mbed library sources

Dependents:   bare

Fork of mbed-src by mbed official

Revision:
87:085cde657901
Child:
106:ced8cbb51063
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/targets/cmsis/TARGET_STM/TARGET_NUCLEO_F401RE/stm32f4xx_hal_cryp_ex.c	Sat Feb 08 19:45:06 2014 +0000
@@ -0,0 +1,2998 @@
+/**
+  ******************************************************************************
+  * @file    stm32f4xx_hal_cryp_ex.c
+  * @author  MCD Application Team
+  * @version V1.0.0RC2
+  * @date    04-February-2014
+  * @brief   Extended CRYP HAL module driver
+  *          This file provides firmware functions to manage the following 
+  *          functionalities of CRYP extension peripheral:
+  *           + Extended AES processing functions     
+  *  
+  @verbatim
+  ==============================================================================
+                     ##### How to use this driver #####
+  ==============================================================================
+    [..]
+    The CRYP Extension HAL driver can be used as follows:
+    (#)Initialize the CRYP low level resources by implementing the HAL_CRYP_MspInit():
+        (##) Enable the CRYP interface clock using __CRYP_CLK_ENABLE()
+        (##) In case of using interrupts (e.g. HAL_CRYPEx_AESGCM_Encrypt_IT())
+            (+++) Configure the CRYP interrupt priority using HAL_NVIC_SetPriority()
+            (+++) Enable the CRYP IRQ handler using HAL_NVIC_EnableIRQ()
+            (+) In CRYP IRQ handler, call HAL_CRYP_IRQHandler()
+        (##) In case of using DMA to control data transfer (e.g. HAL_AES_ECB_Encrypt_DMA())
+            (+++) Enable the DMAx interface clock using __DMAx_CLK_ENABLE()
+            (+++) Configure and enable two DMA streams one for managing data transfer from
+                memory to peripheral (input stream) and another stream for managing data
+                transfer from peripheral to memory (output stream)
+            (+++) Associate the initilalized DMA handle to the CRYP DMA handle
+                using  __HAL_LINKDMA()
+            (+++) Configure the priority and enable the NVIC for the transfer complete
+                interrupt on the two DMA Streams. The output stream should have higher
+                priority than the input stream HAL_NVIC_SetPriority() and HAL_NVIC_EnableIRQ()
+    (#)Initialize the CRYP HAL using HAL_CRYP_Init(). This function configures mainly:
+        (##) The data type: 1-bit, 8-bit, 16-bit and 32-bit
+        (##) The key size: 128, 192 and 256. This parameter is relevant only for AES
+        (##) The encryption/decryption key. Its size depends on the algorithm
+                used for encryption/decryption
+        (##) The initialization vector (counter). It is not used ECB mode.
+    (#)Three processing (encryption/decryption) functions are available:
+        (##) Polling mode: encryption and decryption APIs are blocking functions
+             i.e. they process the data and wait till the processing is finished
+             e.g. HAL_CRYPEx_AESGCM_Encrypt()
+        (##) Interrupt mode: encryption and decryption APIs are not blocking functions
+                i.e. they process the data under interrupt
+                e.g. HAL_CRYPEx_AESGCM_Encrypt_IT()
+        (##) DMA mode: encryption and decryption APIs are not blocking functions
+                i.e. the data transfer is ensured by DMA
+                e.g. HAL_CRYPEx_AESGCM_Encrypt_DMA()
+    (#)When the processing function is called at first time after HAL_CRYP_Init()
+       the CRYP peripheral is initialized and processes the buffer in input.
+       At second call, the processing function performs an append of the already
+       processed buffer.
+       When a new data block is to be processed, call HAL_CRYP_Init() then the
+       processing function.
+    (#)In AES-GCM and AES-CCM modes are an authenticated encryption algorithms
+       which provide authentication messages.
+       HAL_AES_GCM_Finish() and HAL_AES_CCM_Finish() are used to provide those
+       authentication messages.
+       Call those functions after the processing ones (polling, interrupt or DMA).
