MP3 PLAYER

Dependencies:   DebouncedInterrupt SDFileSystem SPI_TFT_ILI9341 ST_401_84MHZ TFT_fonts VS1053 mbed

Fork of MP3333 by FRA221_B18

Revision:
2:c4b198e96ded
Parent:
1:28ecafb2b832
Child:
3:c58fe0902900
--- a/MPU9250.h	Mon Dec 07 12:17:55 2015 +0000
+++ b/MPU9250.h	Tue Dec 08 19:52:20 2015 +0000
@@ -1,8 +1,18 @@
+/*****   
+        Library based on MPU-9250_Snowda library. It has been modified by Josué Olmeda Castelló for imasD Tecnología. It uses the 
+        mbed I2C class for comunications between the sensor and the master controller.
+        Methods related with data filtering have not been tested.
+        AD0 should be connected to GND.
+                                                            04/05/2015
+*****/
+
 #ifndef MPU9250_H
 #define MPU9250_H
  
 #include "mbed.h"
 #include "math.h"
+
+#define M_PI 3.14159265358979323846
  
 // See also MPU-9250 Register Map and Descriptions, Revision 4.0, RM-MPU-9250A-00, Rev. 1.4, 9/9/2013 for registers not listed in 
 // above document; the MPU9250 and MPU9150 are virtually identical but the latter has a different register map
@@ -188,13 +198,15 @@
 uint8_t Mscale = MFS_16BITS; // MFS_14BITS or MFS_16BITS, 14-bit or 16-bit magnetometer resolution
 uint8_t Mmode = 0x06;        // Either 8 Hz 0x02) or 100 Hz (0x06) magnetometer data ODR  
 float aRes, gRes, mRes;      // scale resolutions per LSB for the sensors
+int I2Cstate=1; // If I2Cstate!=0, I2C read or write operation has failed
 
 //Set up I2C, (SDA,SCL)
 I2C i2c(D14, D15);
 
+DigitalOut myled(LED1);
     
 // Pin definitions
-int intPin = 3;  // These can be changed, 2 and 3 are the Arduinos ext int pins
+//int intPin = 3;  // These can be changed, 2 and 3 are the Arduinos ext int pins
 
 int16_t accelCount[3];  // Stores the 16-bit signed accelerometer sensor output
 int16_t gyroCount[3];   // Stores the 16-bit signed gyro sensor output
@@ -205,6 +217,8 @@
 int16_t tempCount;   // Stores the real internal chip temperature in degrees Celsius
 float temperature;
 float SelfTest[6];
+float orientation[1];
+float magn_x, magn_y;
 
 int delt_t = 0; // used to control display output rate
 int count = 0;  // used to control display output rate
@@ -229,450 +243,477 @@
     protected:
  
     public:
-  //===================================================================================================================
-//====== Set of useful function to access acceleratio, gyroscope, and temperature data
-//===================================================================================================================
+    //===================================================================================================================
+    //====== Set of useful function to access acceleration, gyroscope, and temperature data
+    //===================================================================================================================
 
     void writeByte(uint8_t address, uint8_t subAddress, uint8_t data)
-{
-   char data_write[2];
-   data_write[0] = subAddress;
-   data_write[1] = data;
-   i2c.write(address, data_write, 2, 0);
-}
+    {
+        char data_write[2];
+        data_write[0] = subAddress;
+        data_write[1] = data;
+        I2Cstate = i2c.write(address, data_write, 2, 0);
+    }
 
     char readByte(uint8_t address, uint8_t subAddress)
-{
-    char data[1]; // `data` will store the register data     
-    char data_write[1];
-    data_write[0] = subAddress;
-    i2c.write(address, data_write, 1, 1); // no stop
-    i2c.read(address, data, 1, 0); 
-    return data[0]; 
-}
+    {
+        char data[1]; // `data` will store the register data     
+        char data_write[1];
+        data_write[0] = subAddress;
+        I2Cstate = i2c.write(address, data_write, 1, 1); // no stop
+        I2Cstate = i2c.read(address, data, 1, 0);
+        return data[0];
+    }
+
+    void readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest) // count=nº of bytes to read / dest=destiny where data is stored
+    {     
+        char data[14];
+        char data_write[1];
+        data_write[0] = subAddress;
+        I2Cstate = i2c.write(address, data_write, 1, 1); // no stop
+        I2Cstate = i2c.read(address, data, count, 0);
+        for(int ii = 0; ii < count; ii++) {
+            dest[ii] = data[ii];
+        }
+    } 
 
-    void readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest)
-{     
-    char data[14];
-    char data_write[1];
-    data_write[0] = subAddress;
-    i2c.write(address, data_write, 1, 1); // no stop
-    i2c.read(address, data, count, 0); 
-    for(int ii = 0; ii < count; ii++) {
-     dest[ii] = data[ii];
+    void getMres() {
+        switch (Mscale)
+        {
+            // Possible magnetometer scales (and their register bit settings) are:
+            // 14 bit resolution (0) and 16 bit resolution (1)
+            case MFS_14BITS:
+                mRes = 10.0*4219.0/8190.0; // Proper scale to return milliGauss
+            break;
+            case MFS_16BITS:
+                mRes = 10.0*4219.0/32760.0; // Proper scale to return milliGauss
+            break;
+        }
     }
-} 
- 
+
+    void getGres() {
+        switch (Gscale)
+        {
+            // Possible gyro scales (and their register bit settings) are:
+            // 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS  (11). 
+            // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
+            case GFS_250DPS:
+                gRes = 250.0/32768.0;
+            break;
+            case GFS_500DPS:
+                gRes = 500.0/32768.0;
+            break;
+            case GFS_1000DPS:
+                gRes = 1000.0/32768.0;
+            break;
+            case GFS_2000DPS:
+                gRes = 2000.0/32768.0;
+            break;
+        }
+    }
 
-void getMres() {
-  switch (Mscale)
-  {
-    // Possible magnetometer scales (and their register bit settings) are:
-    // 14 bit resolution (0) and 16 bit resolution (1)
-    case MFS_14BITS:
-          mRes = 10.0*4219.0/8190.0; // Proper scale to return milliGauss
-          break;
-    case MFS_16BITS:
-          mRes = 10.0*4219.0/32760.0; // Proper scale to return milliGauss
-          break;
-  }
-}
+    void getAres() {
+        switch (Ascale)
+        {
+            // Possible accelerometer scales (and their register bit settings) are:
+            // 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs  (11). 
+            // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
+            case AFS_2G:
+                aRes = 2.0/32768.0;
+            break;
+            case AFS_4G:
+                aRes = 4.0/32768.0;
+            break;
+            case AFS_8G:
+                aRes = 8.0/32768.0;
+            break;
+            case AFS_16G:
+                aRes = 16.0/32768.0;
+            break;
+        }
+    }
 
