mbed library sources

Dependents:   bare

Fork of mbed-src by mbed official

Revision:
125:23cc3068a9e4
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/targets/cmsis/TARGET_STM/TARGET_NUCLEO_F302R8/stm32f30x_rcc.c	Wed Mar 19 10:15:22 2014 +0000
@@ -0,0 +1,1961 @@
+/**
+  ******************************************************************************
+  * @file    stm32f30x_rcc.c
+  * @author  MCD Application Team
+  * @version V1.1.0
+  * @date    27-February-2014
+  * @brief   This file provides firmware functions to manage the following 
+  *          functionalities of the Reset and clock control (RCC) peripheral:           
+  *           + Internal/external clocks, PLL, CSS and MCO configuration
+  *           + System, AHB and APB busses clocks configuration
+  *           + Peripheral clocks configuration
+  *           + Interrupts and flags management
+  *
+  @verbatim
+               
+ ===============================================================================
+                      ##### RCC specific features #####
+ ===============================================================================
+    [..] After reset the device is running from HSI (8 MHz) with Flash 0 WS, 
+         all peripherals are off except internal SRAM, Flash and SWD.
+         (+) There is no prescaler on High speed (AHB) and Low speed (APB) busses;
+             all peripherals mapped on these busses are running at HSI speed.
+       	 (+) The clock for all peripherals is switched off, except the SRAM and FLASH.
+         (+) All GPIOs are in input floating state, except the SWD pins which
+             are assigned to be used for debug purpose.
+    [..] Once the device starts from reset, the user application has to:        
+         (+) Configure the clock source to be used to drive the System clock
+             (if the application needs higher frequency/performance).
+         (+) Configure the System clock frequency and Flash settings.  
+         (+) Configure the AHB and APB busses prescalers.
+         (+) Enable the clock for the peripheral(s) to be used.
+         (+) Configure the clock source(s) for peripherals which clocks are not
+             derived from the System clock (ADC, TIM, I2C, USART, RTC and IWDG).      
+                        
+  @endverbatim
+    
+  ******************************************************************************
+  * @attention
+  *
+  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
+  *
+  * Redistribution and use in source and binary forms, with or without modification,
+  * are permitted provided that the following conditions are met:
+  *   1. Redistributions of source code must retain the above copyright notice,
+  *      this list of conditions and the following disclaimer.
+  *   2. Redistributions in binary form must reproduce the above copyright notice,
+  *      this list of conditions and the following disclaimer in the documentation
+  *      and/or other materials provided with the distribution.
+  *   3. Neither the name of STMicroelectronics nor the names of its contributors
+  *      may be used to endorse or promote products derived from this software
+  *      without specific prior written permission.
+  *
+  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
+  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+  *
+  ******************************************************************************
+  */
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32f30x_rcc.h"
+
+/** @addtogroup STM32F30x_StdPeriph_Driver
+  * @{
+  */
+
+/** @defgroup RCC 
+  * @brief RCC driver modules
+  * @{
+  */ 
+
+/* Private typedef -----------------------------------------------------------*/
+/* Private define ------------------------------------------------------------*/
+/* ------------ RCC registers bit address in the alias region ----------- */
+#define RCC_OFFSET                (RCC_BASE - PERIPH_BASE)
+
+/* --- CR Register ---*/
+
+/* Alias word address of HSION bit */
+#define CR_OFFSET                 (RCC_OFFSET + 0x00)
+#define HSION_BitNumber           0x00
+#define CR_HSION_BB               (PERIPH_BB_BASE + (CR_OFFSET * 32) + (HSION_BitNumber * 4))
+
+/* Alias word address of PLLON bit */
+#define PLLON_BitNumber           0x18
+#define CR_PLLON_BB               (PERIPH_BB_BASE + (CR_OFFSET * 32) + (PLLON_BitNumber * 4))
+
+/* Alias word address of CSSON bit */
+#define CSSON_BitNumber           0x13
+#define CR_CSSON_BB               (PERIPH_BB_BASE + (CR_OFFSET * 32) + (CSSON_BitNumber * 4))
+
+/* --- CFGR Register ---*/
+/* Alias word address of USBPRE bit */
+#define CFGR_OFFSET               (RCC_OFFSET + 0x04)
+#define USBPRE_BitNumber          0x16
+#define CFGR_USBPRE_BB            (PERIPH_BB_BASE + (CFGR_OFFSET * 32) + (USBPRE_BitNumber * 4))
+/* Alias word address of I2SSRC bit */
+#define I2SSRC_BitNumber          0x17
+#define CFGR_I2SSRC_BB            (PERIPH_BB_BASE + (CFGR_OFFSET * 32) + (I2SSRC_BitNumber * 4))
+
+/* --- BDCR Register ---*/
+
+/* Alias word address of RTCEN bit */
+#define BDCR_OFFSET               (RCC_OFFSET + 0x20)
+#define RTCEN_BitNumber           0x0F
+#define BDCR_RTCEN_BB             (PERIPH_BB_BASE + (BDCR_OFFSET * 32) + (RTCEN_BitNumber * 4))
+
+/* Alias word address of BDRST bit */
+#define BDRST_BitNumber           0x10
+#define BDCR_BDRST_BB             (PERIPH_BB_BASE + (BDCR_OFFSET * 32) + (BDRST_BitNumber * 4))
+
+/* --- CSR Register ---*/
+
+/* Alias word address of LSION bit */
+#define CSR_OFFSET                (RCC_OFFSET + 0x24)
+#define LSION_BitNumber           0x00
+#define CSR_LSION_BB              (PERIPH_BB_BASE + (CSR_OFFSET * 32) + (LSION_BitNumber * 4))
+
+/* ---------------------- RCC registers bit mask ------------------------ */
+/* RCC Flag Mask */
+#define FLAG_MASK                 ((uint8_t)0x1F)
+
+/* CFGR register byte 3 (Bits[31:23]) base address */
+#define CFGR_BYTE3_ADDRESS        ((uint32_t)0x40021007)
+
+/* CIR register byte 2 (Bits[15:8]) base address */
+#define CIR_BYTE2_ADDRESS         ((uint32_t)0x40021009)
+
+/* CIR register byte 3 (Bits[23:16]) base address */
+#define CIR_BYTE3_ADDRESS         ((uint32_t)0x4002100A)
+
+/* CR register byte 2 (Bits[23:16]) base address */
+#define CR_BYTE2_ADDRESS          ((uint32_t)0x40021002)
+
+/* Private macro -------------------------------------------------------------*/
+/* Private variables ---------------------------------------------------------*/
+static __I uint8_t APBAHBPrescTable[16] = {0, 0, 0, 0, 1, 2, 3, 4, 1, 2, 3, 4, 6, 7, 8, 9};
+static __I uint16_t ADCPrescTable[16] = {1, 2, 4, 6, 8, 10, 12, 16, 32, 64, 128, 256, 0, 0, 0, 0 };
+
+/* Private function prototypes -----------------------------------------------*/
+/* Private functions ---------------------------------------------------------*/
+
+/** @defgroup RCC_Private_Functions
+  * @{
+  */
+
+/** @defgroup RCC_Group1 Internal and external clocks, PLL, CSS and MCO configuration functions
+ *  @brief   Internal and external clocks, PLL, CSS and MCO configuration functions 
+ *
+@verbatim   
+ ===============================================================================
+ ##### Internal-external clocks, PLL, CSS and MCO configuration functions #####
+ ===============================================================================  
+    [..] This section provides functions allowing to configure the internal/external 
+         clocks, PLL, CSS and MCO.
+         (#) HSI (high-speed internal), 8 MHz factory-trimmed RC used directly 
+             or through the PLL as System clock source.
+             The HSI clock can be used also to clock the USART and I2C peripherals.
+         (#) LSI (low-speed internal), 40 KHz low consumption RC used as IWDG and/or RTC
+             clock source.
+         (#) HSE (high-speed external), 4 to 32 MHz crystal oscillator used directly or
+             through the PLL as System clock source. Can be used also as RTC clock source.
+         (#) LSE (low-speed external), 32 KHz oscillator used as RTC clock source.
+             LSE can be used also to clock the USART peripherals.
+         (#) PLL (clocked by HSI or HSE), for System clock.
+         (#) CSS (Clock security system), once enabled and if a HSE clock failure occurs 
+             (HSE used directly or through PLL as System clock source), the System clock
+             is automatically switched to HSI and an interrupt is generated if enabled. 
+             The interrupt is linked to the Cortex-M4 NMI (Non-Maskable Interrupt) 
+             exception vector.   
+         (#) MCO (microcontroller clock output), used to output SYSCLK, HSI, HSE, LSI, LSE,
+             PLL clock on PA8 pin.
+
+@endverbatim
+  * @{
+  */
+
+/**
+  * @brief  Resets the RCC clock configuration to the default reset state.
+  * @note   The default reset state of the clock configuration is given below:
+  * @note     HSI ON and used as system clock source 
+  * @note     HSE and PLL OFF
+  * @note     AHB, APB1 and APB2 prescalers set to 1.
+  * @note     CSS and MCO OFF
+  * @note     All interrupts disabled
+  * @note   However, this function doesn't modify the configuration of the
+  * @note     Peripheral clocks
+  * @note     LSI, LSE and RTC clocks                  
+  * @param  None
+  * @retval None
+  */
+void RCC_DeInit(void)
+{
+  /* Set HSION bit */
+  RCC->CR |= (uint32_t)0x00000001;
+
+  /* Reset SW[1:0], HPRE[3:0], PPRE[2:0] and MCOSEL[2:0] bits */
+  RCC->CFGR &= (uint32_t)0xF8FFC000;
+  
+  /* Reset HSEON, CSSON and PLLON bits */
+  RCC->CR &= (uint32_t)0xFEF6FFFF;
+
+  /* Reset HSEBYP bit */
+  RCC->CR &= (uint32_t)0xFFFBFFFF;
+
+  /* Reset PLLSRC, PLLXTPRE, PLLMUL and USBPRE bits */
+  RCC->CFGR &= (uint32_t)0xFF80FFFF;
+
+  /* Reset PREDIV1[3:0] and ADCPRE[13:4] bits */
+  RCC->CFGR2 &= (uint32_t)0xFFFFC000;
+
+  /* Reset USARTSW[1:0], I2CSW and TIMSW bits */
+  RCC->CFGR3 &= (uint32_t)0xF00ECCC;
+  
+  /* Disable all interrupts */
+  RCC->CIR = 0x00000000;
+}
+
+/**
+  * @brief  Configures the External High Speed oscillator (HSE).
+  * @note   After enabling the HSE (RCC_HSE_ON or RCC_HSE_Bypass), the application
+  *         software should wait on HSERDY flag to be set indicating that HSE clock
+  *         is stable and can be used to clock the PLL and/or system clock.
+  * @note   HSE state can not be changed if it is used directly or through the
+  *         PLL as system clock. In this case, you have to select another source
+  *         of the system clock then change the HSE state (ex. disable it).
+  * @note   The HSE is stopped by hardware when entering STOP and STANDBY modes.         
+  * @note   This function resets the CSSON bit, so if the Clock security system(CSS)
+  *         was previously enabled you have to enable it again after calling this
+  *         function.
+  * @param  RCC_HSE: specifies the new state of the HSE.
+  *   This parameter can be one of the following values:
+  *     @arg RCC_HSE_OFF: turn OFF the HSE oscillator, HSERDY flag goes low after
+  *                       6 HSE oscillator clock cycles.
