Rewrite from scratch a TCP/IP stack for mbed. So far the following parts are usable: Drivers: - EMAC driver (from CMSIS 2.0) Protocols: - Ethernet protocol - ARP over ethernet for IPv4 - IPv4 over Ethernet - ICMPv4 over IPv4 - UDPv4 over IPv4 APIs: - Sockets for UDPv4 The structure of this stack is designed to be very modular. Each protocol can register one or more protocol to handle its payload, and in each protocol, an API can be hooked (like Sockets for example). This is an early release.

IPv4.cpp

Committer:
Benoit
Date:
2011-06-26
Revision:
7:8e12f7357b9f
Parent:
5:3cd83fcb1467

File content as of revision 7:8e12f7357b9f:

/*
 * $Id: IPv4.c 29 2011-06-11 14:53:08Z benoit $
 * $Author: benoit $
 * $Date: 2011-06-11 16:53:08 +0200 (sam., 11 juin 2011) $
 * $Rev: 29 $
 * 
 * 
 * 
 * 
 * 
 */
 
#include "IPv4.h"
#include "Ethernet.h"
#include "Debug.h"
#include <string.h>


#define    DEBUG_CURRENT_MODULE_NAME    "IPv4"
#define    DEBUG_CURRENT_MODULE_ID        DEBUG_MODULE_IPV4


static void     Init(void);
static int32_t  RegisterProtocol(Protocol_Handler_t *protocolHandler);
static void     Handler(NetIF_t *netIF, NetPacket_t *packet);


static Protocol_Handler_t    *protocolHandlerTable[IPV4_PROTOCOL_MAX_COUNT];
static int32_t                protocolHandlerCount = 0;


const IPv4_Addr_t         ipv4_Addr_Broadcast        = { 255, 255, 255, 255 };
const IPv4_Addr_t         ipv4_Addr_Any            = { 0, 0, 0, 0};


Protocol_Handler_t             ipv4 = 
{ 
    PROTOCOL_INDEX_NOT_INITIALIZED,        /* Always PROTOCOL_INDEX_NOT_INITIALIZED at initialization */
    Protocol_ID_IPv4,                     /* Protocol ID */
    htons(ETHERNET_PROTO_IPV4),         /* Protocol number */
    Init,                                 /* Protocol initialisation function */
    Handler,                             /* Protocol handler */
    RegisterProtocol,                     /* Protocol registration function */
    NULL,                                /* API registration function */
};


static void Init(void)
{
    DEBUG_MODULE(DEBUG_LEVEL_INFO, ("Initializing IPv4 layer"));
    protocolHandlerCount = 0;
    memset(protocolHandlerTable, 0, sizeof(protocolHandlerTable));
}


static int32_t RegisterProtocol(Protocol_Handler_t *protocolHandler)
{
    int32_t        result = 0;

    if (protocolHandlerCount >= IPV4_PROTOCOL_MAX_COUNT)
    {
        DEBUG_SOURCE(DEBUG_LEVEL_ERROR, ("Too many protocols"));
        result = -1;
        mbedNet_LastError = mbedNetResult_TooManyRegisteredProtocols;
        goto Exit;
    }
    
    protocolHandlerTable[protocolHandlerCount] = protocolHandler;
    protocolHandler->index = protocolHandlerCount;
    protocolHandler->Init();
    
    DEBUG_MODULE(DEBUG_LEVEL_INFO, ("Registered protocol %2d ipv4/%s",
        protocolHandler->protocolNumber,
        protocol_IDNames[protocolHandler->protocolID]
    ));
    
    protocolHandlerCount++;
    
Exit:
    return result;
}


static void Handler(NetIF_t *netIF, NetPacket_t *packet)
{
    int32_t               protocolIndex,
                        payloadOffset;
    Protocol_Number_t    protocolNumber;
    Protocol_Handler_t    *protocolHandler;
    IPv4_Header_t        *ipv4Packet;
    
    
    ipv4Packet = (IPv4_Header_t *)packet->data;
    protocolNumber = ipv4Packet->protocol;
    payloadOffset = ipv4Packet->ihl << 2;
    
    
    if (	(ipv4Packet->dest.addr == netIF->ipv4Address.addr) 		|| 
			(ipv4Packet->dest.addr == netIF->ipv4Broadcast.addr)	||
			(ipv4Packet->dest.addr == ipv4_Addr_Broadcast.addr)			)
    {
        for (protocolIndex = 0; protocolIndex < protocolHandlerCount; protocolIndex++)
        {
            protocolHandler = protocolHandlerTable[protocolIndex];
            if (protocolHandler->protocolNumber == protocolNumber)
            {
                NetIF_ProtoPush(packet, payloadOffset, Protocol_ID_IPv4);
                protocolHandler->HandlePacket(netIF, packet);
                break;
            }
        }
    }
        
    return;
}


void IPv4_DumpIPv4Header(const char *prefix, IPv4_Header_t *ipv4Packet)
{
    DEBUG_RAW(("%sIPv4 %d.%d.%d.%d --> %d.%d.%d.%d  ver:%01X ihl:%01X tos:%03d totlen:%04d id:%04X flags:%1d frag:%05d ttl:%3d  proto:%03d crc:%04X" ,
        prefix != NULL ? prefix : "",
        ipv4Packet->source.IP0,
        ipv4Packet->source.IP1,
        ipv4Packet->source.IP2,
        ipv4Packet->source.IP3,
        ipv4Packet->dest.IP0,
        ipv4Packet->dest.IP1,
        ipv4Packet->dest.IP2,
        ipv4Packet->dest.IP3,
        ipv4Packet->version,
        ipv4Packet->ihl,
        ipv4Packet->tos,
        ntohs(ipv4Packet->totalLength),
        ntohs(ipv4Packet->id),
        (ntohs(ipv4Packet->fragmentFlags) & 0x1FFF) >> 13,
        ntohs(ipv4Packet->fragmentFlags),
        ipv4Packet->ttl,
        ipv4Packet->protocol,
        ntohs(ipv4Packet->crc)
    ));
}


uint16_t IPv4_ComputeCRC(IPv4_Header_t *ipv4Header)
{
    uint32_t    crc = 0, 
                length;
    uint16_t    *data;
    
    data = (uint16_t *)ipv4Header;
    length = ipv4Header->ihl * 4;
    
    while(length > 1)
    {
        crc += *data;
        data++;
        length -= 2;
    }
    if (length)
    {
        crc += *(uint8_t *)(data);
    }
    
    crc = (crc >> 16) + (crc & 0xFFFF);
    crc = crc + (crc >> 16);
    
    return (uint16_t)(~crc);
}