+       e.g. in AES-CCM mode call HAL_CRYPEx_AESCCM_Encrypt() to encrypt the plain data
+            then call HAL_CRYPEx_AESCCM_Finish() to get the authentication message
+    (#)Call HAL_CRYP_DeInit() to deinitialize the CRYP peripheral.
+
+  @endverbatim
+  ******************************************************************************
+  * @attention
+  *
+  * <h2><center>&copy; COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
+  *
+  * Redistribution and use in source and binary forms, with or without modification,
+  * are permitted provided that the following conditions are met:
+  *   1. Redistributions of source code must retain the above copyright notice,
+  *      this list of conditions and the following disclaimer.
+  *   2. Redistributions in binary form must reproduce the above copyright notice,
+  *      this list of conditions and the following disclaimer in the documentation
+  *      and/or other materials provided with the distribution.
+  *   3. Neither the name of STMicroelectronics nor the names of its contributors
+  *      may be used to endorse or promote products derived from this software
+  *      without specific prior written permission.
+  *
+  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
+  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+  *
+  ******************************************************************************
+  */ 
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32f4xx_hal.h"
+
+/** @addtogroup STM32F4xx_HAL_Driver
+  * @{
+  */
+
+/** @defgroup CRYPEx 
+  * @brief CRYP Extension HAL module driver.
+  * @{
+  */
+
+#ifdef HAL_CRYP_MODULE_ENABLED
+
+#if defined(STM32F437xx) || defined(STM32F439xx)
+
+/* Private typedef -----------------------------------------------------------*/
+/* Private define ------------------------------------------------------------*/
+/* Private macro -------------------------------------------------------------*/
+/* Private variables ---------------------------------------------------------*/
+/* Private function prototypes -----------------------------------------------*/
+static void CRYPEx_GCMCCM_SetInitVector(CRYP_HandleTypeDef *hcryp, uint8_t *InitVector, uint32_t IVSize);
+static void CRYPEx_GCMCCM_SetKey(CRYP_HandleTypeDef *hcryp, uint8_t *Key, uint32_t KeySize);
+static HAL_StatusTypeDef CRYPEx_GCMCCM_ProcessData(CRYP_HandleTypeDef *hcryp, uint8_t *Input, uint16_t Ilength, uint8_t *Output, uint32_t Timeout);
+static HAL_StatusTypeDef CRYPEx_GCMCCM_SetHeaderPhase(CRYP_HandleTypeDef *hcryp, uint8_t* Input, uint16_t Ilength, uint32_t Timeout);
+static void CRYPEx_GCMCCM_DMAInCplt(DMA_HandleTypeDef *hdma);
+static void CRYPEx_GCMCCM_DMAOutCplt(DMA_HandleTypeDef *hdma);
+static void CRYPEx_GCMCCM_DMAError(DMA_HandleTypeDef *hdma);
+static void CRYPEx_GCMCCM_SetDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size, uint32_t outputaddr);
+
+/* Private functions ---------------------------------------------------------*/
+
+/** @defgroup CRYPEx_Private_Functions
+  * @{
+  */
+
+/** @defgroup CRYPEx_Group1 Extended AES processing functions 
+ *  @brief   Extended processing functions. 
+ *
+@verbatim   
+  ==============================================================================
+              ##### Extended AES processing functions #####
+  ==============================================================================  
+    [..]  This section provides functions allowing to:
+      (+) Encrypt plaintext using AES-128/192/256 using GCM and CCM chaining modes
+      (+) Decrypt cyphertext using AES-128/192/256 using GCM and CCM chaining modes
+      (+) Finish the processing. This function is available only for GCM and CCM
+    [..]  Three processing methods are available:
+      (+) Polling mode
+      (+) Interrupt mode
+      (+) DMA mode
+
+@endverbatim
+  * @{
+  */
+
+
+/**
+  * @brief  Initializes the CRYP peripheral in AES CCM encryption mode then 
+  *         encrypt pPlainData. The cypher data are available in pCypherData.