+    void readAccelData(int16_t * destination){
+        
+        uint8_t rawData[6];  // x/y/z accel register data stored here
+        readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]);  // Read the six raw data registers into data array
+        destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ;  // Turn the MSB and LSB into a signed 16-bit value
+        destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;  
+        destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; 
+    }
+
+    void readGyroData(int16_t * destination){
+        uint8_t rawData[6];  // x/y/z gyro register data stored here    
+        readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]);  // Read the six raw data registers sequentially into data array
+        destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ;  // Turn the MSB and LSB into a signed 16-bit value
+        destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;  
+        destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
+    }
 
-void getGres() {
-  switch (Gscale)
-  {
-    // Possible gyro scales (and their register bit settings) are:
-    // 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS  (11). 
-        // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
-    case GFS_250DPS:
-          gRes = 250.0/32768.0;
-          break;
-    case GFS_500DPS:
-          gRes = 500.0/32768.0;
-          break;
-    case GFS_1000DPS:
-          gRes = 1000.0/32768.0;
-          break;
-    case GFS_2000DPS:
-          gRes = 2000.0/32768.0;
-          break;
-  }
-}
+    void readMagData(int16_t * destination){
+        uint8_t rawData[7];  // x/y/z gyro register data, ST2 register stored here, must read ST2 at end of data acquisition
+        if(readByte(AK8963_ADDRESS, AK8963_ST1) & 0x01) { // wait for magnetometer data ready bit to be set
+            readBytes(AK8963_ADDRESS, AK8963_XOUT_L, 7, &rawData[0]);  // Read the six raw data and ST2 registers sequentially into data array
+            uint8_t c = rawData[6]; // End data read by reading ST2 register
+            if(!(c & 0x08)) { // Check if magnetic sensor overflow set, if not then report data
+                destination[0] = (int16_t)(((int16_t)rawData[1] << 8) | rawData[0]);  // Turn the MSB and LSB into a signed 16-bit value
+                destination[1] = (int16_t)(((int16_t)rawData[3] << 8) | rawData[2]) ;  // Data stored as little Endian
+                destination[2] = (int16_t)(((int16_t)rawData[5] << 8) | rawData[4]) ; 
+            }
+        }
+    }
+
+    int16_t readTempData(){
+        uint8_t rawData[2];  // x/y/z gyro register data stored here
+        readBytes(MPU9250_ADDRESS, TEMP_OUT_H, 2, &rawData[0]);  // Read the two raw data registers sequentially into data array 
+        return (int16_t)(((int16_t)rawData[0]) << 8 | rawData[1]) ;  // Turn the MSB and LSB into a 16-bit value
+    }
 
+    void resetMPU9250(){
+        // reset device
+        writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
+        wait(0.1);
+    }
+  
+    void initAK8963(float * destination){
+        // First extract the factory calibration for each magnetometer axis
+        uint8_t rawData[3];  // x/y/z gyro calibration data stored here
+        writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer  
+        wait(0.01);
+        writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x0F); // Enter Fuse ROM access mode
+        wait(0.01);
+        readBytes(AK8963_ADDRESS, AK8963_ASAX, 3, &rawData[0]);  // Read the x-, y-, and z-axis calibration values
+        destination[0] =  (float)(rawData[0] - 128)/256.0f + 1.0f;   // Return x-axis sensitivity adjustment values, etc.
+        destination[1] =  (float)(rawData[1] - 128)/256.0f + 1.0f;  
+        destination[2] =  (float)(rawData[2] - 128)/256.0f + 1.0f; 
+        writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer  
+        wait(0.01);
+        // Configure the magnetometer for continuous read and highest resolution
+        // set Mscale bit 4 to 1 (0) to enable 16 (14) bit resolution in CNTL register,
+        // and enable continuous mode data acquisition Mmode (bits [3:0]), 0010 for 8 Hz and 0110 for 100 Hz sample rates
+        writeByte(AK8963_ADDRESS, AK8963_CNTL, Mscale << 4 | Mmode); // Set magnetometer data resolution and sample ODR
+        wait(0.01);
+    }
+
+    void initMPU9250(){  
+        // Initialize MPU9250 device
+        // wake up device
+        writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00); // Clear sleep mode bit (6), enable all sensors 
+        wait(0.1); // Delay 100 ms for PLL to get established on x-axis gyro; should check for PLL ready interrupt  
+
+        // get stable time source
+        writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01);  // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001
 
-void getAres() {
-  switch (Ascale)
-  {
-    // Possible accelerometer scales (and their register bit settings) are:
-    // 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs  (11). 
-        // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
-    case AFS_2G:
-          aRes = 2.0/32768.0;
-          break;
-    case AFS_4G:
-          aRes = 4.0/32768.0;
-          break;
-    case AFS_8G:
-          aRes = 8.0/32768.0;
-          break;
-    case AFS_16G:
-          aRes = 16.0/32768.0;
-          break;
-  }
-}
+        // Configure Gyro and Accelerometer
+        // Disable FSYNC and set accelerometer and gyro bandwidth to 44 and 42 Hz, respectively; 
+        // DLPF_CFG = bits 2:0 = 010; this sets the sample rate at 1 kHz for both
+        // Maximum delay is 4.9 ms which is just over a 200 Hz maximum rate
+        writeByte(MPU9250_ADDRESS, CONFIG, 0x03);  
+ 
+         // Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV)
+        writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x04);  // Use a 200 Hz rate; the same rate set in CONFIG above
+ 
+        // Set gyroscope full scale range
+        // Range selects FS_SEL and AFS_SEL are 0 - 3, so 2-bit values are left-shifted into positions 4:3
+        uint8_t c =  readByte(MPU9250_ADDRESS, GYRO_CONFIG);
+        writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c & ~0xE0); // Clear self-test bits [7:5] 
+        writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c & ~0x18); // Clear AFS bits [4:3]
+        writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c | Gscale << 3); // Set full scale range for the gyro
+   
+        // Set accelerometer configuration
+        c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG);
+        writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c & ~0xE0); // Clear self-test bits [7:5] 
+        writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c & ~0x18); // Clear AFS bits [4:3]
+        writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c | Ascale << 3); // Set full scale range for the accelerometer 
+
+        // Set accelerometer sample rate configuration
+        // It is possible to get a 4 kHz sample rate from the accelerometer by choosing 1 for
+        // accel_fchoice_b bit [3]; in this case the bandwidth is 1.13 kHz
+        c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG2);
+        writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, c & ~0x0F); // Clear accel_fchoice_b (bit 3) and A_DLPFG (bits [2:0])  
+        writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, c | 0x03); // Set accelerometer rate to 1 kHz and bandwidth to 41 Hz
+
+        // The accelerometer, gyro, and thermometer are set to 1 kHz sample rates, 
+        // but all these rates are further reduced by a factor of 5 to 200 Hz because of the SMPLRT_DIV setting
+
+        // Configure Interrupts and Bypass Enable
+        // Set interrupt pin active high, push-pull, and clear on read of INT_STATUS, enable I2C_BYPASS_EN so additional chips 
+        // can join the I2C bus and all can be controlled by the Arduino as master
+        writeByte(MPU9250_ADDRESS, INT_PIN_CFG, 0x22);    
+        writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x01);  // Enable data ready (bit 0) interrupt
+    }
 