+  *     @arg RCC_HSE_ON: turn ON the HSE oscillator
+  *     @arg RCC_HSE_Bypass: HSE oscillator bypassed with external clock
+  * @retval None
+  */
+void RCC_HSEConfig(uint8_t RCC_HSE)
+{
+  /* Check the parameters */
+  assert_param(IS_RCC_HSE(RCC_HSE));
+
+  /* Reset HSEON and HSEBYP bits before configuring the HSE ------------------*/
+  *(__IO uint8_t *) CR_BYTE2_ADDRESS = RCC_HSE_OFF;
+
+  /* Set the new HSE configuration -------------------------------------------*/
+  *(__IO uint8_t *) CR_BYTE2_ADDRESS = RCC_HSE;
+
+}
+
+/**
+  * @brief  Waits for HSE start-up.
+  * @note   This function waits on HSERDY flag to be set and return SUCCESS if 
+  *         this flag is set, otherwise returns ERROR if the timeout is reached 
+  *         and this flag is not set. The timeout value is defined by the constant
+  *         HSE_STARTUP_TIMEOUT in stm32f30x.h file. You can tailor it depending
+  *         on the HSE crystal used in your application. 
+  * @param  None
+  * @retval An ErrorStatus enumeration value:
+  *          - SUCCESS: HSE oscillator is stable and ready to use
+  *          - ERROR: HSE oscillator not yet ready
+  */
+ErrorStatus RCC_WaitForHSEStartUp(void)
+{
+  __IO uint32_t StartUpCounter = 0;
+  ErrorStatus status = ERROR;
+  FlagStatus HSEStatus = RESET;
+  
+  /* Wait till HSE is ready and if timeout is reached exit */
+  do
+  {
+    HSEStatus = RCC_GetFlagStatus(RCC_FLAG_HSERDY);
+    StartUpCounter++;  
+  } while((StartUpCounter != HSE_STARTUP_TIMEOUT) && (HSEStatus == RESET));
+  
+  if (RCC_GetFlagStatus(RCC_FLAG_HSERDY) != RESET)
+  {
+    status = SUCCESS;
+  }
+  else
+  {
+    status = ERROR;
+  }  
+  return (status);
+}
+
+/**
+  * @brief  Adjusts the Internal High Speed oscillator (HSI) calibration value.
+  * @note   The calibration is used to compensate for the variations in voltage
+  *         and temperature that influence the frequency of the internal HSI RC.
+  *         Refer to the Application Note AN3300 for more details on how to  
+  *         calibrate the HSI.
+  * @param  HSICalibrationValue: specifies the HSI calibration trimming value.
+  *         This parameter must be a number between 0 and 0x1F.
+  * @retval None
+  */
+void RCC_AdjustHSICalibrationValue(uint8_t HSICalibrationValue)
+{
+  uint32_t tmpreg = 0;
+  
+  /* Check the parameters */
+  assert_param(IS_RCC_HSI_CALIBRATION_VALUE(HSICalibrationValue));
+  
+  tmpreg = RCC->CR;
+  
+  /* Clear HSITRIM[4:0] bits */
+  tmpreg &= ~RCC_CR_HSITRIM;
+  
+  /* Set the HSITRIM[4:0] bits according to HSICalibrationValue value */
+  tmpreg |= (uint32_t)HSICalibrationValue << 3;
+  
+  /* Store the new value */
+  RCC->CR = tmpreg;
+}
+
+/**
+  * @brief  Enables or disables the Internal High Speed oscillator (HSI).
+  * @note   After enabling the HSI, the application software should wait on 
+  *         HSIRDY flag to be set indicating that HSI clock is stable and can
+  *         be used to clock the PLL and/or system clock.
+  * @note   HSI can not be stopped if it is used directly or through the PLL
+  *         as system clock. In this case, you have to select another source 
+  *         of the system clock then stop the HSI.
+  * @note   The HSI is stopped by hardware when entering STOP and STANDBY modes. 
+  * @note   When the HSI is stopped, HSIRDY flag goes low after 6 HSI oscillator
+  *         clock cycles.    
+  * @param  NewState: new state of the HSI.
+  *         This parameter can be: ENABLE or DISABLE.
+  * @retval None
+  */
+void RCC_HSICmd(FunctionalState NewState)
+{
+  /* Check the parameters */
+  assert_param(IS_FUNCTIONAL_STATE(NewState));
+  
+  *(__IO uint32_t *) CR_HSION_BB = (uint32_t)NewState;
+}
+
+/**
+  * @brief  Configures the External Low Speed oscillator (LSE).
+  * @note     As the LSE is in the Backup domain and write access is denied to this
+  *           domain after reset, you have to enable write access using 
+  *           PWR_BackupAccessCmd(ENABLE) function before to configure the LSE
+  *           (to be done once after reset).
+  * @note     After enabling the LSE (RCC_LSE_ON or RCC_LSE_Bypass), the application
+  *           software should wait on LSERDY flag to be set indicating that LSE clock
+  *           is stable and can be used to clock the RTC.
+  * @param  RCC_LSE: specifies the new state of the LSE.
+  *   This parameter can be one of the following values:
+  *     @arg RCC_LSE_OFF: turn OFF the LSE oscillator, LSERDY flag goes low after
+  *                       6 LSE oscillator clock cycles.
+  *     @arg RCC_LSE_ON: turn ON the LSE oscillator
+  *     @arg RCC_LSE_Bypass: LSE oscillator bypassed with external clock
+  * @retval None
+  */
+void RCC_LSEConfig(uint32_t RCC_LSE)
+{
+  /* Check the parameters */
+  assert_param(IS_RCC_LSE(RCC_LSE));
+
+  /* Reset LSEON and LSEBYP bits before configuring the LSE ------------------*/
+  /* Reset LSEON bit */
+  RCC->BDCR &= ~(RCC_BDCR_LSEON);
+
+  /* Reset LSEBYP bit */
+  RCC->BDCR &= ~(RCC_BDCR_LSEBYP);
+
+  /* Configure LSE */
+  RCC->BDCR |= RCC_LSE;
+}
+
+/**
+  * @brief  Configures the External Low Speed oscillator (LSE) drive capability.
+  * @param  RCC_LSEDrive: specifies the new state of the LSE drive capability.
+  *   This parameter can be one of the following values:
+  *     @arg RCC_LSEDrive_Low: LSE oscillator low drive capability.
+  *     @arg RCC_LSEDrive_MediumLow: LSE oscillator medium low drive capability.
+  *     @arg RCC_LSEDrive_MediumHigh: LSE oscillator medium high drive capability.
+  *     @arg RCC_LSEDrive_High: LSE oscillator high drive capability.
+  * @retval None
+  */
+void RCC_LSEDriveConfig(uint32_t RCC_LSEDrive)
+{
+  /* Check the parameters */
+  assert_param(IS_RCC_LSE_DRIVE(RCC_LSEDrive));
+  
+  /* Clear LSEDRV[1:0] bits */
+  RCC->BDCR &= ~(RCC_BDCR_LSEDRV);
+
+  /* Set the LSE Drive */
+  RCC->BDCR |= RCC_LSEDrive;
+}
+
+/**
+  * @brief  Enables or disables the Internal Low Speed oscillator (LSI).  
+  * @note   After enabling the LSI, the application software should wait on 
+  *         LSIRDY flag to be set indicating that LSI clock is stable and can
+  *         be used to clock the IWDG and/or the RTC.
+  * @note   LSI can not be disabled if the IWDG is running.  
+  * @note   When the LSI is stopped, LSIRDY flag goes low after 6 LSI oscillator
+  *         clock cycles.
+  * @param  NewState: new state of the LSI.
+  *         This parameter can be: ENABLE or DISABLE. 
+  * @retval None
+  */
+void RCC_LSICmd(FunctionalState NewState)
+{
+  /* Check the parameters */
+  assert_param(IS_FUNCTIONAL_STATE(NewState));
+  
+  *(__IO uint32_t *) CSR_LSION_BB = (uint32_t)NewState;
+}
+
+/**
+  * @brief  Configures the PLL clock source and multiplication factor.
+  * @note   This function must be used only when the PLL is disabled.
+  * @note   The minimum input clock frequency for PLL is 2 MHz (when using HSE as
+  *         PLL source).   
+  * @param  RCC_PLLSource: specifies the PLL entry clock source.
+  *   This parameter can be one of the following values:
+  *     @arg RCC_PLLSource_HSI_Div2: HSI oscillator clock divided by 2 selected as
+  *         PLL clock entry
+  *     @arg RCC_PLLSource_PREDIV1: PREDIV1 clock selected as PLL clock source              
+  * @param  RCC_PLLMul: specifies the PLL multiplication factor, which drive the PLLVCO clock
+  *   This parameter can be RCC_PLLMul_x where x:[2,16] 
+  *                                               
+  * @retval None
+  */
+void RCC_PLLConfig(uint32_t RCC_PLLSource, uint32_t RCC_PLLMul)
+{
+  /* Check the parameters */
+  assert_param(IS_RCC_PLL_SOURCE(RCC_PLLSource));
+  assert_param(IS_RCC_PLL_MUL(RCC_PLLMul));
+  
+  /* Clear PLL Source [16] and Multiplier [21:18] bits */
+  RCC->CFGR &= ~(RCC_CFGR_PLLMULL | RCC_CFGR_PLLSRC);
+
+  /* Set the PLL Source and Multiplier */
+  RCC->CFGR |= (uint32_t)(RCC_PLLSource | RCC_PLLMul);
+}
+
+/**
+  * @brief  Enables or disables the PLL.
+  * @note   After enabling the PLL, the application software should wait on 
+  *         PLLRDY flag to be set indicating that PLL clock is stable and can
+  *         be used as system clock source.
+  * @note   The PLL can not be disabled if it is used as system clock source
+  * @note   The PLL is disabled by hardware when entering STOP and STANDBY modes.    
+  * @param  NewState: new state of the PLL.
+  *   This parameter can be: ENABLE or DISABLE.
+  * @retval None
+  */
+void RCC_PLLCmd(FunctionalState NewState)
+{
+  /* Check the parameters */
+  assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+  *(__IO uint32_t *) CR_PLLON_BB = (uint32_t)NewState;
+}
+
+/**
+  * @brief  Configures the PREDIV1 division factor.
+  * @note   This function must be used only when the PLL is disabled.
+  * @param  RCC_PREDIV1_Div: specifies the PREDIV1 clock division factor.
+  *         This parameter can be RCC_PREDIV1_Divx where x:[1,16]
+  * @retval None
+  */
+void RCC_PREDIV1Config(uint32_t RCC_PREDIV1_Div)
+{
+  uint32_t tmpreg = 0;
+  
+  /* Check the parameters */
+  assert_param(IS_RCC_PREDIV1(RCC_PREDIV1_Div));
+
+  tmpreg = RCC->CFGR2;
+  /* Clear PREDIV1[3:0] bits */
+  tmpreg &= ~(RCC_CFGR2_PREDIV1);
+
+  /* Set the PREDIV1 division factor */
+  tmpreg |= RCC_PREDIV1_Div;
+
+  /* Store the new value */
+  RCC->CFGR2 = tmpreg;
+}
+
+/**
+  * @brief  Enables or disables the Clock Security System.
+  * @note   If a failure is detected on the HSE oscillator clock, this oscillator
+  *         is automatically disabled and an interrupt is generated to inform the
+  *         software about the failure (Clock Security System Interrupt, CSSI),
+  *         allowing the MCU to perform rescue operations. The CSSI is linked to 
+  *         the Cortex-M4 NMI (Non-Maskable Interrupt) exception vector.  
+  * @param  NewState: new state of the Clock Security System.
+  *         This parameter can be: ENABLE or DISABLE.