+  * @param  hcryp: CRYP handle
+  * @param  pPlainData: Pointer to the plaintext buffer
+  * @param  Size: Length of the plaintext buffer, must be a multiple of 16
+  * @param  pCypherData: Pointer to the cyphertext buffer
+  * @param  Timeout: Timeout duration
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_CRYPEx_AESCCM_Encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout)
+{
+  uint32_t timeout = 0;   
+  uint32_t headersize = hcryp->Init.HeaderSize;
+  uint32_t headeraddr = (uint32_t)hcryp->Init.Header;
+  uint32_t loopcounter = 0;
+  uint32_t bufferidx = 0;
+  uint8_t blockb0[16] = {0};/* Block B0 */
+  uint8_t ctr[16] = {0}; /* Counter */
+  uint32_t b0addr = (uint32_t)blockb0;
+  
+  /* Process Locked */
+  __HAL_LOCK(hcryp);
+  
+  /* Change the CRYP peripheral state */
+  hcryp->State = HAL_CRYP_STATE_BUSY;
+  
+  /* Check if initialization phase has already been performed */
+  if(hcryp->Phase == HAL_CRYP_PHASE_READY)
+  {
+    /************************ Formatting the header block *********************/
+    if(headersize != 0)
+    {
+      /* Check that the associated data (or header) length is lower than 2^16 - 2^8 = 65536 - 256 = 65280 */
+      if(headersize < 65280)
+      {
+        hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize >> 8) & 0xFF);
+        hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize) & 0xFF);
+        headersize += 2;
+      }
+      else
+      {
+        /* Header is encoded as 0xff || 0xfe || [headersize]32, i.e., six octets */
+        hcryp->Init.pScratch[bufferidx++] = 0xFF;
+        hcryp->Init.pScratch[bufferidx++] = 0xFE;
+        hcryp->Init.pScratch[bufferidx++] = headersize & 0xff000000;
+        hcryp->Init.pScratch[bufferidx++] = headersize & 0x00ff0000;
+        hcryp->Init.pScratch[bufferidx++] = headersize & 0x0000ff00;
+        hcryp->Init.pScratch[bufferidx++] = headersize & 0x000000ff;
+        headersize += 6;
+      }
+      /* Copy the header buffer in internal buffer "hcryp->Init.pScratch" */
+      for(loopcounter = 0; loopcounter < headersize; loopcounter++)
+      {
+        hcryp->Init.pScratch[bufferidx++] = hcryp->Init.Header[loopcounter];
+      }
+      /* Check if the header size is modulo 16 */
+      if ((headersize % 16) != 0)
+      {
+        /* Padd the header buffer with 0s till the hcryp->Init.pScratch length is modulo 16 */
+        for(loopcounter = headersize; loopcounter <= ((headersize/16) + 1) * 16; loopcounter++)
+        {
+          hcryp->Init.pScratch[loopcounter] = 0;
+        }
+        /* Set the header size to modulo 16 */
+        headersize = ((headersize/16) + 1) * 16;
+      }
+      /* Set the pointer headeraddr to hcryp->Init.pScratch */
+      headeraddr = (uint32_t)hcryp->Init.pScratch;
+    }
+    /*********************** Formatting the block B0 **************************/
+    if(headersize != 0)
+    {
+      blockb0[0] = 0x40;
+    }
+    /* Flags byte */
+    /* blockb0[0] |= 0u | (((( (uint8_t) hcryp->Init.TagSize - 2) / 2) & 0x07 ) << 3 ) | ( ( (uint8_t) (15 - hcryp->Init.IVSize) - 1) & 0x07) */
+    blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)(((uint8_t)(hcryp->Init.TagSize - (uint8_t)(2))) >> 1) & (uint8_t)0x07 ) << 3);
+    blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)((uint8_t)(15) - hcryp->Init.IVSize) - (uint8_t)1) & (uint8_t)0x07);
+ 
+    for (loopcounter = 0; loopcounter < hcryp->Init.IVSize; loopcounter++)
+    {
+      blockb0[loopcounter+1] = hcryp->Init.pInitVect[loopcounter];