+    // Function which accumulates gyro and accelerometer data after device initialization. It calculates the average
+    // of the at-rest readings and then loads the resulting offsets into accelerometer and gyro bias registers.
+    void calibrateMPU9250(float * dest1, float * dest2)
+    {  
+        uint8_t data[12]; // data array to hold accelerometer and gyro x, y, z, data
+        uint16_t ii, packet_count, fifo_count;
+        int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0};
+  
+        // reset device, reset all registers, clear gyro and accelerometer bias registers
+        writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
+        wait(0.1);
+   
+        // get stable time source
+        // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001
+        writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01);  
+        writeByte(MPU9250_ADDRESS, PWR_MGMT_2, 0x00); 
+        wait(0.2);
+  
+        // Configure device for bias calculation
+        writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x00);   // Disable all interrupts
+        writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00);      // Disable FIFO
+        writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00);   // Turn on internal clock source
+        writeByte(MPU9250_ADDRESS, I2C_MST_CTRL, 0x00); // Disable I2C master
+        writeByte(MPU9250_ADDRESS, USER_CTRL, 0x00);    // Disable FIFO and I2C master modes
+        writeByte(MPU9250_ADDRESS, USER_CTRL, 0x0C);    // Reset FIFO and DMP
+        wait(0.015);
+  
+        // Configure MPU9250 gyro and accelerometer for bias calculation
+        writeByte(MPU9250_ADDRESS, CONFIG, 0x01);      // Set low-pass filter to 188 Hz
+        writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00);  // Set sample rate to 1 kHz
+        writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00);  // Set gyro full-scale to 250 degrees per second, maximum sensitivity
+        writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity
+ 
+        uint16_t  gyrosensitivity  = 131;   // = 131 LSB/degrees/sec
+        uint16_t  accelsensitivity = 16384;  // = 16384 LSB/g
 
-void readAccelData(int16_t * destination)
-{
-  uint8_t rawData[6];  // x/y/z accel register data stored here
-  readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]);  // Read the six raw data registers into data array
-  destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ;  // Turn the MSB and LSB into a signed 16-bit value
-  destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;  
-  destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; 
-}
+        // Configure FIFO to capture accelerometer and gyro data. This data will be used for bias calculation
+        writeByte(MPU9250_ADDRESS, USER_CTRL, 0x40);   // Enable FIFO  
+        writeByte(MPU9250_ADDRESS, FIFO_EN, 0x78);     // Enable gyro and accelerometer sensors for FIFO (max size 512 bytes in MPU-9250)
+        wait(0.04); // accumulate 40 samples in 80 milliseconds = 480 bytes
 
-void readGyroData(int16_t * destination)
-{
-  uint8_t rawData[6];  // x/y/z gyro register data stored here
-  readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]);  // Read the six raw data registers sequentially into data array
-  destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ;  // Turn the MSB and LSB into a signed 16-bit value
-  destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;  
-  destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; 
-}
+        // At end of sample accumulation, turn off FIFO sensor read
+        writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00);        // Disable gyro and accelerometer sensors for FIFO
+        readBytes(MPU9250_ADDRESS, FIFO_COUNTH, 2, &data[0]); // read FIFO sample count
+        fifo_count = ((uint16_t)data[0] << 8) | data[1];
+        packet_count = fifo_count/12;// How many sets of full gyro and accelerometer data for averaging
 
