 
+void Next()
+{
+    playerState = PS_STOP; 
+}
+
+int main()
+{
+
+    KEY_PS.attach(&riseFlip ,IRQ_RISE ,100);
+    KEY_Next.fall(&Next);
+    if(Mode.read() == 0) {
+
+        player.begin();
+        print_list();
+        while(1) {
+           player.playFile(list[index]);
+        }
+    }
+}
+
+/*//___ Set up I2C: use fast (400 kHz) I2C ___
+i2c.frequency(400000);
+
+pc.printf("CPU SystemCoreClock is %d Hz\r\n", SystemCoreClock);
+
+t.start(); // Timer ON
+
+// Read the WHO_AM_I register, this is a good test of communication
+whoami = mpu9250.readByte(MPU9250_ADDRESS, WHO_AM_I_MPU9250);
+
+pc.printf("I AM 0x%x\n\r", whoami); pc.printf("I SHOULD BE 0x71\n\r");
+if (I2Cstate != 0) // error on I2C
+  pc.printf("I2C failure while reading WHO_AM_I register");
+
+if (whoami == 0x71) // WHO_AM_I should always be 0x71
+{
+  pc.printf("MPU9250 WHO_AM_I is 0x%x\n\r", whoami);
+  pc.printf("MPU9250 is online...\n\r");
+  sprintf(buffer, "0x%x", whoami);
+  wait(1);
+
+  mpu9250.resetMPU9250(); // Reset registers to default in preparation for device calibration
+
+  mpu9250.MPU9250SelfTest(SelfTest); // Start by performing self test and reporting values (accelerometer and gyroscope self test)
+  pc.printf("x-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[0]);
+  pc.printf("y-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[1]);
+  pc.printf("z-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[2]);
+  pc.printf("x-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[3]);
+  pc.printf("y-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[4]);
+  pc.printf("z-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[5]);
+
+  mpu9250.calibrateMPU9250(gyroBias, accelBias); // Calibrate gyro and accelerometer, load biases in bias registers
+  pc.printf("x gyro bias = %f\n\r", gyroBias[0]);
+  pc.printf("y gyro bias = %f\n\r", gyroBias[1]);
+  pc.printf("z gyro bias = %f\n\r", gyroBias[2]);
+  pc.printf("x accel bias = %f\n\r", accelBias[0]);
+  pc.printf("y accel bias = %f\n\r", accelBias[1]);
+  pc.printf("z accel bias = %f\n\r", accelBias[2]);
+  wait(2);
+
+  // Initialize device for active mode read of acclerometer, gyroscope, and temperature
+  mpu9250.initMPU9250();
+  pc.printf("MPU9250 initialized for active data mode....\n\r");
+
+  // Initialize device for active mode read of magnetometer, 16 bit resolution, 100Hz.
+  mpu9250.initAK8963(magCalibration);
+  pc.printf("AK8963 initialized for active data mode....\n\r");
+  pc.printf("Accelerometer full-scale range = %f  g\n\r", 2.0f*(float)(1<<Ascale));
+  pc.printf("Gyroscope full-scale range = %f  deg/s\n\r", 250.0f*(float)(1<<Gscale));
+  if(Mscale == 0) pc.printf("Magnetometer resolution = 14  bits\n\r");
+  if(Mscale == 1) pc.printf("Magnetometer resolution = 16  bits\n\r");
+  if(Mmode == 2) pc.printf("Magnetometer ODR = 8 Hz\n\r");
+  if(Mmode == 6) pc.printf("Magnetometer ODR = 100 Hz\n\r");
+  wait(1);
+ }
+
+ else // Connection failure
+ {
+  pc.printf("Could not connect to MPU9250: \n\r");
+  pc.printf("%#x \n",  whoami);
+  sprintf(buffer, "WHO_AM_I 0x%x", whoami);
+  while(1) ; // Loop forever if communication doesn't happen
+  }
+
+  mpu9250.getAres(); // Get accelerometer sensitivity
+  mpu9250.getGres(); // Get gyro sensitivity
+  mpu9250.getMres(); // Get magnetometer sensitivity
+  pc.printf("Accelerometer sensitivity is %f LSB/g \n\r", 1.0f/aRes);
+  pc.printf("Gyroscope sensitivity is %f LSB/deg/s \n\r", 1.0f/gRes);
+  pc.printf("Magnetometer sensitivity is %f LSB/G \n\r", 1.0f/mRes);
+  magbias[0] = +470.;  // User environmental x-axis correction in milliGauss, should be automatically calculated
+  magbias[1] = +120.;  // User environmental x-axis correction in milliGauss
+  magbias[2] = +125.;  // User environmental x-axis correction in milliGauss
+
+  while(1) {
+
+      // If intPin goes high, all data registers have new data
+      if(mpu9250.readByte(MPU9250_ADDRESS, INT_STATUS) & 0x01) {  // On interrupt, check if data ready interrupt
+
+          mpu9250.readAccelData(accelCount);  // Read the x/y/z adc values
+          // Now we'll calculate the accleration value into actual g's
+          if (I2Cstate != 0) //error on I2C
+              pc.printf("I2C error ocurred while reading accelerometer data. I2Cstate = %d \n\r", I2Cstate);
+          else{ // I2C read or write ok
+              I2Cstate = 1;
+              ax = (float)accelCount[0]*aRes - accelBias[0];  // get actual g value, this depends on scale being set
+              ay = (float)accelCount[1]*aRes - accelBias[1];
+              az = (float)accelCount[2]*aRes - accelBias[2];
+          }
+