+    }
+    for ( ; loopcounter < 13; loopcounter++)
+    {
+      blockb0[loopcounter+1] = 0;
+    }
+    
+    blockb0[14] = (Size >> 8);
+    blockb0[15] = (Size & 0xFF);
+    
+    /************************* Formatting the initial counter *****************/
+    /* Byte 0:
+       Bits 7 and 6 are reserved and shall be set to 0
+       Bits 3, 4, and 5 shall also be set to 0, to ensure that all the counter blocks
+       are distinct from B0
+       Bits 0, 1, and 2 contain the same encoding of q as in B0
+    */
+    ctr[0] = blockb0[0] & 0x07;
+    /* byte 1 to NonceSize is the IV (Nonce) */
+    for(loopcounter = 1; loopcounter < hcryp->Init.IVSize + 1; loopcounter++)
+    {
+      ctr[loopcounter] = blockb0[loopcounter];
+    }
+    /* Set the LSB to 1 */
+    ctr[15] |= 0x01;
+    
+    /* Set the key */
+    CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
+    
+    /* Set the CRYP peripheral in AES CCM mode */
+    __HAL_CRYP_SET_MODE(CRYP_CR_ALGOMODE_AES_CCM_ENCRYPT);
+    
+    /* Set the Initialization Vector */
+    CRYPEx_GCMCCM_SetInitVector(hcryp, ctr, CRYP_KEYSIZE_128B);
+    
+    /* Select init phase */
+    __HAL_CRYP_SET_PHASE(CRYP_PHASE_INIT);
+    
+    b0addr = (uint32_t)blockb0;
+    /* Write the blockb0 block in the IN FIFO */
+    CRYP->DR = *(uint32_t*)(b0addr);
+    b0addr+=4;
+    CRYP->DR = *(uint32_t*)(b0addr);
+    b0addr+=4;
+    CRYP->DR = *(uint32_t*)(b0addr);
+    b0addr+=4;
+    CRYP->DR = *(uint32_t*)(b0addr);
+    
+    /* Enable the CRYP peripheral */
+    __HAL_CRYP_ENABLE();
+    
+    /* Get timeout */
+    timeout = HAL_GetTick() + Timeout;
+
+    while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN)
+    {
+      /* Check for the Timeout */
+      if(Timeout != HAL_MAX_DELAY)
+      {
+        if(HAL_GetTick() >= timeout)
+        {
+          /* Change state */
+          hcryp->State = HAL_CRYP_STATE_TIMEOUT;
+          
+          /* Process Unlocked */          
+          __HAL_UNLOCK(hcryp);
+        
+          return HAL_TIMEOUT;
+        }
+      }
+    }
+    /***************************** Header phase *******************************/
+    if(headersize != 0)
+    {
+      /* Select header phase */
+      __HAL_CRYP_SET_PHASE(CRYP_PHASE_HEADER);
+      
+      /* Enable the CRYP peripheral */
+      __HAL_CRYP_ENABLE();
+      
+      for(loopcounter = 0; (loopcounter < headersize); loopcounter+=16)
+      {
+        /* Get timeout */
+        timeout = HAL_GetTick() + Timeout;
+        while(HAL_IS_BIT_CLR(CRYP->SR, CRYP_FLAG_IFEM))
+        {
+          {
+            /* Check for the Timeout */
+            if(Timeout != HAL_MAX_DELAY)
+            {
+              if(HAL_GetTick() >= timeout)
+              {
+                /* Change state */
+                hcryp->State = HAL_CRYP_STATE_TIMEOUT;
+                
+                /* Process Unlocked */          
+                __HAL_UNLOCK(hcryp);
+                
+                return HAL_TIMEOUT;
+              }
+            }
+          }
+        }
+        /* Write the header block in the IN FIFO */
+        CRYP->DR = *(uint32_t*)(headeraddr);
+        headeraddr+=4;
+        CRYP->DR = *(uint32_t*)(headeraddr);
+        headeraddr+=4;
+        CRYP->DR = *(uint32_t*)(headeraddr);
+        headeraddr+=4;
+        CRYP->DR = *(uint32_t*)(headeraddr);
+        headeraddr+=4;
+      }
+      
+      /* Get timeout */
+      timeout = HAL_GetTick() + Timeout;
+