-void readMagData(int16_t * destination)
-{
-  uint8_t rawData[7];  // x/y/z gyro register data, ST2 register stored here, must read ST2 at end of data acquisition
-  if(readByte(AK8963_ADDRESS, AK8963_ST1) & 0x01) { // wait for magnetometer data ready bit to be set
-  readBytes(AK8963_ADDRESS, AK8963_XOUT_L, 7, &rawData[0]);  // Read the six raw data and ST2 registers sequentially into data array
-  uint8_t c = rawData[6]; // End data read by reading ST2 register
-    if(!(c & 0x08)) { // Check if magnetic sensor overflow set, if not then report data
-    destination[0] = (int16_t)(((int16_t)rawData[1] << 8) | rawData[0]);  // Turn the MSB and LSB into a signed 16-bit value
-    destination[1] = (int16_t)(((int16_t)rawData[3] << 8) | rawData[2]) ;  // Data stored as little Endian
-    destination[2] = (int16_t)(((int16_t)rawData[5] << 8) | rawData[4]) ; 
-   }
-  }
-}
+        for (ii = 0; ii < packet_count; ii++) {
+            int16_t accel_temp[3] = {0, 0, 0}, gyro_temp[3] = {0, 0, 0};
+            readBytes(MPU9250_ADDRESS, FIFO_R_W, 12, &data[0]); // read data for averaging
+            accel_temp[0] = (int16_t) (((int16_t)data[0] << 8) | data[1]  ) ;  // Form signed 16-bit integer for each sample in FIFO
+            accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3]  ) ;
+            accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5]  ) ;    
+            gyro_temp[0]  = (int16_t) (((int16_t)data[6] << 8) | data[7]  ) ;
+            gyro_temp[1]  = (int16_t) (((int16_t)data[8] << 8) | data[9]  ) ;
+            gyro_temp[2]  = (int16_t) (((int16_t)data[10] << 8) | data[11]) ;
+    
+            accel_bias[0] += (int32_t) accel_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases
+            accel_bias[1] += (int32_t) accel_temp[1];
+            accel_bias[2] += (int32_t) accel_temp[2];
+            gyro_bias[0]  += (int32_t) gyro_temp[0];
+            gyro_bias[1]  += (int32_t) gyro_temp[1];
+            gyro_bias[2]  += (int32_t) gyro_temp[2];
+            
+        }
+        accel_bias[0] /= (int32_t) packet_count; // Normalize sums to get average count biases
+        accel_bias[1] /= (int32_t) packet_count;
+        accel_bias[2] /= (int32_t) packet_count;
+        gyro_bias[0]  /= (int32_t) packet_count;
+        gyro_bias[1]  /= (int32_t) packet_count;
+        gyro_bias[2]  /= (int32_t) packet_count;
+    
+        if(accel_bias[2] > 0L) {accel_bias[2] -= (int32_t) accelsensitivity;}  // Remove gravity from the z-axis accelerometer bias calculation
+        else {accel_bias[2] += (int32_t) accelsensitivity;}
+ 
+        // Construct the gyro biases for push to the hardware gyro bias registers, which are reset to zero upon device startup
+        data[0] = (-gyro_bias[0]/4  >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format
+        data[1] = (-gyro_bias[0]/4)       & 0xFF; // Biases are additive, so change sign on calculated average gyro biases
+        data[2] = (-gyro_bias[1]/4  >> 8) & 0xFF;
+        data[3] = (-gyro_bias[1]/4)       & 0xFF;
+        data[4] = (-gyro_bias[2]/4  >> 8) & 0xFF;
+        data[5] = (-gyro_bias[2]/4)       & 0xFF;
 
-int16_t readTempData()
-{
-  uint8_t rawData[2];  // x/y/z gyro register data stored here
-  readBytes(MPU9250_ADDRESS, TEMP_OUT_H, 2, &rawData[0]);  // Read the two raw data registers sequentially into data array 
-  return (int16_t)(((int16_t)rawData[0]) << 8 | rawData[1]) ;  // Turn the MSB and LSB into a 16-bit value
-}
-
+        /// Push gyro biases to hardware registers
+        /*  writeByte(MPU9250_ADDRESS, XG_OFFSET_H, data[0]);
+        writeByte(MPU9250_ADDRESS, XG_OFFSET_L, data[1]);
+        writeByte(MPU9250_ADDRESS, YG_OFFSET_H, data[2]);
+        writeByte(MPU9250_ADDRESS, YG_OFFSET_L, data[3]);
+        writeByte(MPU9250_ADDRESS, ZG_OFFSET_H, data[4]);
+        writeByte(MPU9250_ADDRESS, ZG_OFFSET_L, data[5]);
+        */
+        dest1[0] = (float) gyro_bias[0]/(float) gyrosensitivity; // construct gyro bias in deg/s for later manual subtraction
+        dest1[1] = (float) gyro_bias[1]/(float) gyrosensitivity;
+        dest1[2] = (float) gyro_bias[2]/(float) gyrosensitivity;
 
-void resetMPU9250() {
-  // reset device
-  writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
-  wait(0.1);
-  }
+        // Construct the accelerometer biases for push to the hardware accelerometer bias registers. These registers contain
+        // factory trim values which must be added to the calculated accelerometer biases; on boot up these registers will hold
+        // non-zero values. In addition, bit 0 of the lower byte must be preserved since it is used for temperature
+        // compensation calculations. Accelerometer bias registers expect bias input as 2048 LSB per g, so that
+        // the accelerometer biases calculated above must be divided by 8.
+
+        int32_t accel_bias_reg[3] = {0, 0, 0}; // A place to hold the factory accelerometer trim biases
+        readBytes(MPU9250_ADDRESS, XA_OFFSET_H, 2, &data[0]); // Read factory accelerometer trim values
+        accel_bias_reg[0] = (int16_t) ((int16_t)data[0] << 8) | data[1];
+        readBytes(MPU9250_ADDRESS, YA_OFFSET_H, 2, &data[0]);
+        accel_bias_reg[1] = (int16_t) ((int16_t)data[0] << 8) | data[1];
+        readBytes(MPU9250_ADDRESS, ZA_OFFSET_H, 2, &data[0]);
+        accel_bias_reg[2] = (int16_t) ((int16_t)data[0] << 8) | data[1];
+  
+        uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of lower byte of accelerometer bias registers
+        uint8_t mask_bit[3] = {0, 0, 0}; // Define array to hold mask bit for each accelerometer bias axis
   