+          mpu9250.readGyroData(gyroCount);  // Read the x/y/z adc values
+          // Calculate the gyro value into actual degrees per second
+          if (I2Cstate != 0) //error on I2C
+              pc.printf("I2C error ocurred while reading gyrometer data. I2Cstate = %d \n\r", I2Cstate);
+          else{ // I2C read or write ok
+              I2Cstate = 1;
+              gx = (float)gyroCount[0]*gRes - gyroBias[0];  // get actual gyro value, this depends on scale being set
+              gy = (float)gyroCount[1]*gRes - gyroBias[1];
+              gz = (float)gyroCount[2]*gRes - gyroBias[2];
+          }
+
+          mpu9250.readMagData(magCount);  // Read the x/y/z adc values
+          // Calculate the magnetometer values in milliGauss
+          // Include factory calibration per data sheet and user environmental corrections
+          if (I2Cstate != 0) //error on I2C
+              pc.printf("I2C error ocurred while reading magnetometer data. I2Cstate = %d \n\r", I2Cstate);
+          else{ // I2C read or write ok
+              I2Cstate = 1;
+              mx = (float)magCount[0]*mRes*magCalibration[0] - magbias[0];  // get actual magnetometer value, this depends on scale being set
+              my = (float)magCount[1]*mRes*magCalibration[1] - magbias[1];
+              mz = (float)magCount[2]*mRes*magCalibration[2] - magbias[2];
+          }
+
+          mpu9250.getCompassOrientation(orientation);
+      }
+
+      Now = t.read_us();
+      deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update
+      lastUpdate = Now;
+      sum += deltat;
+      sumCount++;
+
+      // Pass gyro rate as rad/s
+      // mpu9250.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f,  my,  mx, mz);
+      mpu9250.MahonyQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz);
+
+
+      // Serial print and/or display at 1.5 s rate independent of data rates
+      delt_t = t.read_ms() - count;
+      if (delt_t > 1500) { // update LCD once per half-second independent of read rate
+          pc.printf("ax = %f", 1000*ax);
+          pc.printf(" ay = %f", 1000*ay);
+          pc.printf(" az = %f  mg\n\r", 1000*az);
+          pc.printf("gx = %f", gx);
+          pc.printf(" gy = %f", gy);
+          pc.printf(" gz = %f  deg/s\n\r", gz);
+          pc.printf("mx = %f", mx);
+          pc.printf(" my = %f", my);
+          pc.printf(" mz = %f  mG\n\r", mz);
+
+
+          tempCount = mpu9250.readTempData();  // Read the adc values
+          if (I2Cstate != 0) //error on I2C
+              pc.printf("I2C error ocurred while reading sensor temp. I2Cstate = %d \n\r", I2Cstate);
+          else{ // I2C read or write ok
+              I2Cstate = 1;
+              temperature = ((float) tempCount) / 333.87f + 21.0f; // Temperature in degrees Centigrade
+              pc.printf(" temperature = %f  C\n\r", temperature);
+          }
+          pc.printf("q0 = %f\n\r", q[0]);
+          pc.printf("q1 = %f\n\r", q[1]);
+          pc.printf("q2 = %f\n\r", q[2]);
+          pc.printf("q3 = %f\n\r", q[3]);
+
+          pc.printf("Compass orientation: %f\n", orientation[0]);
+
+
+
+
+          // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation.
+          // In this coordinate system, the positive z-axis is down toward Earth.
+          // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise.
+          // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative.
+          // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll.
+          // These arise from the definition of the homogeneous rotation matrix constructed from quaternions.
+          // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be
+          // applied in the correct order which for this configuration is yaw, pitch, and then roll.
+          // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links.
+
+          yaw   = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]);
+          pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2]));
+          roll  = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]);
+          pitch *= 180.0f / PI;
+          yaw   *= 180.0f / PI;
+          yaw   -= 13.8f; // Declination at Danville, California is 13 degrees 48 minutes and 47 seconds on 2014-04-04
+          roll  *= 180.0f / PI;
+
+          /*
+          pc.printf("Yaw, Pitch, Roll: %f %f %f\n\r", yaw, pitch, roll);
+          pc.printf("average rate = %f\n\r", (float) sumCount/sum);
+          */
+
+
+/*myled= !myled;
+count = t.read_ms();
+
+if(count > 1<<21) {
+    t.start(); // start the timer over again if ~30 minutes has passed
+    count = 0;
+    deltat= 0;
+    lastUpdate = t.read_us();
+}
+sum = 0;
+sumCount = 0;
+}
+}*/