+      while((CRYP->SR & CRYP_FLAG_BUSY) == CRYP_FLAG_BUSY)
+      {
+        /* Check for the Timeout */
+        if(Timeout != HAL_MAX_DELAY)
+        {
+          if(HAL_GetTick() >= timeout)
+          {
+            /* Change state */
+            hcryp->State = HAL_CRYP_STATE_TIMEOUT;
+            
+            /* Process Unlocked */          
+            __HAL_UNLOCK(hcryp);
+            
+            return HAL_TIMEOUT;
+          }
+        }
+      }
+    }
+    /* Save formatted counter into the scratch buffer pScratch */
+    for(loopcounter = 0; (loopcounter < 16); loopcounter++)
+    {
+      hcryp->Init.pScratch[loopcounter] = ctr[loopcounter];
+    }
+    /* Reset bit 0 */
+    hcryp->Init.pScratch[15] &= 0xfe;
+    
+    /* Select payload phase once the header phase is performed */
+    __HAL_CRYP_SET_PHASE(CRYP_PHASE_PAYLOAD);
+    
+    /* Flush FIFO */
+    __HAL_CRYP_FIFO_FLUSH();
+    
+    /* Enable the CRYP peripheral */
+    __HAL_CRYP_ENABLE();
+    
+    /* Set the phase */
+    hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
+  }
+  
+  /* Write Plain Data and Get Cypher Data */
+  if(CRYPEx_GCMCCM_ProcessData(hcryp,pPlainData, Size, pCypherData, Timeout) != HAL_OK)
+  {
+    return HAL_TIMEOUT;
+  }
+  
+  /* Change the CRYP peripheral state */
+  hcryp->State = HAL_CRYP_STATE_READY;
+  
+  /* Process Unlocked */
+  __HAL_UNLOCK(hcryp);
+  
+  /* Return function status */
+  return HAL_OK;
+}
+
+/**
+  * @brief  Initializes the CRYP peripheral in AES GCM encryption mode then 
+  *         encrypt pPlainData. The cypher data are available in pCypherData.
+  * @param  hcryp: CRYP handle
+  * @param  pPlainData: Pointer to the plaintext buffer
+  * @param  Size: Length of the plaintext buffer, must be a multiple of 16
+  * @param  pCypherData: Pointer to the cyphertext buffer
+  * @param  Timeout: Timeout duration
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_CRYPEx_AESGCM_Encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout)
+{
+  uint32_t timeout = 0;   
+  
+  /* Process Locked */
+  __HAL_LOCK(hcryp);
+  
+  /* Change the CRYP peripheral state */
+  hcryp->State = HAL_CRYP_STATE_BUSY;
+  
+  /* Check if initialization phase has already been performed */
+  if(hcryp->Phase == HAL_CRYP_PHASE_READY)
+  {
+    /* Set the key */
+    CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
+    
+    /* Set the CRYP peripheral in AES GCM mode */
+    __HAL_CRYP_SET_MODE(CRYP_CR_ALGOMODE_AES_GCM_ENCRYPT);
+    
+    /* Set the Initialization Vector */
+    CRYPEx_GCMCCM_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B);
+    
+    /* Flush FIFO */
+    __HAL_CRYP_FIFO_FLUSH();
+    
+    /* Enable the CRYP peripheral */
+    __HAL_CRYP_ENABLE();
+    
+    /* Get timeout */
+    timeout = HAL_GetTick() + Timeout;
+
+    while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN)
+    {
+      /* Check for the Timeout */
+      if(Timeout != HAL_MAX_DELAY)
+      {
+        if(HAL_GetTick() >= timeout)
+        {
+          /* Change state */
+          hcryp->State = HAL_CRYP_STATE_TIMEOUT;
+          
+          /* Process Unlocked */          
+          __HAL_UNLOCK(hcryp);
+          
+          return HAL_TIMEOUT;
+        }
+      }
+    }
+    
+    /* Set the header phase */
+    if(CRYPEx_GCMCCM_SetHeaderPhase(hcryp, hcryp->Init.Header, hcryp->Init.HeaderSize, Timeout) != HAL_OK)
+    {
+      return HAL_TIMEOUT;
+    }
+    
+    /* Disable the CRYP peripheral */
+    __HAL_CRYP_DISABLE();
+    