-  void initAK8963(float * destination)
-{
-  // First extract the factory calibration for each magnetometer axis
-  uint8_t rawData[3];  // x/y/z gyro calibration data stored here
-  writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer  
-  wait(0.01);
-  writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x0F); // Enter Fuse ROM access mode
-  wait(0.01);
-  readBytes(AK8963_ADDRESS, AK8963_ASAX, 3, &rawData[0]);  // Read the x-, y-, and z-axis calibration values
-  destination[0] =  (float)(rawData[0] - 128)/256.0f + 1.0f;   // Return x-axis sensitivity adjustment values, etc.
-  destination[1] =  (float)(rawData[1] - 128)/256.0f + 1.0f;  
-  destination[2] =  (float)(rawData[2] - 128)/256.0f + 1.0f; 
-  writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer  
-  wait(0.01);
-  // Configure the magnetometer for continuous read and highest resolution
-  // set Mscale bit 4 to 1 (0) to enable 16 (14) bit resolution in CNTL register,
-  // and enable continuous mode data acquisition Mmode (bits [3:0]), 0010 for 8 Hz and 0110 for 100 Hz sample rates
-  writeByte(AK8963_ADDRESS, AK8963_CNTL, Mscale << 4 | Mmode); // Set magnetometer data resolution and sample ODR
-  wait(0.01);
-}
+        for(ii = 0; ii < 3; ii++) {
+            if(accel_bias_reg[ii] & mask) mask_bit[ii] = 0x01; // If temperature compensation bit is set, record that fact in mask_bit
+        }
+
+        // Construct total accelerometer bias, including calculated average accelerometer bias from above
+        accel_bias_reg[0] -= (accel_bias[0]/8); // Subtract calculated averaged accelerometer bias scaled to 2048 LSB/g (16 g full scale)
+        accel_bias_reg[1] -= (accel_bias[1]/8);
+        accel_bias_reg[2] -= (accel_bias[2]/8);
+ 
+        data[0] = (accel_bias_reg[0] >> 8) & 0xFF;
+        data[1] = (accel_bias_reg[0])      & 0xFF;
+        data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit when writing back to accelerometer bias registers
+        data[2] = (accel_bias_reg[1] >> 8) & 0xFF;
+        data[3] = (accel_bias_reg[1])      & 0xFF;
+        data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit when writing back to accelerometer bias registers
+        data[4] = (accel_bias_reg[2] >> 8) & 0xFF;
+        data[5] = (accel_bias_reg[2])      & 0xFF;
+        data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit when writing back to accelerometer bias registers
+
+        // Apparently this is not working for the acceleration biases in the MPU-9250
+        // Are we handling the temperature correction bit properly?
+        // Push accelerometer biases to hardware registers
+        /*  writeByte(MPU9250_ADDRESS, XA_OFFSET_H, data[0]);
+        writeByte(MPU9250_ADDRESS, XA_OFFSET_L, data[1]);
+        writeByte(MPU9250_ADDRESS, YA_OFFSET_H, data[2]);
+        writeByte(MPU9250_ADDRESS, YA_OFFSET_L, data[3]);
+        writeByte(MPU9250_ADDRESS, ZA_OFFSET_H, data[4]);
+        writeByte(MPU9250_ADDRESS, ZA_OFFSET_L, data[5]);
+        */
+        // Output scaled accelerometer biases for manual subtraction in the main program
+        dest2[0] = (float)accel_bias[0]/(float)accelsensitivity; 
+        dest2[1] = (float)accel_bias[1]/(float)accelsensitivity;
+        dest2[2] = (float)accel_bias[2]/(float)accelsensitivity;
+    }
 
 
-void initMPU9250()
-{  
- // Initialize MPU9250 device
- // wake up device
-  writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00); // Clear sleep mode bit (6), enable all sensors 
-  wait(0.1); // Delay 100 ms for PLL to get established on x-axis gyro; should check for PLL ready interrupt  
-
- // get stable time source
-  writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01);  // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001
-
- // Configure Gyro and Accelerometer
- // Disable FSYNC and set accelerometer and gyro bandwidth to 44 and 42 Hz, respectively; 
- // DLPF_CFG = bits 2:0 = 010; this sets the sample rate at 1 kHz for both
- // Maximum delay is 4.9 ms which is just over a 200 Hz maximum rate
-  writeByte(MPU9250_ADDRESS, CONFIG, 0x03);  
- 
- // Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV)
-  writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x04);  // Use a 200 Hz rate; the same rate set in CONFIG above
- 
- // Set gyroscope full scale range
- // Range selects FS_SEL and AFS_SEL are 0 - 3, so 2-bit values are left-shifted into positions 4:3
-  uint8_t c =  readByte(MPU9250_ADDRESS, GYRO_CONFIG);
-  writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c & ~0xE0); // Clear self-test bits [7:5] 
-  writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c & ~0x18); // Clear AFS bits [4:3]
-  writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c | Gscale << 3); // Set full scale range for the gyro
+    // Accelerometer and gyroscope self test; check calibration wrt factory settings
+    void MPU9250SelfTest(float * destination) // Should return percent deviation from factory trim values, +/- 14 or less deviation is a pass
+    {
+        uint8_t rawData[6] = {0, 0, 0, 0, 0, 0};
+        uint8_t selfTest[6];
+        int16_t gAvg[3], aAvg[3], aSTAvg[3], gSTAvg[3];
+        float factoryTrim[6];
+        uint8_t FS = 0;
    
- // Set accelerometer configuration
-  c =  readByte(MPU9250_ADDRESS, ACCEL_CONFIG);
-  writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c & ~0xE0); // Clear self-test bits [7:5] 
-  writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c & ~0x18); // Clear AFS bits [4:3]
-  writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c | Ascale << 3); // Set full scale range for the accelerometer 
-
- // Set accelerometer sample rate configuration
- // It is possible to get a 4 kHz sample rate from the accelerometer by choosing 1 for
- // accel_fchoice_b bit [3]; in this case the bandwidth is 1.13 kHz
-  c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG2);
-  writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, c & ~0x0F); // Clear accel_fchoice_b (bit 3) and A_DLPFG (bits [2:0])  
-  writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, c | 0x03); // Set accelerometer rate to 1 kHz and bandwidth to 41 Hz
-
- // The accelerometer, gyro, and thermometer are set to 1 kHz sample rates, 
- // but all these rates are further reduced by a factor of 5 to 200 Hz because of the SMPLRT_DIV setting
+        writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00); // Set gyro sample rate to 1 kHz
+        writeByte(MPU9250_ADDRESS, CONFIG, 0x02); // Set gyro sample rate to 1 kHz and DLPF to 92 Hz
+        writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 1<<FS); // Set full scale range for the gyro to 250 dps
+        writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, 0x02); // Set accelerometer rate to 1 kHz and bandwidth to 92 Hz
+        writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 1<<FS); // Set full scale range for the accelerometer to 2 g
 
-  // Configure Interrupts and Bypass Enable
-  // Set interrupt pin active high, push-pull, and clear on read of INT_STATUS, enable I2C_BYPASS_EN so additional chips 
-  // can join the I2C bus and all can be controlled by the Arduino as master
-   writeByte(MPU9250_ADDRESS, INT_PIN_CFG, 0x22);    
-   writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x01);  // Enable data ready (bit 0) interrupt
-}
-
-// Function which accumulates gyro and accelerometer data after device initialization. It calculates the average
-// of the at-rest readings and then loads the resulting offsets into accelerometer and gyro bias registers.
-void calibrateMPU9250(float * dest1, float * dest2)
-{  
-  uint8_t data[12]; // data array to hold accelerometer and gyro x, y, z, data
-  uint16_t ii, packet_count, fifo_count;
-  int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0};
+        for( int ii = 0; ii < 200; ii++) { // get average current values of gyro and acclerometer
   