+  * @retval None
+  */
+void RCC_ClockSecuritySystemCmd(FunctionalState NewState)
+{
+  /* Check the parameters */
+  assert_param(IS_FUNCTIONAL_STATE(NewState));
+  
+  *(__IO uint32_t *) CR_CSSON_BB = (uint32_t)NewState;
+}
+
+#ifdef STM32F303xC
+/**
+  * @brief  Selects the clock source to output on MCO pin (PA8).
+  * @note   PA8 should be configured in alternate function mode.
+  * @param  RCC_MCOSource: specifies the clock source to output.
+  *          This parameter can be one of the following values:
+  *            @arg RCC_MCOSource_NoClock: No clock selected.
+  *            @arg RCC_MCOSource_HSI14: HSI14 oscillator clock selected.
+  *            @arg RCC_MCOSource_LSI: LSI oscillator clock selected.
+  *            @arg RCC_MCOSource_LSE: LSE oscillator clock selected.
+  *            @arg RCC_MCOSource_SYSCLK: System clock selected.
+  *            @arg RCC_MCOSource_HSI: HSI oscillator clock selected.
+  *            @arg RCC_MCOSource_HSE: HSE oscillator clock selected.
+  *            @arg RCC_MCOSource_PLLCLK_Div2: PLL clock divided by 2 selected.
+  *            @arg RCC_MCOSource_PLLCLK: PLL clock selected.
+  *            @arg RCC_MCOSource_HSI48: HSI48 clock selected.  
+  * @retval None
+  */
+void RCC_MCOConfig(uint8_t RCC_MCOSource)
+{
+  uint32_t tmpreg = 0;
+  
+  /* Check the parameters */
+  assert_param(IS_RCC_MCO_SOURCE(RCC_MCOSource));
+
+  /* Get CFGR value */  
+  tmpreg = RCC->CFGR;
+  /* Clear MCO[3:0] bits */
+  tmpreg &= ~(RCC_CFGR_MCO | RCC_CFGR_PLLNODIV);
+  /* Set the RCC_MCOSource */
+  tmpreg |= RCC_MCOSource<<24;
+  /* Store the new value */
+  RCC->CFGR = tmpreg;
+}
+#else
+
+/**
+  * @brief  Selects the clock source to output on MCO pin (PA8) and the corresponding
+  *         prescsaler.
+  * @note   PA8 should be configured in alternate function mode.
+  * @param  RCC_MCOSource: specifies the clock source to output.
+  *          This parameter can be one of the following values:
+  *            @arg RCC_MCOSource_NoClock: No clock selected.
+  *            @arg RCC_MCOSource_HSI14: HSI14 oscillator clock selected.
+  *            @arg RCC_MCOSource_LSI: LSI oscillator clock selected.
+  *            @arg RCC_MCOSource_LSE: LSE oscillator clock selected.
+  *            @arg RCC_MCOSource_SYSCLK: System clock selected.
+  *            @arg RCC_MCOSource_HSI: HSI oscillator clock selected.
+  *            @arg RCC_MCOSource_HSE: HSE oscillator clock selected.
+  *            @arg RCC_MCOSource_PLLCLK_Div2: PLL clock divided by 2 selected.
+  *            @arg RCC_MCOSource_PLLCLK: PLL clock selected.
+  *            @arg RCC_MCOSource_HSI48: HSI48 clock selected.
+  * @param  RCC_MCOPrescaler: specifies the prescaler on MCO pin.
+  *          This parameter can be one of the following values:
+  *            @arg RCC_MCOPrescaler_1: MCO clock is divided by 1.
+  *            @arg RCC_MCOPrescaler_2: MCO clock is divided by 2.
+  *            @arg RCC_MCOPrescaler_4: MCO clock is divided by 4.
+  *            @arg RCC_MCOPrescaler_8: MCO clock is divided by 8.
+  *            @arg RCC_MCOPrescaler_16: MCO clock is divided by 16.
+  *            @arg RCC_MCOPrescaler_32: MCO clock is divided by 32.
+  *            @arg RCC_MCOPrescaler_64: MCO clock is divided by 64.
+  *            @arg RCC_MCOPrescaler_128: MCO clock is divided by 128.    
+  * @retval None
+  */
+void RCC_MCOConfig(uint8_t RCC_MCOSource, uint32_t RCC_MCOPrescaler)
+{
+  uint32_t tmpreg = 0;
+  
+  /* Check the parameters */
+  assert_param(IS_RCC_MCO_SOURCE(RCC_MCOSource));
+  assert_param(IS_RCC_MCO_PRESCALER(RCC_MCOPrescaler));
+    
+  /* Get CFGR value */  
+  tmpreg = RCC->CFGR;
+  /* Clear MCOPRE[2:0] bits */
+  tmpreg &= ~(RCC_CFGR_MCO_PRE | RCC_CFGR_MCO | RCC_CFGR_PLLNODIV);
+  /* Set the RCC_MCOSource and RCC_MCOPrescaler */
+  tmpreg |= (RCC_MCOPrescaler | RCC_MCOSource<<24);
+  /* Store the new value */
+  RCC->CFGR = tmpreg;
+}
+#endif /* STM32F303xC */
+
+/**
+  * @}
+  */
+
+/** @defgroup RCC_Group2 System AHB, APB1 and APB2 busses clocks configuration functions
+ *  @brief   System, AHB and APB busses clocks configuration functions
+ *
+@verbatim   
+ ===============================================================================
+  ##### System, AHB, APB1 and APB2 busses clocks configuration functions #####
+ ===============================================================================  
+    [..] This section provide functions allowing to configure the System, AHB, APB1 and 
+         APB2 busses clocks.
+         (#) Several clock sources can be used to drive the System clock (SYSCLK): HSI,
+             HSE and PLL.
+             The AHB clock (HCLK) is derived from System clock through configurable prescaler
+             and used to clock the CPU, memory and peripherals mapped on AHB bus (DMA and GPIO).
+             APB1 (PCLK1) and APB2 (PCLK2) clocks are derived from AHB clock through 
+             configurable prescalers and used to clock the peripherals mapped on these busses.
+             You can use "RCC_GetClocksFreq()" function to retrieve the frequencies of these clocks.
+
+         (#) The maximum frequency of the SYSCLK, HCLK, PCLK1 and PCLK2 is 72 MHz.
+             Depending on the maximum frequency, the FLASH wait states (WS) should be 
+             adapted accordingly:
+        +---------------------------------+
+        |  Wait states  |   HCLK clock    |
+        |   (Latency)   | frequency (MHz) |
+        |-------------- |-----------------|             
+        |0WS(1CPU cycle)| 0 < HCLK <= 24  |
+        |---------------|-----------------| 
+        |1WS(2CPU cycle)|24 < HCLK <=48   |
+        |---------------|-----------------| 
+        |2WS(3CPU cycle)|48 < HCLK <= 72  |
+        +---------------------------------+
+
+         (#) After reset, the System clock source is the HSI (8 MHz) with 0 WS and 
+             prefetch is disabled.
+        [..]
+         (@) All the peripheral clocks are derived from the System clock (SYSCLK) 
+             except:
+             (+@) The FLASH program/erase clock  which is always HSI 8MHz clock.
+             (+@) The USB 48 MHz clock which is derived from the PLL VCO clock.
+             (+@) The USART clock which can be derived as well from HSI 8MHz, LSI or LSE.
+             (+@) The I2C clock which can be derived as well from HSI 8MHz clock.
+             (+@) The ADC clock which is derived from PLL output.
+             (+@) The RTC clock which is derived from the LSE, LSI or 1 MHz HSE_RTC 
+                  (HSE divided by a programmable prescaler). The System clock (SYSCLK) 
+                  frequency must be higher or equal to the RTC clock frequency.
+             (+@) IWDG clock which is always the LSI clock.
+    [..] It is recommended to use the following software sequences to tune the number
+         of wait states needed to access the Flash memory with the CPU frequency (HCLK).
+         (+) Increasing the CPU frequency
+            (++) Program the Flash Prefetch buffer, using "FLASH_PrefetchBufferCmd(ENABLE)" 
+                 function
+            (++) Check that Flash Prefetch buffer activation is taken into account by 
+                 reading FLASH_ACR using the FLASH_GetPrefetchBufferStatus() function
+            (++) Program Flash WS to 1 or 2, using "FLASH_SetLatency()" function
+            (++) Check that the new number of WS is taken into account by reading FLASH_ACR
+            (++) Modify the CPU clock source, using "RCC_SYSCLKConfig()" function
+            (++) If needed, modify the CPU clock prescaler by using "RCC_HCLKConfig()" function
+            (++) Check that the new CPU clock source is taken into account by reading 
+                 the clock source status, using "RCC_GetSYSCLKSource()" function 
+         (+) Decreasing the CPU frequency
+            (++) Modify the CPU clock source, using "RCC_SYSCLKConfig()" function
+            (++) If needed, modify the CPU clock prescaler by using "RCC_HCLKConfig()" function
+            (++) Check that the new CPU clock source is taken into account by reading 
+                 the clock source status, using "RCC_GetSYSCLKSource()" function
+            (++) Program the new number of WS, using "FLASH_SetLatency()" function
+            (++) Check that the new number of WS is taken into account by reading FLASH_ACR
+            (++) Disable the Flash Prefetch buffer using "FLASH_PrefetchBufferCmd(DISABLE)" 
+                 function
+            (++) Check that Flash Prefetch buffer deactivation is taken into account by reading FLASH_ACR
+                 using the FLASH_GetPrefetchBufferStatus() function.
+
+@endverbatim
+  * @{
+  */
+
+/**
+  * @brief  Configures the system clock (SYSCLK).
+  * @note     The HSI is used (enabled by hardware) as system clock source after
+  *           startup from Reset, wake-up from STOP and STANDBY mode, or in case
+  *           of failure of the HSE used directly or indirectly as system clock
+  *           (if the Clock Security System CSS is enabled).
+  * @note     A switch from one clock source to another occurs only if the target
+  *           clock source is ready (clock stable after startup delay or PLL locked). 
+  *           If a clock source which is not yet ready is selected, the switch will
+  *           occur when the clock source will be ready. 
+  *           You can use RCC_GetSYSCLKSource() function to know which clock is
+  *           currently used as system clock source.  
+  * @param  RCC_SYSCLKSource: specifies the clock source used as system clock source 
+  *   This parameter can be one of the following values:
+  *     @arg RCC_SYSCLKSource_HSI:    HSI selected as system clock source
+  *     @arg RCC_SYSCLKSource_HSE:    HSE selected as system clock source
+  *     @arg RCC_SYSCLKSource_PLLCLK: PLL selected as system clock source
+  * @retval None
+  */
+void RCC_SYSCLKConfig(uint32_t RCC_SYSCLKSource)
+{
+  uint32_t tmpreg = 0;
+  
+  /* Check the parameters */
+  assert_param(IS_RCC_SYSCLK_SOURCE(RCC_SYSCLKSource));
+  
+  tmpreg = RCC->CFGR;
+  
+  /* Clear SW[1:0] bits */
+  tmpreg &= ~RCC_CFGR_SW;
+  
+  /* Set SW[1:0] bits according to RCC_SYSCLKSource value */
+  tmpreg |= RCC_SYSCLKSource;
+  
+  /* Store the new value */
+  RCC->CFGR = tmpreg;
+}
+
+/**
+  * @brief  Returns the clock source used as system clock.