+    /* Select payload phase once the header phase is performed */
+    __HAL_CRYP_SET_PHASE(CRYP_PHASE_PAYLOAD);
+    
+    /* Flush FIFO */
+    __HAL_CRYP_FIFO_FLUSH();
+    
+    /* Enable the CRYP peripheral */
+    __HAL_CRYP_ENABLE();
+    
+    /* Set the phase */
+    hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
+  }
+  
+  /* Write Plain Data and Get Cypher Data */
+  if(CRYPEx_GCMCCM_ProcessData(hcryp, pPlainData, Size, pCypherData, Timeout) != HAL_OK)
+  {
+    return HAL_TIMEOUT;
+  }
+  
+  /* Change the CRYP peripheral state */
+  hcryp->State = HAL_CRYP_STATE_READY;
+  
+  /* Process Unlocked */
+  __HAL_UNLOCK(hcryp);
+  
+  /* Return function status */
+  return HAL_OK;
+}
+
+/**
+  * @brief  Initializes the CRYP peripheral in AES GCM decryption mode then
+  *         decrypted pCypherData. The cypher data are available in pPlainData.
+  * @param  hcryp: CRYP handle
+  * @param  pCypherData: Pointer to the cyphertext buffer
+  * @param  Size: Length of the cyphertext buffer, must be a multiple of 16
+  * @param  pPlainData: Pointer to the plaintext buffer 
+  * @param  Timeout: Timeout duration
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_CRYPEx_AESGCM_Decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData, uint32_t Timeout)
+{
+  uint32_t timeout = 0;   
+  
+  /* Process Locked */
+  __HAL_LOCK(hcryp);
+  
+  /* Change the CRYP peripheral state */
+  hcryp->State = HAL_CRYP_STATE_BUSY;
+  
+  /* Check if initialization phase has already been performed */
+  if(hcryp->Phase == HAL_CRYP_PHASE_READY)
+  {
+    /* Set the key */
+    CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
+    
+    /* Set the CRYP peripheral in AES GCM decryption mode */
+    __HAL_CRYP_SET_MODE(CRYP_CR_ALGOMODE_AES_GCM_DECRYPT);
+    
+    /* Set the Initialization Vector */
+    CRYPEx_GCMCCM_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B);
+    
+    /* Flush FIFO */
+    __HAL_CRYP_FIFO_FLUSH();
+    
+    /* Enable the CRYP peripheral */
+    __HAL_CRYP_ENABLE();
+    
+    /* Get the timeout */
+    timeout = HAL_GetTick() + Timeout;
+
+    while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN)
+    {
+      /* Check for the Timeout */
+      if(Timeout != HAL_MAX_DELAY)
+      {
+        if(HAL_GetTick() >= timeout)
+        {
+          /* Change state */
+          hcryp->State = HAL_CRYP_STATE_TIMEOUT;
+          
+          /* Process Unlocked */          
+          __HAL_UNLOCK(hcryp);
+          
+          return HAL_TIMEOUT;
+        }
+      }
+    }
+    
+    /* Set the header phase */
+    if(CRYPEx_GCMCCM_SetHeaderPhase(hcryp, hcryp->Init.Header, hcryp->Init.HeaderSize, Timeout) != HAL_OK)
+    {
+      return HAL_TIMEOUT;
+    }
+    /* Disable the CRYP peripheral */
+    __HAL_CRYP_DISABLE();
+    
+    /* Select payload phase once the header phase is performed */
+    __HAL_CRYP_SET_PHASE(CRYP_PHASE_PAYLOAD);
+    
+    /* Enable the CRYP peripheral */
+    __HAL_CRYP_ENABLE();
+    
+    /* Set the phase */
+    hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
+  }
+  
+  /* Write Plain Data and Get Cypher Data */
+  if(CRYPEx_GCMCCM_ProcessData(hcryp, pCypherData, Size, pPlainData, Timeout) != HAL_OK)
+  {
+    return HAL_TIMEOUT;
+  }
+  
+  /* Change the CRYP peripheral state */
+  hcryp->State = HAL_CRYP_STATE_READY;
+  
+  /* Process Unlocked */
+  __HAL_UNLOCK(hcryp);
+  
+  /* Return function status */
+  return HAL_OK;
+}
+
+/**
+  * @brief  Computes the authentication TAG.