-// reset device, reset all registers, clear gyro and accelerometer bias registers
-  writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
-  wait(0.1);  
-   
-// get stable time source
-// Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001
-  writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01);  
-  writeByte(MPU9250_ADDRESS, PWR_MGMT_2, 0x00); 
-  wait(0.2);
+            readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
+            aAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
+            aAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
+            aAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
   
-// Configure device for bias calculation
-  writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x00);   // Disable all interrupts
-  writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00);      // Disable FIFO
-  writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00);   // Turn on internal clock source
-  writeByte(MPU9250_ADDRESS, I2C_MST_CTRL, 0x00); // Disable I2C master
-  writeByte(MPU9250_ADDRESS, USER_CTRL, 0x00);    // Disable FIFO and I2C master modes
-  writeByte(MPU9250_ADDRESS, USER_CTRL, 0x0C);    // Reset FIFO and DMP
-  wait(0.015);
+            readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
+            gAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
+            gAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
+            gAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
+        }
   
-// Configure MPU9250 gyro and accelerometer for bias calculation
-  writeByte(MPU9250_ADDRESS, CONFIG, 0x01);      // Set low-pass filter to 188 Hz
-  writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00);  // Set sample rate to 1 kHz
-  writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00);  // Set gyro full-scale to 250 degrees per second, maximum sensitivity
-  writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity
- 
-  uint16_t  gyrosensitivity  = 131;   // = 131 LSB/degrees/sec
-  uint16_t  accelsensitivity = 16384;  // = 16384 LSB/g
-
-// Configure FIFO to capture accelerometer and gyro data for bias calculation
-  writeByte(MPU9250_ADDRESS, USER_CTRL, 0x40);   // Enable FIFO  
-  writeByte(MPU9250_ADDRESS, FIFO_EN, 0x78);     // Enable gyro and accelerometer sensors for FIFO (max size 512 bytes in MPU-9250)
-  wait(0.04); // accumulate 40 samples in 80 milliseconds = 480 bytes
-
-// At end of sample accumulation, turn off FIFO sensor read
-  writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00);        // Disable gyro and accelerometer sensors for FIFO
-  readBytes(MPU9250_ADDRESS, FIFO_COUNTH, 2, &data[0]); // read FIFO sample count
-  fifo_count = ((uint16_t)data[0] << 8) | data[1];
-  packet_count = fifo_count/12;// How many sets of full gyro and accelerometer data for averaging
+        for (int ii =0; ii < 3; ii++) { // Get average of 200 values and store as average current readings
+            aAvg[ii] /= 200;
+            gAvg[ii] /= 200;
+        }
+  
+        // Configure the accelerometer for self-test
+        writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0xE0); // Enable self test on all three axes and set accelerometer range to +/- 2 g
+        writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0xE0); // Enable self test on all three axes and set gyro range to +/- 250 degrees/s
+        wait_ms(25); // Delay a while to let the device stabilize
 
-  for (ii = 0; ii < packet_count; ii++) {
-    int16_t accel_temp[3] = {0, 0, 0}, gyro_temp[3] = {0, 0, 0};
-    readBytes(MPU9250_ADDRESS, FIFO_R_W, 12, &data[0]); // read data for averaging
-    accel_temp[0] = (int16_t) (((int16_t)data[0] << 8) | data[1]  ) ;  // Form signed 16-bit integer for each sample in FIFO
-    accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3]  ) ;
-    accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5]  ) ;    
-    gyro_temp[0]  = (int16_t) (((int16_t)data[6] << 8) | data[7]  ) ;
-    gyro_temp[1]  = (int16_t) (((int16_t)data[8] << 8) | data[9]  ) ;
-    gyro_temp[2]  = (int16_t) (((int16_t)data[10] << 8) | data[11]) ;
-    
-    accel_bias[0] += (int32_t) accel_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases
-    accel_bias[1] += (int32_t) accel_temp[1];
-    accel_bias[2] += (int32_t) accel_temp[2];
-    gyro_bias[0]  += (int32_t) gyro_temp[0];
-    gyro_bias[1]  += (int32_t) gyro_temp[1];
-    gyro_bias[2]  += (int32_t) gyro_temp[2];
-            
-}
-    accel_bias[0] /= (int32_t) packet_count; // Normalize sums to get average count biases
-    accel_bias[1] /= (int32_t) packet_count;
-    accel_bias[2] /= (int32_t) packet_count;
-    gyro_bias[0]  /= (int32_t) packet_count;
-    gyro_bias[1]  /= (int32_t) packet_count;
-    gyro_bias[2]  /= (int32_t) packet_count;
-    
-  if(accel_bias[2] > 0L) {accel_bias[2] -= (int32_t) accelsensitivity;}  // Remove gravity from the z-axis accelerometer bias calculation
-  else {accel_bias[2] += (int32_t) accelsensitivity;}
- 
-// Construct the gyro biases for push to the hardware gyro bias registers, which are reset to zero upon device startup
-  data[0] = (-gyro_bias[0]/4  >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format
-  data[1] = (-gyro_bias[0]/4)       & 0xFF; // Biases are additive, so change sign on calculated average gyro biases
-  data[2] = (-gyro_bias[1]/4  >> 8) & 0xFF;
-  data[3] = (-gyro_bias[1]/4)       & 0xFF;
-  data[4] = (-gyro_bias[2]/4  >> 8) & 0xFF;
-  data[5] = (-gyro_bias[2]/4)       & 0xFF;
-
-/// Push gyro biases to hardware registers
-/*  writeByte(MPU9250_ADDRESS, XG_OFFSET_H, data[0]);
-  writeByte(MPU9250_ADDRESS, XG_OFFSET_L, data[1]);
-  writeByte(MPU9250_ADDRESS, YG_OFFSET_H, data[2]);
-  writeByte(MPU9250_ADDRESS, YG_OFFSET_L, data[3]);
-  writeByte(MPU9250_ADDRESS, ZG_OFFSET_H, data[4]);
-  writeByte(MPU9250_ADDRESS, ZG_OFFSET_L, data[5]);
-*/
-  dest1[0] = (float) gyro_bias[0]/(float) gyrosensitivity; // construct gyro bias in deg/s for later manual subtraction
-  dest1[1] = (float) gyro_bias[1]/(float) gyrosensitivity;
-  dest1[2] = (float) gyro_bias[2]/(float) gyrosensitivity;
+        for( int ii = 0; ii < 200; ii++) { // get average self-test values of gyro and acclerometer
+  
+            readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
+            aSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
+            aSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
+            aSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
+  
+            readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
+            gSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
+            gSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
+            gSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
+        }
+  
+        for (int ii =0; ii < 3; ii++) { // Get average of 200 values and store as average self-test readings
+            aSTAvg[ii] /= 200;
+            gSTAvg[ii] /= 200;
+        }
+  
+        // Configure the gyro and accelerometer for normal operation
+        writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00);
+        writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00);
+        //delay(25); // Delay a while to let the device stabilize
+        wait_ms(25); // Delay a while to let the device stabilize
+   
+        // Retrieve accelerometer and gyro factory Self-Test Code from USR_Reg
+        selfTest[0] = readByte(MPU9250_ADDRESS, SELF_TEST_X_ACCEL); // X-axis accel self-test results
+        selfTest[1] = readByte(MPU9250_ADDRESS, SELF_TEST_Y_ACCEL); // Y-axis accel self-test results
+        selfTest[2] = readByte(MPU9250_ADDRESS, SELF_TEST_Z_ACCEL); // Z-axis accel self-test results
+        selfTest[3] = readByte(MPU9250_ADDRESS, SELF_TEST_X_GYRO); // X-axis gyro self-test results
+        selfTest[4] = readByte(MPU9250_ADDRESS, SELF_TEST_Y_GYRO); // Y-axis gyro self-test results
+        selfTest[5] = readByte(MPU9250_ADDRESS, SELF_TEST_Z_GYRO); // Z-axis gyro self-test results
 