+  * @param  None
+  * @retval The clock source used as system clock. The returned value can be one 
+  *         of the following values:
+  *              - 0x00: HSI used as system clock
+  *              - 0x04: HSE used as system clock  
+  *              - 0x08: PLL used as system clock
+  */
+uint8_t RCC_GetSYSCLKSource(void)
+{
+  return ((uint8_t)(RCC->CFGR & RCC_CFGR_SWS));
+}
+
+/**
+  * @brief  Configures the AHB clock (HCLK).
+  * @note   Depending on the device voltage range, the software has to set correctly
+  *         these bits to ensure that the system frequency does not exceed the
+  *         maximum allowed frequency (for more details refer to section above
+  *         "CPU, AHB and APB busses clocks configuration functions").
+  * @param  RCC_SYSCLK: defines the AHB clock divider. This clock is derived from 
+  *                     the system clock (SYSCLK).
+  *   This parameter can be one of the following values:
+  *     @arg RCC_SYSCLK_Div1:   AHB clock = SYSCLK
+  *     @arg RCC_SYSCLK_Div2:   AHB clock = SYSCLK/2
+  *     @arg RCC_SYSCLK_Div4:   AHB clock = SYSCLK/4
+  *     @arg RCC_SYSCLK_Div8:   AHB clock = SYSCLK/8
+  *     @arg RCC_SYSCLK_Div16:  AHB clock = SYSCLK/16
+  *     @arg RCC_SYSCLK_Div64:  AHB clock = SYSCLK/64
+  *     @arg RCC_SYSCLK_Div128: AHB clock = SYSCLK/128
+  *     @arg RCC_SYSCLK_Div256: AHB clock = SYSCLK/256
+  *     @arg RCC_SYSCLK_Div512: AHB clock = SYSCLK/512
+  * @retval None
+  */
+void RCC_HCLKConfig(uint32_t RCC_SYSCLK)
+{
+  uint32_t tmpreg = 0;
+  
+  /* Check the parameters */
+  assert_param(IS_RCC_HCLK(RCC_SYSCLK));
+  
+  tmpreg = RCC->CFGR;
+  
+  /* Clear HPRE[3:0] bits */
+  tmpreg &= ~RCC_CFGR_HPRE;
+  
+  /* Set HPRE[3:0] bits according to RCC_SYSCLK value */
+  tmpreg |= RCC_SYSCLK;
+  
+  /* Store the new value */
+  RCC->CFGR = tmpreg;
+}
+
+/**
+  * @brief  Configures the Low Speed APB clock (PCLK1).
+  * @param  RCC_HCLK: defines the APB1 clock divider. This clock is derived from 
+  *         the AHB clock (HCLK).
+  *   This parameter can be one of the following values:
+  *     @arg RCC_HCLK_Div1: APB1 clock = HCLK
+  *     @arg RCC_HCLK_Div2: APB1 clock = HCLK/2
+  *     @arg RCC_HCLK_Div4: APB1 clock = HCLK/4
+  *     @arg RCC_HCLK_Div8: APB1 clock = HCLK/8
+  *     @arg RCC_HCLK_Div16: APB1 clock = HCLK/16
+  * @retval None
+  */
+void RCC_PCLK1Config(uint32_t RCC_HCLK)
+{
+  uint32_t tmpreg = 0;
+  
+  /* Check the parameters */
+  assert_param(IS_RCC_PCLK(RCC_HCLK));
+  
+  tmpreg = RCC->CFGR;
+  /* Clear PPRE1[2:0] bits */
+  tmpreg &= ~RCC_CFGR_PPRE1;
+  
+  /* Set PPRE1[2:0] bits according to RCC_HCLK value */
+  tmpreg |= RCC_HCLK;
+  
+  /* Store the new value */
+  RCC->CFGR = tmpreg;
+}
+
+/**
+  * @brief  Configures the High Speed APB clock (PCLK2).
+  * @param  RCC_HCLK: defines the APB2 clock divider. This clock is derived from 
+  *         the AHB clock (HCLK).
+  *         This parameter can be one of the following values:
+  *             @arg RCC_HCLK_Div1: APB2 clock = HCLK
+  *             @arg RCC_HCLK_Div2: APB2 clock = HCLK/2
+  *             @arg RCC_HCLK_Div4: APB2 clock = HCLK/4
+  *             @arg RCC_HCLK_Div8: APB2 clock = HCLK/8
+  *             @arg RCC_HCLK_Div16: APB2 clock = HCLK/16
+  * @retval None
+  */
+void RCC_PCLK2Config(uint32_t RCC_HCLK)
+{
+  uint32_t tmpreg = 0;
+  
+  /* Check the parameters */
+  assert_param(IS_RCC_PCLK(RCC_HCLK));
+  
+  tmpreg = RCC->CFGR;
+  /* Clear PPRE2[2:0] bits */
+  tmpreg &= ~RCC_CFGR_PPRE2;
+  /* Set PPRE2[2:0] bits according to RCC_HCLK value */
+  tmpreg |= RCC_HCLK << 3;
+  /* Store the new value */
+  RCC->CFGR = tmpreg;
+}
+
+/**
+  * @brief  Returns the frequencies of the System, AHB, APB2 and APB1 busses clocks.
+  * 
+  *  @note    This function returns the frequencies of :
+  *           System, AHB, APB2 and APB1 busses clocks, ADC1/2/3/4 clocks, 
+  *           USART1/2/3/4/5 clocks, I2C1/2 clocks and TIM1/8 Clocks.
+  *                         
+  * @note     The frequency returned by this function is not the real frequency
+  *           in the chip. It is calculated based on the predefined constant and
+  *           the source selected by RCC_SYSCLKConfig().
+  *                                              
+  * @note      If SYSCLK source is HSI, function returns constant HSI_VALUE(*)
+  *                                              
+  * @note      If SYSCLK source is HSE, function returns constant HSE_VALUE(**)
+  *                          
+  * @note      If SYSCLK source is PLL, function returns constant HSE_VALUE(**) 
+  *             or HSI_VALUE(*) multiplied by the PLL factors.
+  *         
+  * @note     (*) HSI_VALUE is a constant defined in stm32f30x.h file (default value
+  *               8 MHz) but the real value may vary depending on the variations
+  *               in voltage and temperature, refer to RCC_AdjustHSICalibrationValue().   
+  *    
+  * @note     (**) HSE_VALUE is a constant defined in stm32f30x.h file (default value
+  *                8 MHz), user has to ensure that HSE_VALUE is same as the real
+  *                frequency of the crystal used. Otherwise, this function may
+  *                return wrong result.
+  *                
+  * @note     The result of this function could be not correct when using fractional
+  *           value for HSE crystal.   
+  *             
+  * @param  RCC_Clocks: pointer to a RCC_ClocksTypeDef structure which will hold 
+  *         the clocks frequencies. 
+  *     
+  * @note     This function can be used by the user application to compute the 
+  *           baudrate for the communication peripherals or configure other parameters.
+  * @note     Each time SYSCLK, HCLK, PCLK1 and/or PCLK2 clock changes, this function
+  *           must be called to update the structure's field. Otherwise, any
+  *           configuration based on this function will be incorrect.
+  *    
+  * @retval None
+  */
+void RCC_GetClocksFreq(RCC_ClocksTypeDef* RCC_Clocks)
+{
+  uint32_t tmp = 0, pllmull = 0, pllsource = 0, prediv1factor = 0, presc = 0, pllclk = 0;
+  uint32_t apb2presc = 0, ahbpresc = 0;
+  
+  /* Get SYSCLK source -------------------------------------------------------*/
+  tmp = RCC->CFGR & RCC_CFGR_SWS;
+  
+  switch (tmp)
+  {
+    case 0x00:  /* HSI used as system clock */
+      RCC_Clocks->SYSCLK_Frequency = HSI_VALUE;
+      break;
+    case 0x04:  /* HSE used as system clock */
+      RCC_Clocks->SYSCLK_Frequency = HSE_VALUE;
+      break;
+    case 0x08:  /* PLL used as system clock */
+      /* Get PLL clock source and multiplication factor ----------------------*/
+      pllmull = RCC->CFGR & RCC_CFGR_PLLMULL;
+      pllsource = RCC->CFGR & RCC_CFGR_PLLSRC;
+      pllmull = ( pllmull >> 18) + 2;
+      
+      if (pllsource == 0x00)
+      {
+        /* HSI oscillator clock divided by 2 selected as PLL clock entry */
+        pllclk = (HSI_VALUE >> 1) * pllmull;
+      }
+      else
+      {
+        prediv1factor = (RCC->CFGR2 & RCC_CFGR2_PREDIV1) + 1;
+        /* HSE oscillator clock selected as PREDIV1 clock entry */
+        pllclk = (HSE_VALUE / prediv1factor) * pllmull; 
+      }
+      RCC_Clocks->SYSCLK_Frequency = pllclk;      
+      break;
+    default: /* HSI used as system clock */
+      RCC_Clocks->SYSCLK_Frequency = HSI_VALUE;
+      break;
+  }
+    /* Compute HCLK, PCLK clocks frequencies -----------------------------------*/
+  /* Get HCLK prescaler */
+  tmp = RCC->CFGR & RCC_CFGR_HPRE;
+  tmp = tmp >> 4;
+  ahbpresc = APBAHBPrescTable[tmp]; 
+  /* HCLK clock frequency */
+  RCC_Clocks->HCLK_Frequency = RCC_Clocks->SYSCLK_Frequency >> ahbpresc;
+
+  /* Get PCLK1 prescaler */
+  tmp = RCC->CFGR & RCC_CFGR_PPRE1;
+  tmp = tmp >> 8;
+  presc = APBAHBPrescTable[tmp];
+  /* PCLK1 clock frequency */
+  RCC_Clocks->PCLK1_Frequency = RCC_Clocks->HCLK_Frequency >> presc;
+  
+  /* Get PCLK2 prescaler */
+  tmp = RCC->CFGR & RCC_CFGR_PPRE2;
+  tmp = tmp >> 11;
+  apb2presc = APBAHBPrescTable[tmp];
+  /* PCLK2 clock frequency */
+  RCC_Clocks->PCLK2_Frequency = RCC_Clocks->HCLK_Frequency >> apb2presc;
+  
+  /* Get ADC12CLK prescaler */
+  tmp = RCC->CFGR2 & RCC_CFGR2_ADCPRE12;
+  tmp = tmp >> 4;
+  presc = ADCPrescTable[tmp & 0x0F];
+  if (((tmp & 0x10) != 0) && (presc != 0))
+  {