+  * @param  hcryp: CRYP handle
+  * @param  Size: Total length of the plain/cyphertext buffer
+  * @param  AuthTag: Pointer to the authentication buffer
+  * @param  Timeout: Timeout duration
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_CRYPEx_AESGCM_Finish(CRYP_HandleTypeDef *hcryp, uint16_t Size, uint8_t *AuthTag, uint32_t Timeout)
+{
+  uint32_t timeout = 0;   
+  uint32_t headerlength = hcryp->Init.HeaderSize * 8; /* Header length in bits */
+  uint32_t inputlength = Size * 8; /* input length in bits */
+  uint32_t tagaddr = (uint32_t)AuthTag;
+  
+  /* Process Locked */
+  __HAL_LOCK(hcryp);
+  
+  /* Change the CRYP peripheral state */
+  hcryp->State = HAL_CRYP_STATE_BUSY;
+  
+  /* Check if initialization phase has already been performed */
+  if(hcryp->Phase == HAL_CRYP_PHASE_PROCESS)
+  {
+    /* Change the CRYP phase */
+    hcryp->Phase = HAL_CRYP_PHASE_FINAL;
+    
+    /* Disable CRYP to start the final phase */
+    __HAL_CRYP_DISABLE();
+    
+    /* Select final phase */
+    __HAL_CRYP_SET_PHASE(CRYP_PHASE_FINAL);
+    
+    /* Enable the CRYP peripheral */
+    __HAL_CRYP_ENABLE();
+    
+    /* Write the number of bits in header (64 bits) followed by the number of bits
+       in the payload */
+    if(hcryp->Init.DataType == CRYP_DATATYPE_1B)
+    {
+      CRYP->DR = 0;
+      CRYP->DR = __RBIT(headerlength);
+      CRYP->DR = 0;
+      CRYP->DR = __RBIT(inputlength);
+    }
+    else if(hcryp->Init.DataType == CRYP_DATATYPE_8B)
+    {
+      CRYP->DR = 0;
+      CRYP->DR = __REV(headerlength);
+      CRYP->DR = 0;
+      CRYP->DR = __REV(inputlength);
+    }
+    else if(hcryp->Init.DataType == CRYP_DATATYPE_16B)
+    {
+      CRYP->DR = 0;
+      CRYP->DR = __REV16(headerlength);
+      CRYP->DR = 0;
+      CRYP->DR = __REV16(inputlength);
+    }
+    else if(hcryp->Init.DataType == CRYP_DATATYPE_32B)
+    {
+      CRYP->DR = 0;
+      CRYP->DR = (uint32_t)(headerlength);
+      CRYP->DR = 0;
+      CRYP->DR = (uint32_t)(inputlength);
+    }
+    /* Get timeout */
+    timeout = HAL_GetTick() + Timeout;
+
+    while(HAL_IS_BIT_CLR(CRYP->SR, CRYP_FLAG_OFNE))
+    {
+      /* Check for the Timeout */
+      if(Timeout != HAL_MAX_DELAY)
+      {
+        if(HAL_GetTick() >= timeout)
+        {
+          /* Change state */
+          hcryp->State = HAL_CRYP_STATE_TIMEOUT;
+          
+          /* Process Unlocked */          
+          __HAL_UNLOCK(hcryp);
+        
+          return HAL_TIMEOUT;
+        }
+      }
+    }
+    
+    /* Read the Auth TAG in the IN FIFO */
+    *(uint32_t*)(tagaddr) = CRYP->DOUT;
+    tagaddr+=4;
+    *(uint32_t*)(tagaddr) = CRYP->DOUT;
+    tagaddr+=4;
+    *(uint32_t*)(tagaddr) = CRYP->DOUT;
+    tagaddr+=4;
+    *(uint32_t*)(tagaddr) = CRYP->DOUT;
+  }
+  
+  /* Change the CRYP peripheral state */
+  hcryp->State = HAL_CRYP_STATE_READY;
+  
+  /* Process Unlocked */
+  __HAL_UNLOCK(hcryp);
+  
+  /* Return function status */
+  return HAL_OK;
+}
+
+/**
+  * @brief  Computes the authentication TAG for AES CCM mode.