-// Construct the accelerometer biases for push to the hardware accelerometer bias registers. These registers contain
-// factory trim values which must be added to the calculated accelerometer biases; on boot up these registers will hold
-// non-zero values. In addition, bit 0 of the lower byte must be preserved since it is used for temperature
-// compensation calculations. Accelerometer bias registers expect bias input as 2048 LSB per g, so that
-// the accelerometer biases calculated above must be divided by 8.
-
-  int32_t accel_bias_reg[3] = {0, 0, 0}; // A place to hold the factory accelerometer trim biases
-  readBytes(MPU9250_ADDRESS, XA_OFFSET_H, 2, &data[0]); // Read factory accelerometer trim values
-  accel_bias_reg[0] = (int16_t) ((int16_t)data[0] << 8) | data[1];
-  readBytes(MPU9250_ADDRESS, YA_OFFSET_H, 2, &data[0]);
-  accel_bias_reg[1] = (int16_t) ((int16_t)data[0] << 8) | data[1];
-  readBytes(MPU9250_ADDRESS, ZA_OFFSET_H, 2, &data[0]);
-  accel_bias_reg[2] = (int16_t) ((int16_t)data[0] << 8) | data[1];
-  
-  uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of lower byte of accelerometer bias registers
-  uint8_t mask_bit[3] = {0, 0, 0}; // Define array to hold mask bit for each accelerometer bias axis
-  
-  for(ii = 0; ii < 3; ii++) {
-    if(accel_bias_reg[ii] & mask) mask_bit[ii] = 0x01; // If temperature compensation bit is set, record that fact in mask_bit
-  }
-
-  // Construct total accelerometer bias, including calculated average accelerometer bias from above
-  accel_bias_reg[0] -= (accel_bias[0]/8); // Subtract calculated averaged accelerometer bias scaled to 2048 LSB/g (16 g full scale)
-  accel_bias_reg[1] -= (accel_bias[1]/8);
-  accel_bias_reg[2] -= (accel_bias[2]/8);
+        // Retrieve factory self-test value from self-test code reads
+        factoryTrim[0] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[0] - 1.0) )); // FT[Xa] factory trim calculation
+        factoryTrim[1] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[1] - 1.0) )); // FT[Ya] factory trim calculation
+        factoryTrim[2] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[2] - 1.0) )); // FT[Za] factory trim calculation
+        factoryTrim[3] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[3] - 1.0) )); // FT[Xg] factory trim calculation
+        factoryTrim[4] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[4] - 1.0) )); // FT[Yg] factory trim calculation
+        factoryTrim[5] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[5] - 1.0) )); // FT[Zg] factory trim calculation
  
-  data[0] = (accel_bias_reg[0] >> 8) & 0xFF;
-  data[1] = (accel_bias_reg[0])      & 0xFF;
-  data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit when writing back to accelerometer bias registers
-  data[2] = (accel_bias_reg[1] >> 8) & 0xFF;
-  data[3] = (accel_bias_reg[1])      & 0xFF;
-  data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit when writing back to accelerometer bias registers
-  data[4] = (accel_bias_reg[2] >> 8) & 0xFF;
-  data[5] = (accel_bias_reg[2])      & 0xFF;
-  data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit when writing back to accelerometer bias registers
-
-// Apparently this is not working for the acceleration biases in the MPU-9250
-// Are we handling the temperature correction bit properly?
-// Push accelerometer biases to hardware registers
-/*  writeByte(MPU9250_ADDRESS, XA_OFFSET_H, data[0]);
-  writeByte(MPU9250_ADDRESS, XA_OFFSET_L, data[1]);
-  writeByte(MPU9250_ADDRESS, YA_OFFSET_H, data[2]);
-  writeByte(MPU9250_ADDRESS, YA_OFFSET_L, data[3]);
-  writeByte(MPU9250_ADDRESS, ZA_OFFSET_H, data[4]);
-  writeByte(MPU9250_ADDRESS, ZA_OFFSET_L, data[5]);
-*/
-// Output scaled accelerometer biases for manual subtraction in the main program
-   dest2[0] = (float)accel_bias[0]/(float)accelsensitivity; 
-   dest2[1] = (float)accel_bias[1]/(float)accelsensitivity;
-   dest2[2] = (float)accel_bias[2]/(float)accelsensitivity;
-}
+        // Report results as a ratio of (STR - FT)/FT; the change from Factory Trim of the Self-Test Response
+        // To get percent, must multiply by 100
+        for (int i = 0; i < 3; i++) {
+            destination[i] = 100.0*((float)(aSTAvg[i] - aAvg[i]))/factoryTrim[i]; // Report percent differences
+            destination[i+3] = 100.0*((float)(gSTAvg[i] - gAvg[i]))/factoryTrim[i+3]; // Report percent differences
+        }   
+    }
 