+     /* ADC12CLK clock frequency is derived from PLL clock */
+     RCC_Clocks->ADC12CLK_Frequency = pllclk / presc;
+  }
+  else
+  {
+   /* ADC12CLK clock frequency is AHB clock */
+     RCC_Clocks->ADC12CLK_Frequency = RCC_Clocks->SYSCLK_Frequency;
+  }
+  
+  /* Get ADC34CLK prescaler */
+  tmp = RCC->CFGR2 & RCC_CFGR2_ADCPRE34;
+  tmp = tmp >> 9;
+  presc = ADCPrescTable[tmp & 0x0F];
+  if (((tmp & 0x10) != 0) && (presc != 0))
+  {
+     /* ADC34CLK clock frequency is derived from PLL clock */
+     RCC_Clocks->ADC34CLK_Frequency = pllclk / presc;
+  }
+  else
+  {
+   /* ADC34CLK clock frequency is AHB clock */
+     RCC_Clocks->ADC34CLK_Frequency = RCC_Clocks->SYSCLK_Frequency;
+  }
+
+  /* I2C1CLK clock frequency */
+  if((RCC->CFGR3 & RCC_CFGR3_I2C1SW) != RCC_CFGR3_I2C1SW)
+  {
+    /* I2C1 Clock is HSI Osc. */
+    RCC_Clocks->I2C1CLK_Frequency = HSI_VALUE;
+  }
+  else
+  {
+    /* I2C1 Clock is System Clock */
+    RCC_Clocks->I2C1CLK_Frequency = RCC_Clocks->SYSCLK_Frequency;
+  }
+
+  /* I2C2CLK clock frequency */
+  if((RCC->CFGR3 & RCC_CFGR3_I2C2SW) != RCC_CFGR3_I2C2SW)
+  {
+    /* I2C2 Clock is HSI Osc. */
+    RCC_Clocks->I2C2CLK_Frequency = HSI_VALUE;
+  }
+  else
+  {
+    /* I2C2 Clock is System Clock */
+    RCC_Clocks->I2C2CLK_Frequency = RCC_Clocks->SYSCLK_Frequency;
+  }
+
+  /* I2C3CLK clock frequency */
+  if((RCC->CFGR3 & RCC_CFGR3_I2C3SW) != RCC_CFGR3_I2C3SW)
+  {
+    /* I2C3 Clock is HSI Osc. */
+    RCC_Clocks->I2C3CLK_Frequency = HSI_VALUE;
+  }
+  else
+  {
+    /* I2C3 Clock is System Clock */
+    RCC_Clocks->I2C3CLK_Frequency = RCC_Clocks->SYSCLK_Frequency;
+  }
+    
+    /* TIM1CLK clock frequency */
+  if(((RCC->CFGR3 & RCC_CFGR3_TIM1SW) == RCC_CFGR3_TIM1SW)&& (RCC_Clocks->SYSCLK_Frequency == pllclk) \
+  && (apb2presc == ahbpresc)) 
+  {
+    /* TIM1 Clock is 2 * pllclk */
+    RCC_Clocks->TIM1CLK_Frequency = pllclk * 2;
+  }
+  else
+  {
+    /* TIM1 Clock is APB2 clock. */
+    RCC_Clocks->TIM1CLK_Frequency = RCC_Clocks->PCLK2_Frequency;
+  }
+
+    /* TIM1CLK clock frequency */
+  if(((RCC->CFGR3 & RCC_CFGR3_HRTIM1SW) == RCC_CFGR3_HRTIM1SW)&& (RCC_Clocks->SYSCLK_Frequency == pllclk) \
+  && (apb2presc == ahbpresc)) 
+  {
+    /* HRTIM1 Clock is 2 * pllclk */
+    RCC_Clocks->HRTIM1CLK_Frequency = pllclk * 2;
+  }
+  else
+  {
+    /* HRTIM1 Clock is APB2 clock. */
+    RCC_Clocks->HRTIM1CLK_Frequency = RCC_Clocks->PCLK2_Frequency;
+  }
+  
+    /* TIM8CLK clock frequency */
+  if(((RCC->CFGR3 & RCC_CFGR3_TIM8SW) == RCC_CFGR3_TIM8SW)&& (RCC_Clocks->SYSCLK_Frequency == pllclk) \
+  && (apb2presc == ahbpresc))
+  {
+    /* TIM8 Clock is 2 * pllclk */
+    RCC_Clocks->TIM8CLK_Frequency = pllclk * 2;
+  }
+  else
+  {
+    /* TIM8 Clock is APB2 clock. */
+    RCC_Clocks->TIM8CLK_Frequency = RCC_Clocks->PCLK2_Frequency;
+  }
+
+    /* TIM15CLK clock frequency */
+  if(((RCC->CFGR3 & RCC_CFGR3_TIM15SW) == RCC_CFGR3_TIM15SW)&& (RCC_Clocks->SYSCLK_Frequency == pllclk) \
+  && (apb2presc == ahbpresc))
+  {
+    /* TIM15 Clock is 2 * pllclk */
+    RCC_Clocks->TIM15CLK_Frequency = pllclk * 2;
+  }
+  else
+  {
+    /* TIM15 Clock is APB2 clock. */
+    RCC_Clocks->TIM15CLK_Frequency = RCC_Clocks->PCLK2_Frequency;
+  }
+    
+    /* TIM16CLK clock frequency */
+  if(((RCC->CFGR3 & RCC_CFGR3_TIM16SW) == RCC_CFGR3_TIM16SW)&& (RCC_Clocks->SYSCLK_Frequency == pllclk) \
+  && (apb2presc == ahbpresc))
+  {
+    /* TIM16 Clock is 2 * pllclk */
+    RCC_Clocks->TIM16CLK_Frequency = pllclk * 2;
+  }
+  else
+  {
+    /* TIM16 Clock is APB2 clock. */
+    RCC_Clocks->TIM16CLK_Frequency = RCC_Clocks->PCLK2_Frequency;
+  }
+
+    /* TIM17CLK clock frequency */
+  if(((RCC->CFGR3 & RCC_CFGR3_TIM17SW) == RCC_CFGR3_TIM17SW)&& (RCC_Clocks->SYSCLK_Frequency == pllclk) \
+  && (apb2presc == ahbpresc))
+  {
+    /* TIM17 Clock is 2 * pllclk */
+    RCC_Clocks->TIM17CLK_Frequency = pllclk * 2;
+  }
+  else
+  {
+    /* TIM17 Clock is APB2 clock. */
+    RCC_Clocks->TIM16CLK_Frequency = RCC_Clocks->PCLK2_Frequency;
+  }
+    
+  /* USART1CLK clock frequency */
+  if((RCC->CFGR3 & RCC_CFGR3_USART1SW) == 0x0)
+  {
+#if defined(STM32F303x8) || defined(STM32F334x8) || defined(STM32F301x8) || defined(STM32F302x8)
+    /* USART1 Clock is PCLK1 instead of PCLK2 (limitation described in the 
+       STM32F302/01/34 x4/x6/x8 respective erratasheets) */
+    RCC_Clocks->USART1CLK_Frequency = RCC_Clocks->PCLK1_Frequency;
+#else
+    /* USART Clock is PCLK2 */
+    RCC_Clocks->USART1CLK_Frequency = RCC_Clocks->PCLK2_Frequency;
+#endif  
+  }
+  else if((RCC->CFGR3 & RCC_CFGR3_USART1SW) == RCC_CFGR3_USART1SW_0)
+  {
+    /* USART Clock is System Clock */
+    RCC_Clocks->USART1CLK_Frequency = RCC_Clocks->SYSCLK_Frequency;
+  }
+  else if((RCC->CFGR3 & RCC_CFGR3_USART1SW) == RCC_CFGR3_USART1SW_1)
+  {
+    /* USART Clock is LSE Osc. */
+    RCC_Clocks->USART1CLK_Frequency = LSE_VALUE;
+  }
+  else if((RCC->CFGR3 & RCC_CFGR3_USART1SW) == RCC_CFGR3_USART1SW)
+  {
+    /* USART Clock is HSI Osc. */
+    RCC_Clocks->USART1CLK_Frequency = HSI_VALUE;
+  }
+
+  /* USART2CLK clock frequency */
+  if((RCC->CFGR3 & RCC_CFGR3_USART2SW) == 0x0)
+  {
+    /* USART Clock is PCLK */
+    RCC_Clocks->USART2CLK_Frequency = RCC_Clocks->PCLK1_Frequency;
+  }
+  else if((RCC->CFGR3 & RCC_CFGR3_USART2SW) == RCC_CFGR3_USART2SW_0)
+  {
+    /* USART Clock is System Clock */
+    RCC_Clocks->USART2CLK_Frequency = RCC_Clocks->SYSCLK_Frequency;
+  }
+  else if((RCC->CFGR3 & RCC_CFGR3_USART2SW) == RCC_CFGR3_USART2SW_1)
+  {
+    /* USART Clock is LSE Osc. */
+    RCC_Clocks->USART2CLK_Frequency = LSE_VALUE;
+  }
+  else if((RCC->CFGR3 & RCC_CFGR3_USART2SW) == RCC_CFGR3_USART2SW)
+  {
+    /* USART Clock is HSI Osc. */
+    RCC_Clocks->USART2CLK_Frequency = HSI_VALUE;
+  }    
+
+  /* USART3CLK clock frequency */
+  if((RCC->CFGR3 & RCC_CFGR3_USART3SW) == 0x0)
+  {
+    /* USART Clock is PCLK */
+    RCC_Clocks->USART3CLK_Frequency = RCC_Clocks->PCLK1_Frequency;
+  }
+  else if((RCC->CFGR3 & RCC_CFGR3_USART3SW) == RCC_CFGR3_USART3SW_0)
+  {
+    /* USART Clock is System Clock */
+    RCC_Clocks->USART3CLK_Frequency = RCC_Clocks->SYSCLK_Frequency;
+  }
+  else if((RCC->CFGR3 & RCC_CFGR3_USART3SW) == RCC_CFGR3_USART3SW_1)
+  {
+    /* USART Clock is LSE Osc. */
+    RCC_Clocks->USART3CLK_Frequency = LSE_VALUE;
+  }
+  else if((RCC->CFGR3 & RCC_CFGR3_USART3SW) == RCC_CFGR3_USART3SW)
+  {
+    /* USART Clock is HSI Osc. */
+    RCC_Clocks->USART3CLK_Frequency = HSI_VALUE;
+  }
+  
+    /* UART4CLK clock frequency */
+  if((RCC->CFGR3 & RCC_CFGR3_UART4SW) == 0x0)
+  {
+    /* USART Clock is PCLK */
+    RCC_Clocks->UART4CLK_Frequency = RCC_Clocks->PCLK1_Frequency;
+  }
+  else if((RCC->CFGR3 & RCC_CFGR3_UART4SW) == RCC_CFGR3_UART4SW_0)
+  {
+    /* USART Clock is System Clock */
+    RCC_Clocks->UART4CLK_Frequency = RCC_Clocks->SYSCLK_Frequency;
+  }
+  else if((RCC->CFGR3 & RCC_CFGR3_UART4SW) == RCC_CFGR3_UART4SW_1)
+  {
+    /* USART Clock is LSE Osc. */
+    RCC_Clocks->UART4CLK_Frequency = LSE_VALUE;
+  }
+  else if((RCC->CFGR3 & RCC_CFGR3_UART4SW) == RCC_CFGR3_UART4SW)
+  {
+    /* USART Clock is HSI Osc. */
+    RCC_Clocks->UART4CLK_Frequency = HSI_VALUE;
+  }   
+  
+  /* UART5CLK clock frequency */
+  if((RCC->CFGR3 & RCC_CFGR3_UART5SW) == 0x0)
+  {
+    /* USART Clock is PCLK */
+    RCC_Clocks->UART5CLK_Frequency = RCC_Clocks->PCLK1_Frequency;
+  }
+  else if((RCC->CFGR3 & RCC_CFGR3_UART5SW) == RCC_CFGR3_UART5SW_0)
+  {
+    /* USART Clock is System Clock */
+    RCC_Clocks->UART5CLK_Frequency = RCC_Clocks->SYSCLK_Frequency;
+  }
+  else if((RCC->CFGR3 & RCC_CFGR3_UART5SW) == RCC_CFGR3_UART5SW_1)
+  {
+    /* USART Clock is LSE Osc. */
+    RCC_Clocks->UART5CLK_Frequency = LSE_VALUE;
+  }
+  else if((RCC->CFGR3 & RCC_CFGR3_UART5SW) == RCC_CFGR3_UART5SW)
+  {
+    /* USART Clock is HSI Osc. */
+    RCC_Clocks->UART5CLK_Frequency = HSI_VALUE;
+  } 
+}
+
+/**
+  * @}
+  */
+
+/** @defgroup RCC_Group3 Peripheral clocks configuration functions
+ *  @brief   Peripheral clocks configuration functions 
+ *
+@verbatim   
+ ===============================================================================
+            ##### Peripheral clocks configuration functions #####
+ ===============================================================================  
+    [..] This section provide functions allowing to configure the Peripheral clocks. 