 
-// Accelerometer and gyroscope self test; check calibration wrt factory settings
-void MPU9250SelfTest(float * destination) // Should return percent deviation from factory trim values, +/- 14 or less deviation is a pass
-{
-   uint8_t rawData[6] = {0, 0, 0, 0, 0, 0};
-   uint8_t selfTest[6];
-   int16_t gAvg[3], aAvg[3], aSTAvg[3], gSTAvg[3];
-   float factoryTrim[6];
-   uint8_t FS = 0;
-   
-  writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00); // Set gyro sample rate to 1 kHz
-  writeByte(MPU9250_ADDRESS, CONFIG, 0x02); // Set gyro sample rate to 1 kHz and DLPF to 92 Hz
-  writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 1<<FS); // Set full scale range for the gyro to 250 dps
-  writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, 0x02); // Set accelerometer rate to 1 kHz and bandwidth to 92 Hz
-  writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 1<<FS); // Set full scale range for the accelerometer to 2 g
-
-  for( int ii = 0; ii < 200; ii++) { // get average current values of gyro and acclerometer
-  
-  readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
-  aAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
-  aAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
-  aAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
-  
-    readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
-  gAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
-  gAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
-  gAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
-  }
-  
-  for (int ii =0; ii < 3; ii++) { // Get average of 200 values and store as average current readings
-  aAvg[ii] /= 200;
-  gAvg[ii] /= 200;
-  }
-  
-// Configure the accelerometer for self-test
-   writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0xE0); // Enable self test on all three axes and set accelerometer range to +/- 2 g
-   writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0xE0); // Enable self test on all three axes and set gyro range to +/- 250 degrees/s
+    
+    void getCompassOrientation(float * orient){ // Obtains the orientation of the device in degrees. 0 degrees North. 180 degrees South.
+        /*
+        Remember that it is the earth's rotational axis that defines the geographic north and south poles that we use for map references.
+        It turns out that there is a discrepancy of about 11.5 degrees between the geographic poles and the magnetic poles. The last is 
+        what the magnetometer will read. A value, called the declination angle, can be applied to the magnetic direction to correct for this.
+        On Valencia (Spain) this value is about 0 degrees.
+        */
+                
+        // First of all measure 3 axis magnetometer values (only X and Y axis is used):        
+        readMagData(magCount);  // Read the x/y/z adc values   
+                                // Calculate the magnetometer values in milliGauss
+                                // Include factory calibration per data sheet and user environmental corrections
+        if (I2Cstate == 0){ // no error on I2C            
+            I2Cstate = 1;
+            magn_x = (float)magCount[0]*mRes*magCalibration[0] - magbias[0];  // get actual magnetometer value, this depends on scale being set
+            magn_y = (float)magCount[1]*mRes*magCalibration[1] - magbias[1];
+        }
+        
+        // Now obtains the orientation value:
+        if (magn_y>0)
+            orient[0] = 90.0 - (float) ( atan(magn_x/magn_y)*180/M_PI );
+        else if (magn_y<0)
+            orient[0] = 270.0 - (float) ( atan(magn_x/magn_y)*180/M_PI );
+        else if (magn_y == 0){
+            if (magn_x<0)
+                orient[0] = 180.0;
+            else
+                orient[0] = 0.0;
+        }
+    }
 
-  for( int ii = 0; ii < 200; ii++) { // get average self-test values of gyro and acclerometer
-  
-  readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
-  aSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
-  aSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
-  aSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
-  
-    readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
-  gSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
-  gSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
-  gSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
-  }
-  
-  for (int ii =0; ii < 3; ii++) { // Get average of 200 values and store as average self-test readings
-  aSTAvg[ii] /= 200;
-  gSTAvg[ii] /= 200;
-  }
-  
- // Configure the gyro and accelerometer for normal operation
-   writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00);
-   writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00);
-   
-   // Retrieve accelerometer and gyro factory Self-Test Code from USR_Reg
-   selfTest[0] = readByte(MPU9250_ADDRESS, SELF_TEST_X_ACCEL); // X-axis accel self-test results
-   selfTest[1] = readByte(MPU9250_ADDRESS, SELF_TEST_Y_ACCEL); // Y-axis accel self-test results
-   selfTest[2] = readByte(MPU9250_ADDRESS, SELF_TEST_Z_ACCEL); // Z-axis accel self-test results
-   selfTest[3] = readByte(MPU9250_ADDRESS, SELF_TEST_X_GYRO); // X-axis gyro self-test results
-   selfTest[4] = readByte(MPU9250_ADDRESS, SELF_TEST_Y_GYRO); // Y-axis gyro self-test results
-   selfTest[5] = readByte(MPU9250_ADDRESS, SELF_TEST_Z_GYRO); // Z-axis gyro self-test results
-
-  // Retrieve factory self-test value from self-test code reads
-   factoryTrim[0] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[0] - 1.0) )); // FT[Xa] factory trim calculation
-   factoryTrim[1] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[1] - 1.0) )); // FT[Ya] factory trim calculation
-   factoryTrim[2] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[2] - 1.0) )); // FT[Za] factory trim calculation
-   factoryTrim[3] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[3] - 1.0) )); // FT[Xg] factory trim calculation
-   factoryTrim[4] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[4] - 1.0) )); // FT[Yg] factory trim calculation
-   factoryTrim[5] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[5] - 1.0) )); // FT[Zg] factory trim calculation
- 
- // Report results as a ratio of (STR - FT)/FT; the change from Factory Trim of the Self-Test Response
- // To get percent, must multiply by 100
-   for (int i = 0; i < 3; i++) {
-     destination[i] = 100.0*((float)(aSTAvg[i] - aAvg[i]))/factoryTrim[i]; // Report percent differences
-     destination[i+3] = 100.0*((float)(gSTAvg[i] - gAvg[i]))/factoryTrim[i+3]; // Report percent differences
-   }
-   
-}
-
-
+            
+        
+    
+    
 
 // Implementation of Sebastian Madgwick's "...efficient orientation filter for... inertial/magnetic sensor arrays"
 // (see http://www.x-io.co.uk/category/open-source/ for examples and more details)