+         (#) The RTC clock which is derived from the LSE, LSI or  HSE_Div32 
+             (HSE divided by 32).
+         (#) After restart from Reset or wakeup from STANDBY, all peripherals are 
+             off except internal SRAM, Flash and SWD. Before to start using 
+             a peripheral you have to enable its interface clock. You can do this 
+             using RCC_AHBPeriphClockCmd(), RCC_APB2PeriphClockCmd() 
+             and RCC_APB1PeriphClockCmd() functions.
+         (#) To reset the peripherals configuration (to the default state after 
+             device reset) you can use RCC_AHBPeriphResetCmd(), RCC_APB2PeriphResetCmd() 
+             and RCC_APB1PeriphResetCmd() functions.
+@endverbatim
+  * @{
+  */
+
+/**
+  * @brief  Configures the ADC clock (ADCCLK).
+  * @param  RCC_PLLCLK: defines the ADC clock divider. This clock is derived from 
+  *         the PLL Clock.
+  *   This parameter can be one of the following values:
+  *     @arg RCC_ADC12PLLCLK_OFF: ADC12 clock disabled
+  *     @arg RCC_ADC12PLLCLK_Div1: ADC12 clock = PLLCLK/1
+  *     @arg RCC_ADC12PLLCLK_Div2: ADC12 clock = PLLCLK/2
+  *     @arg RCC_ADC12PLLCLK_Div4: ADC12 clock = PLLCLK/4
+  *     @arg RCC_ADC12PLLCLK_Div6: ADC12 clock = PLLCLK/6
+  *     @arg RCC_ADC12PLLCLK_Div8: ADC12 clock = PLLCLK/8
+  *     @arg RCC_ADC12PLLCLK_Div10: ADC12 clock = PLLCLK/10
+  *     @arg RCC_ADC12PLLCLK_Div12: ADC12 clock = PLLCLK/12
+  *     @arg RCC_ADC12PLLCLK_Div16: ADC12 clock = PLLCLK/16
+  *     @arg RCC_ADC12PLLCLK_Div32: ADC12 clock = PLLCLK/32
+  *     @arg RCC_ADC12PLLCLK_Div64: ADC12 clock = PLLCLK/64
+  *     @arg RCC_ADC12PLLCLK_Div128: ADC12 clock = PLLCLK/128
+  *     @arg RCC_ADC12PLLCLK_Div256: ADC12 clock = PLLCLK/256
+  *     @arg RCC_ADC34PLLCLK_OFF: ADC34 clock disabled
+  *     @arg RCC_ADC34PLLCLK_Div1: ADC34 clock = PLLCLK/1
+  *     @arg RCC_ADC34PLLCLK_Div2: ADC34 clock = PLLCLK/2
+  *     @arg RCC_ADC34PLLCLK_Div4: ADC34 clock = PLLCLK/4
+  *     @arg RCC_ADC34PLLCLK_Div6: ADC34 clock = PLLCLK/6
+  *     @arg RCC_ADC34PLLCLK_Div8: ADC34 clock = PLLCLK/8
+  *     @arg RCC_ADC34PLLCLK_Div10: ADC34 clock = PLLCLK/10
+  *     @arg RCC_ADC34PLLCLK_Div12: ADC34 clock = PLLCLK/12
+  *     @arg RCC_ADC34PLLCLK_Div16: ADC34 clock = PLLCLK/16
+  *     @arg RCC_ADC34PLLCLK_Div32: ADC34 clock = PLLCLK/32
+  *     @arg RCC_ADC34PLLCLK_Div64: ADC34 clock = PLLCLK/64       
+  *     @arg RCC_ADC34PLLCLK_Div128: ADC34 clock = PLLCLK/128                                  
+  *     @arg RCC_ADC34PLLCLK_Div256: ADC34 clock = PLLCLK/256
+  * @retval None
+  */
+void RCC_ADCCLKConfig(uint32_t RCC_PLLCLK)
+{
+  uint32_t tmp = 0;
+  
+  /* Check the parameters */
+  assert_param(IS_RCC_ADCCLK(RCC_PLLCLK));
+
+  tmp = (RCC_PLLCLK >> 28);
+  
+  /* Clears ADCPRE34 bits */
+  if (tmp != 0)
+  {
+    RCC->CFGR2 &= ~RCC_CFGR2_ADCPRE34;
+  }
+   /* Clears ADCPRE12 bits */
+  else
+  {
+    RCC->CFGR2 &= ~RCC_CFGR2_ADCPRE12;
+  }
+  /* Set ADCPRE bits according to RCC_PLLCLK value */
+  RCC->CFGR2 |= RCC_PLLCLK;
+}
+
+/**
+  * @brief  Configures the I2C clock (I2CCLK).
+  * @param  RCC_I2CCLK: defines the I2C clock source. This clock is derived 
+  *         from the HSI or System clock.
+  *   This parameter can be one of the following values:
+  *     @arg RCC_I2CxCLK_HSI: I2Cx clock = HSI
+  *     @arg RCC_I2CxCLK_SYSCLK: I2Cx clock = System Clock
+  *          (x can be 1 or 2 or 3).  
+  * @retval None
+  */
+void RCC_I2CCLKConfig(uint32_t RCC_I2CCLK)
+{ 
+  uint32_t tmp = 0;
+  
+  /* Check the parameters */
+  assert_param(IS_RCC_I2CCLK(RCC_I2CCLK));
+
+  tmp = (RCC_I2CCLK >> 28);
+  
+  /* Clear I2CSW bit */
+    switch (tmp)
+  {
+    case 0x00: 
+      RCC->CFGR3 &= ~RCC_CFGR3_I2C1SW;
+      break;
+    case 0x01:
+      RCC->CFGR3 &= ~RCC_CFGR3_I2C2SW;
+      break;
+    case 0x02:
+      RCC->CFGR3 &= ~RCC_CFGR3_I2C3SW;
+      break;
+    default:
+      break;
+  }
+  
+  /* Set I2CSW bits according to RCC_I2CCLK value */
+  RCC->CFGR3 |= RCC_I2CCLK;
+}
+
+/**
+  * @brief  Configures the TIMx clock sources(TIMCLK).
+  * @note     The configuration of the TIMx clock source is only possible when the 
+  *           SYSCLK = PLL and HCLK and PCLK2 clocks are not divided in respect to SYSCLK
+  * @note     If one of the previous conditions is missed, the TIM clock source 
+  *           configuration is lost and calling again this function becomes mandatory.  
+  * @param  RCC_TIMCLK: defines the TIMx clock source.
+  *   This parameter can be one of the following values:
+  *     @arg RCC_TIMxCLK_HCLK: TIMx clock = APB high speed clock (doubled frequency
+  *          when prescaled)
+  *     @arg RCC_TIMxCLK_PLLCLK: TIMx clock = PLL output (running up to 144 MHz)
+  *          (x can be 1, 8, 15, 16, 17).
+  * @retval None
+  */
+void RCC_TIMCLKConfig(uint32_t RCC_TIMCLK)
+{ 
+  uint32_t tmp = 0;
+  
+  /* Check the parameters */
+  assert_param(IS_RCC_TIMCLK(RCC_TIMCLK));
+
+  tmp = (RCC_TIMCLK >> 28);
+  
+  /* Clear TIMSW bit */
+  
+  switch (tmp)
+  {
+    case 0x00: 
+      RCC->CFGR3 &= ~RCC_CFGR3_TIM1SW;
+      break;
+    case 0x01:
+      RCC->CFGR3 &= ~RCC_CFGR3_TIM8SW;
+      break;
+    case 0x02:
+      RCC->CFGR3 &= ~RCC_CFGR3_TIM15SW;
+      break;
+    case 0x03:
+      RCC->CFGR3 &= ~RCC_CFGR3_TIM16SW;
+      break;
+    case 0x04:
+      RCC->CFGR3 &= ~RCC_CFGR3_TIM17SW;
+      break;
+    default:
+      break;
+  }
+  
+  /* Set I2CSW bits according to RCC_TIMCLK value */
+  RCC->CFGR3 |= RCC_TIMCLK;
+}
+
+/**
+  * @brief  Configures the HRTIM1 clock sources(HRTIM1CLK).
+  * @note     The configuration of the HRTIM1 clock source is only possible when the 
+  *           SYSCLK = PLL and HCLK and PCLK2 clocks are not divided in respect to SYSCLK
+  * @note     If one of the previous conditions is missed, the TIM clock source 
+  *           configuration is lost and calling again this function becomes mandatory.  
+  * @param  RCC_HRTIMCLK: defines the TIMx clock source.
+  *   This parameter can be one of the following values:
+  *     @arg RCC_HRTIM1CLK_HCLK: TIMx clock = APB high speed clock (doubled frequency
+  *          when prescaled)
+  *     @arg RCC_HRTIM1CLK_PLLCLK: TIMx clock = PLL output (running up to 144 MHz)
+  *          (x can be 1 or 8).
+  * @retval None
+  */
+void RCC_HRTIM1CLKConfig(uint32_t RCC_HRTIMCLK)
+{ 
+  /* Check the parameters */
+  assert_param(IS_RCC_HRTIMCLK(RCC_HRTIMCLK));
+  
+  /* Clear HRTIMSW bit */
+  RCC->CFGR3 &= ~RCC_CFGR3_HRTIM1SW;
+
+  /* Set HRTIMSW bits according to RCC_HRTIMCLK value */
+  RCC->CFGR3 |= RCC_HRTIMCLK;
+}
+
+/**
+  * @brief  Configures the USART clock (USARTCLK).
+  * @param  RCC_USARTCLK: defines the USART clock source. This clock is derived 
+  *         from the HSI or System clock.
+  *   This parameter can be one of the following values:
+  *     @arg RCC_USARTxCLK_PCLK: USART clock = APB Clock (PCLK)
+  *     @arg RCC_USARTxCLK_SYSCLK: USART clock = System Clock
+  *     @arg RCC_USARTxCLK_LSE: USART clock = LSE Clock
+  *     @arg RCC_USARTxCLK_HSI: USART clock = HSI Clock
+  *          (x can be 1, 2, 3, 4 or 5).  
+  * @retval None
+  */
+void RCC_USARTCLKConfig(uint32_t RCC_USARTCLK)
+{ 
+  uint32_t tmp = 0;
+  
+  /* Check the parameters */
+  assert_param(IS_RCC_USARTCLK(RCC_USARTCLK));
+
+  tmp = (RCC_USARTCLK >> 28);
+
+  /* Clear USARTSW[1:0] bit */
+  switch (tmp)
+  {
+    case 0x01:  /* clear USART1SW */
+      RCC->CFGR3 &= ~RCC_CFGR3_USART1SW;
+      break;
+    case 0x02:  /* clear USART2SW */
+      RCC->CFGR3 &= ~RCC_CFGR3_USART2SW;
+      break;
+    case 0x03:  /* clear USART3SW */
+      RCC->CFGR3 &= ~RCC_CFGR3_USART3SW;
+      break;
+    case 0x04:  /* clear UART4SW */
+      RCC->CFGR3 &= ~RCC_CFGR3_UART4SW;
+      break;
+    case 0x05:  /* clear UART5SW */
+      RCC->CFGR3 &= ~RCC_CFGR3_UART5SW;
+      break;
+    default:
+      break;
+  }
+
+  /* Set USARTSW bits according to RCC_USARTCLK value */
+  RCC->CFGR3 |= RCC_USARTCLK;
+}
+
+/**
+  * @brief  Configures the USB clock (USBCLK).
+  * @param  RCC_USBCLKSource: specifies the USB clock source. This clock is 
+  *   derived from the PLL output.
+  *   This parameter can be one of the following values:
+  *     @arg RCC_USBCLKSource_PLLCLK_1Div5: PLL clock divided by 1,5 selected as USB 
+  *                                     clock source
+  *     @arg RCC_USBCLKSource_PLLCLK_Div1: PLL clock selected as USB clock source
+  * @retval None
+  */
+void RCC_USBCLKConfig(uint32_t RCC_USBCLKSource)
+{
+  /* Check the parameters */
+  assert_param(IS_RCC_USBCLK_SOURCE(RCC_USBCLKSource));
+
+  *(__IO uint32_t *) CFGR_USBPRE_BB = RCC_USBCLKSource;
+}
+
+/**
+  * @brief  Configures the RTC clock (RTCCLK).
+  * @note     As the RTC clock configuration bits are in the Backup domain and write
+  *           access is denied to this domain after reset, you have to enable write
+  *           access using PWR_BackupAccessCmd(ENABLE) function before to configure
+  *           the RTC clock source (to be done once after reset).    
+  * @note     Once the RTC clock is configured it can't be changed unless the RTC
+  *           is reset using RCC_BackupResetCmd function, or by a Power On Reset (POR)
+  *             
+  * @param  RCC_RTCCLKSource: specifies the RTC clock source.
+  *   This parameter can be one of the following values:
+  *     @arg RCC_RTCCLKSource_LSE: LSE selected as RTC clock
+  *     @arg RCC_RTCCLKSource_LSI: LSI selected as RTC clock
+  *     @arg RCC_RTCCLKSource_HSE_Div32: HSE divided by 32 selected as RTC clock
+  *       
+  * @note     If the LSE or LSI is used as RTC clock source, the RTC continues to
+  *           work in STOP and STANDBY modes, and can be used as wakeup source.
+  *           However, when the HSE clock is used as RTC clock source, the RTC
+  *           cannot be used in STOP and STANDBY modes.             
+  * @note     The maximum input clock frequency for RTC is 2MHz (when using HSE as
+  *           RTC clock source).             
+  * @retval None
+  */
+void RCC_RTCCLKConfig(uint32_t RCC_RTCCLKSource)
+{
+  /* Check the parameters */
+  assert_param(IS_RCC_RTCCLK_SOURCE(RCC_RTCCLKSource));
+  
+  /* Select the RTC clock source */
+  RCC->BDCR |= RCC_RTCCLKSource;
+}
+
+/**
+  * @brief  Configures the I2S clock source (I2SCLK).
+  * @note   This function must be called before enabling the SPI2 and SPI3 clocks.
+  * @param  RCC_I2SCLKSource: specifies the I2S clock source.
+  *          This parameter can be one of the following values:
+  *            @arg RCC_I2S2CLKSource_SYSCLK: SYSCLK clock used as I2S clock source
+  *            @arg RCC_I2S2CLKSource_Ext: External clock mapped on the I2S_CKIN pin
+  *                                        used as I2S clock source
+  * @retval None
+  */
+void RCC_I2SCLKConfig(uint32_t RCC_I2SCLKSource)
+{
+  /* Check the parameters */
+  assert_param(IS_RCC_I2SCLK_SOURCE(RCC_I2SCLKSource));
+
+  *(__IO uint32_t *) CFGR_I2SSRC_BB = RCC_I2SCLKSource;
+}
+
+/**
+  * @brief  Enables or disables the RTC clock.
+  * @note   This function must be used only after the RTC clock source was selected
+  *         using the RCC_RTCCLKConfig function.
+  * @param  NewState: new state of the RTC clock.
+  *         This parameter can be: ENABLE or DISABLE.
+  * @retval None
+  */
+void RCC_RTCCLKCmd(FunctionalState NewState)
+{
+  /* Check the parameters */
+  assert_param(IS_FUNCTIONAL_STATE(NewState));
+  
+  *(__IO uint32_t *) BDCR_RTCEN_BB = (uint32_t)NewState;
+}
+
+/**
+  * @brief  Forces or releases the Backup domain reset.
+  * @note   This function resets the RTC peripheral (including the backup registers)
+  *         and the RTC clock source selection in RCC_BDCR register.
+  * @param  NewState: new state of the Backup domain reset.
+  *         This parameter can be: ENABLE or DISABLE.
+  * @retval None
+  */
+void RCC_BackupResetCmd(FunctionalState NewState)
+{
+  /* Check the parameters */
+  assert_param(IS_FUNCTIONAL_STATE(NewState));
+  
+  *(__IO uint32_t *) BDCR_BDRST_BB = (uint32_t)NewState;
+}
+
+/**
+  * @brief  Enables or disables the AHB peripheral clock.
+  * @note   After reset, the peripheral clock (used for registers read/write access)
+  *         is disabled and the application software has to enable this clock before 
+  *         using it.    
+  * @param  RCC_AHBPeriph: specifies the AHB peripheral to gates its clock.
+  *   This parameter can be any combination of the following values:
+  *     @arg RCC_AHBPeriph_GPIOA
+  *     @arg RCC_AHBPeriph_GPIOB
+  *     @arg RCC_AHBPeriph_GPIOC  
+  *     @arg RCC_AHBPeriph_GPIOD
+  *     @arg RCC_AHBPeriph_GPIOE  
+  *     @arg RCC_AHBPeriph_GPIOF
+  *     @arg RCC_AHBPeriph_TS
+  *     @arg RCC_AHBPeriph_CRC
+  *     @arg RCC_AHBPeriph_FLITF (has effect only when the Flash memory is in power down mode)  
+  *     @arg RCC_AHBPeriph_SRAM
+  *     @arg RCC_AHBPeriph_DMA2
+  *     @arg RCC_AHBPeriph_DMA1
+  *     @arg RCC_AHBPeriph_ADC34
+  *     @arg RCC_AHBPeriph_ADC12      
+  * @param  NewState: new state of the specified peripheral clock.
+  *         This parameter can be: ENABLE or DISABLE.
+  * @retval None
+  */
+void RCC_AHBPeriphClockCmd(uint32_t RCC_AHBPeriph, FunctionalState NewState)
+{
+  /* Check the parameters */
+  assert_param(IS_RCC_AHB_PERIPH(RCC_AHBPeriph));
+  assert_param(IS_FUNCTIONAL_STATE(NewState));
+  
+  if (NewState != DISABLE)
+  {
+    RCC->AHBENR |= RCC_AHBPeriph;
+  }
+  else
+  {
+    RCC->AHBENR &= ~RCC_AHBPeriph;
+  }
+}
+
+/**
+  * @brief  Enables or disables the High Speed APB (APB2) peripheral clock.
+  * @note   After reset, the peripheral clock (used for registers read/write access)
+  *         is disabled and the application software has to enable this clock before 
+  *         using it.
+  * @param  RCC_APB2Periph: specifies the APB2 peripheral to gates its clock.
+  *   This parameter can be any combination of the following values:
+  *     @arg RCC_APB2Periph_SYSCFG
+  *     @arg RCC_APB2Periph_SPI1
+  *     @arg RCC_APB2Periph_USART1
+  *     @arg RCC_APB2Periph_TIM15
+  *     @arg RCC_APB2Periph_TIM16
+  *     @arg RCC_APB2Periph_TIM17
+  *     @arg RCC_APB2Periph_TIM1       
+  *     @arg RCC_APB2Periph_TIM8
+  *     @arg RCC_APB2Periph_HRTIM1  
+  * @param  NewState: new state of the specified peripheral clock.
+  *         This parameter can be: ENABLE or DISABLE.
+  * @retval None
+  */
+void RCC_APB2PeriphClockCmd(uint32_t RCC_APB2Periph, FunctionalState NewState)
+{
+  /* Check the parameters */
+  assert_param(IS_RCC_APB2_PERIPH(RCC_APB2Periph));
+  assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+  if (NewState != DISABLE)
+  {
+    RCC->APB2ENR |= RCC_APB2Periph;
+  }
+  else
+  {
+    RCC->APB2ENR &= ~RCC_APB2Periph;
+  }
+}
+
+/**
+  * @brief  Enables or disables the Low Speed APB (APB1) peripheral clock.
+  * @note   After reset, the peripheral clock (used for registers read/write access)
+  *         is disabled and the application software has to enable this clock before 
+  *         using it.
+  * @param  RCC_APB1Periph: specifies the APB1 peripheral to gates its clock.
+  *   This parameter can be any combination of the following values:
+  *     @arg RCC_APB1Periph_TIM2
+  *     @arg RCC_APB1Periph_TIM3
+  *     @arg RCC_APB1Periph_TIM4
+  *     @arg RCC_APB1Periph_TIM6
+  *     @arg RCC_APB1Periph_TIM7
+  *     @arg RCC_APB1Periph_WWDG
+  *     @arg RCC_APB1Periph_SPI2
+  *     @arg RCC_APB1Periph_SPI3  
+  *     @arg RCC_APB1Periph_USART2
+  *     @arg RCC_APB1Periph_USART3
+  *     @arg RCC_APB1Periph_UART4 
+  *     @arg RCC_APB1Periph_UART5     
+  *     @arg RCC_APB1Periph_I2C1
+  *     @arg RCC_APB1Periph_I2C2
+  *     @arg RCC_APB1Periph_USB
+  *     @arg RCC_APB1Periph_CAN1
+  *     @arg RCC_APB1Periph_PWR
+  *     @arg RCC_APB1Periph_DAC1
+  *     @arg RCC_APB1Periph_DAC2  
+  * @param  NewState: new state of the specified peripheral clock.
+  *         This parameter can be: ENABLE or DISABLE.
+  * @retval None
+  */
+void RCC_APB1PeriphClockCmd(uint32_t RCC_APB1Periph, FunctionalState NewState)
+{
+  /* Check the parameters */
+  assert_param(IS_RCC_APB1_PERIPH(RCC_APB1Periph));
+  assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+  if (NewState != DISABLE)
+  {
+    RCC->APB1ENR |= RCC_APB1Periph;
+  }
+  else
+  {
+    RCC->APB1ENR &= ~RCC_APB1Periph;
+  }
+}
+
+/**
+  * @brief  Forces or releases AHB peripheral reset.
+  * @param  RCC_AHBPeriph: specifies the AHB peripheral to reset.
+  *   This parameter can be any combination of the following values:
+  *     @arg RCC_AHBPeriph_GPIOA
+  *     @arg RCC_AHBPeriph_GPIOB
+  *     @arg RCC_AHBPeriph_GPIOC  
+  *     @arg RCC_AHBPeriph_GPIOD
+  *     @arg RCC_AHBPeriph_GPIOE  
+  *     @arg RCC_AHBPeriph_GPIOF
+  *     @arg RCC_AHBPeriph_TS
+  *     @arg RCC_AHBPeriph_ADC34
+  *     @arg RCC_AHBPeriph_ADC12    
+  * @param  NewState: new state of the specified peripheral reset.
+  *         This parameter can be: ENABLE or DISABLE.
+  * @retval None
+  */
+void RCC_AHBPeriphResetCmd(uint32_t RCC_AHBPeriph, FunctionalState NewState)
+{
+  /* Check the parameters */
+  assert_param(IS_RCC_AHB_RST_PERIPH(RCC_AHBPeriph));
+  assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+  if (NewState != DISABLE)
+  {
+    RCC->AHBRSTR |= RCC_AHBPeriph;
+  }
+  else
+  {
+    RCC->AHBRSTR &= ~RCC_AHBPeriph;
+  }
+}
+
+/**
+  * @brief  Forces or releases High Speed APB (APB2) peripheral reset.
+  * @param  RCC_APB2Periph: specifies the APB2 peripheral to reset.
+  *   This parameter can be any combination of the following values:
+  *     @arg RCC_APB2Periph_SYSCFG
+  *     @arg RCC_APB2Periph_SPI1
+  *     @arg RCC_APB2Periph_USART1
+  *     @arg RCC_APB2Periph_TIM15
+  *     @arg RCC_APB2Periph_TIM16
+  *     @arg RCC_APB2Periph_TIM17
+  *     @arg RCC_APB2Periph_TIM1       
+  *     @arg RCC_APB2Periph_TIM8 
+  *     @arg RCC_APB2Periph_HRTIM1       
+  * @param  NewState: new state of the specified peripheral reset.
+  *         This parameter can be: ENABLE or DISABLE.
+  * @retval None
+  */
+void RCC_APB2PeriphResetCmd(uint32_t RCC_APB2Periph, FunctionalState NewState)
+{
+  /* Check the parameters */
+  assert_param(IS_RCC_APB2_PERIPH(RCC_APB2Periph));
+  assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+  if (NewState != DISABLE)
+  {
+    RCC->APB2RSTR |= RCC_APB2Periph;
+  }
+  else
+  {
+    RCC->APB2RSTR &= ~RCC_APB2Periph;
+  }
+}
+
+/**
+  * @brief  Forces or releases Low Speed APB (APB1) peripheral reset.
+  * @param  RCC_APB1Periph: specifies the APB1 peripheral to reset.
+  *   This parameter can be any combination of the following values:
+  *     @arg RCC_APB1Periph_TIM2
+  *     @arg RCC_APB1Periph_TIM3
+  *     @arg RCC_APB1Periph_TIM4
+  *     @arg RCC_APB1Periph_TIM6
+  *     @arg RCC_APB1Periph_TIM7
+  *     @arg RCC_APB1Periph_WWDG
+  *     @arg RCC_APB1Periph_SPI2
+  *     @arg RCC_APB1Periph_SPI3  
+  *     @arg RCC_APB1Periph_USART2
+  *     @arg RCC_APB1Periph_USART3
+  *     @arg RCC_APB1Periph_UART4
+  *     @arg RCC_APB1Periph_UART5      
+  *     @arg RCC_APB1Periph_I2C1
+  *     @arg RCC_APB1Periph_I2C2
+  *     @arg RCC_APB1Periph_I2C3
+  *     @arg RCC_APB1Periph_USB
+  *     @arg RCC_APB1Periph_CAN1
+  *     @arg RCC_APB1Periph_PWR
+  *     @arg RCC_APB1Periph_DAC
+  * @param  NewState: new state of the specified peripheral clock.
+  *         This parameter can be: ENABLE or DISABLE.
+  * @retval None
+  */
+void RCC_APB1PeriphResetCmd(uint32_t RCC_APB1Periph, FunctionalState NewState)
+{
+  /* Check the parameters */
+  assert_param(IS_RCC_APB1_PERIPH(RCC_APB1Periph));
+  assert_param(IS_FUNCTIONAL_STATE(NewState));
+
+  if (NewState != DISABLE)
+  {
+    RCC->APB1RSTR |= RCC_APB1Periph;
+  }
+  else
+  {
+    RCC->APB1RSTR &= ~RCC_APB1Periph;
+  }
+}
+
+/**
+  * @}
+  */
+
+/** @defgroup RCC_Group4 Interrupts and flags management functions
+ *  @brief   Interrupts and flags management functions 
+ *
+@verbatim   
+ ===============================================================================
+            ##### Interrupts and flags management functions #####
+ ===============================================================================  
+
+@endverbatim
+  * @{
+  */
+
+/**
+  * @brief  Enables or disables the specified RCC interrupts.
+  * @note   The CSS interrupt doesn't have an enable bit; once the CSS is enabled
+  *         and if the HSE clock fails, the CSS interrupt occurs and an NMI is
+  *         automatically generated. The NMI will be executed indefinitely, and 
+  *         since NMI has higher priority than any other IRQ (and main program)
+  *         the application will be stacked in the NMI ISR unless the CSS interrupt
+  *         pending bit is cleared.
+  * @param  RCC_IT: specifies the RCC interrupt sources to be enabled or disabled.
+  *   This parameter can be any combination of the following values:
+  *     @arg RCC_IT_LSIRDY: LSI ready interrupt
+  *     @arg RCC_IT_LSERDY: LSE ready interrupt
+  *     @arg RCC_IT_HSIRDY: HSI ready interrupt
+  *     @arg RCC_IT_HSERDY: HSE ready interrupt
+  *     @arg RCC_IT_PLLRDY: PLL ready interrupt
+  * @param  NewState: new state of the specified RCC interrupts.
+  *   This parameter can be: ENABLE or DISABLE.
+  * @retval None
+  */
+void RCC_ITConfig(uint8_t RCC_IT, FunctionalState NewState)
+{
+  /* Check the parameters */
+  assert_param(IS_RCC_IT(RCC_IT));
+  assert_param(IS_FUNCTIONAL_STATE(NewState));
+  
+  if (NewState != DISABLE)
+  {
+    /* Perform Byte access to RCC_CIR[13:8] bits to enable the selected interrupts */
+    *(__IO uint8_t *) CIR_BYTE2_ADDRESS |= RCC_IT;
+  }
+  else
+  {
+    /* Perform Byte access to RCC_CIR[13:8] bits to disable the selected interrupts */
+    *(__IO uint8_t *) CIR_BYTE2_ADDRESS &= (uint8_t)~RCC_IT;
+  }
+}
+
+/**
+  * @brief  Checks whether the specified RCC flag is set or not.
+  * @param  RCC_FLAG: specifies the flag to check.
+  *   This parameter can be one of the following values:
+  *     @arg RCC_FLAG_HSIRDY: HSI oscillator clock ready  
+  *     @arg RCC_FLAG_HSERDY: HSE oscillator clock ready
+  *     @arg RCC_FLAG_PLLRDY: PLL clock ready
+  *     @arg RCC_FLAG_MCOF: MCO Flag  
+  *     @arg RCC_FLAG_LSERDY: LSE oscillator clock ready
+  *     @arg RCC_FLAG_LSIRDY: LSI oscillator clock ready
+  *     @arg RCC_FLAG_OBLRST: Option Byte Loader (OBL) reset 
+  *     @arg RCC_FLAG_PINRST: Pin reset
+  *     @arg RCC_FLAG_PORRST: POR/PDR reset
+  *     @arg RCC_FLAG_SFTRST: Software reset
+  *     @arg RCC_FLAG_IWDGRST: Independent Watchdog reset
+  *     @arg RCC_FLAG_WWDGRST: Window Watchdog reset
+  *     @arg RCC_FLAG_LPWRRST: Low Power reset
+  * @retval The new state of RCC_FLAG (SET or RESET).
+  */
+FlagStatus RCC_GetFlagStatus(uint8_t RCC_FLAG)
+{
+  uint32_t tmp = 0;
+  uint32_t statusreg = 0;
+  FlagStatus bitstatus = RESET;
+
+  /* Check the parameters */
+  assert_param(IS_RCC_FLAG(RCC_FLAG));
+
+  /* Get the RCC register index */
+  tmp = RCC_FLAG >> 5;
+
+   if (tmp == 0)               /* The flag to check is in CR register */
+  {
+    statusreg = RCC->CR;
+  }
+  else if (tmp == 1)          /* The flag to check is in BDCR register */
+  {
+    statusreg = RCC->BDCR;
+  }
+  else if (tmp == 4)          /* The flag to check is in CFGR register */
+  {
+    statusreg = RCC->CFGR;
+  }
+  else                       /* The flag to check is in CSR register */
+  {
+    statusreg = RCC->CSR;
+  }
+
+  /* Get the flag position */
+  tmp = RCC_FLAG & FLAG_MASK;
+
+  if ((statusreg & ((uint32_t)1 << tmp)) != (uint32_t)RESET)
+  {
+    bitstatus = SET;
+  }
+  else
+  {
+    bitstatus = RESET;
+  }
+  /* Return the flag status */
+  return bitstatus;
+}
+
+/**
+  * @brief  Clears the RCC reset flags.
+  *         The reset flags are: RCC_FLAG_OBLRST, RCC_FLAG_PINRST, RCC_FLAG_PORRST, 
+  *         RCC_FLAG_SFTRST, RCC_FLAG_IWDGRST, RCC_FLAG_WWDGRST, RCC_FLAG_LPWRRST.
+  * @param  None
+  * @retval None
+  */
+void RCC_ClearFlag(void)
+{
+  /* Set RMVF bit to clear the reset flags */
+  RCC->CSR |= RCC_CSR_RMVF;
+}
+
+/**
+  * @brief  Checks whether the specified RCC interrupt has occurred or not.
+  * @param  RCC_IT: specifies the RCC interrupt source to check.
+  *   This parameter can be one of the following values:
+  *     @arg RCC_IT_LSIRDY: LSI ready interrupt
+  *     @arg RCC_IT_LSERDY: LSE ready interrupt
+  *     @arg RCC_IT_HSIRDY: HSI ready interrupt
+  *     @arg RCC_IT_HSERDY: HSE ready interrupt
+  *     @arg RCC_IT_PLLRDY: PLL ready interrupt
+  *     @arg RCC_IT_CSS: Clock Security System interrupt
+  * @retval The new state of RCC_IT (SET or RESET).
+  */
+ITStatus RCC_GetITStatus(uint8_t RCC_IT)
+{
+  ITStatus bitstatus = RESET;
+  
+  /* Check the parameters */
+  assert_param(IS_RCC_GET_IT(RCC_IT));
+  
+  /* Check the status of the specified RCC interrupt */
+  if ((RCC->CIR & RCC_IT) != (uint32_t)RESET)
+  {
+    bitstatus = SET;
+  }
+  else
+  {
+    bitstatus = RESET;
+  }
+  /* Return the RCC_IT status */
+  return  bitstatus;
+}
+
+/**
+  * @brief  Clears the RCC's interrupt pending bits.
+  * @param  RCC_IT: specifies the interrupt pending bit to clear.
+  *   This parameter can be any combination of the following values:
+  *     @arg RCC_IT_LSIRDY: LSI ready interrupt
+  *     @arg RCC_IT_LSERDY: LSE ready interrupt
+  *     @arg RCC_IT_HSIRDY: HSI ready interrupt
+  *     @arg RCC_IT_HSERDY: HSE ready interrupt
+  *     @arg RCC_IT_PLLRDY: PLL ready interrupt
+  *     @arg RCC_IT_CSS: Clock Security System interrupt
+  * @retval None
+  */
+void RCC_ClearITPendingBit(uint8_t RCC_IT)
+{
+  /* Check the parameters */
+  assert_param(IS_RCC_CLEAR_IT(RCC_IT));
+  
+  /* Perform Byte access to RCC_CIR[23:16] bits to clear the selected interrupt
+     pending bits */
+  *(__IO uint8_t *) CIR_BYTE3_ADDRESS = RCC_IT;
+}
+
+/**
+  * @}
+  */
+
+/**
+  * @}
+  */
+
+/**
+  * @}
+  */
+
+/**
+  * @}
+  */
+
+/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/