+  * @note   This API is called after HAL_AES_CCM_Encrypt()/HAL_AES_CCM_Decrypt()   
+  * @param  hcryp: CRYP handle
+  * @param  AuthTag: Pointer to the authentication buffer
+  * @param  Timeout: Timeout duration
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_CRYPEx_AESCCM_Finish(CRYP_HandleTypeDef *hcryp, uint8_t *AuthTag, uint32_t Timeout)
+{
+  uint32_t timeout = 0;   
+  uint32_t tagaddr = (uint32_t)AuthTag;
+  uint32_t ctraddr = (uint32_t)hcryp->Init.pScratch;
+  uint32_t temptag[4] = {0}; /* Temporary TAG (MAC) */
+  uint32_t loopcounter;
+  
+  /* Process Locked */
+  __HAL_LOCK(hcryp);
+  
+  /* Change the CRYP peripheral state */
+  hcryp->State = HAL_CRYP_STATE_BUSY;
+  
+  /* Check if initialization phase has already been performed */
+  if(hcryp->Phase == HAL_CRYP_PHASE_PROCESS)
+  {
+    /* Change the CRYP phase */
+    hcryp->Phase = HAL_CRYP_PHASE_FINAL;
+    
+    /* Disable CRYP to start the final phase */
+    __HAL_CRYP_DISABLE();
+    
+    /* Select final phase */
+    __HAL_CRYP_SET_PHASE(CRYP_PHASE_FINAL);
+    
+    /* Enable the CRYP peripheral */
+    __HAL_CRYP_ENABLE();
+    
+    /* Write the counter block in the IN FIFO */
+    CRYP->DR = *(uint32_t*)ctraddr;
+    ctraddr+=4;
+    CRYP->DR = *(uint32_t*)ctraddr;
+    ctraddr+=4;
+    CRYP->DR = *(uint32_t*)ctraddr;
+    ctraddr+=4;
+    CRYP->DR = *(uint32_t*)ctraddr;
+    
+    /* Get timeout */
+    timeout = HAL_GetTick() + Timeout;
+
+    while(HAL_IS_BIT_CLR(CRYP->SR, CRYP_FLAG_OFNE))
+    {
+      /* Check for the Timeout */
+      if(Timeout != HAL_MAX_DELAY)
+      {
+        if(HAL_GetTick() >= timeout)
+        {
+          /* Change state */
+          hcryp->State = HAL_CRYP_STATE_TIMEOUT;
+          
+          /* Process Unlocked */          
+          __HAL_UNLOCK(hcryp);
+          
+          return HAL_TIMEOUT;
+        }
+      }
+    }
+    
+    /* Read the Auth TAG in the IN FIFO */
+    temptag[0] = CRYP->DOUT;
+    temptag[1] = CRYP->DOUT;
+    temptag[2] = CRYP->DOUT;
+    temptag[3] = CRYP->DOUT;
+  }
+  
+  /* Copy temporary authentication TAG in user TAG buffer */
+  for(loopcounter = 0; loopcounter < hcryp->Init.TagSize ; loopcounter++)
+  {
+    /* Set the authentication TAG buffer */
+    *((uint8_t*)tagaddr+loopcounter) = *((uint8_t*)temptag+loopcounter);
+  }
+  
+  /* Change the CRYP peripheral state */
+  hcryp->State = HAL_CRYP_STATE_READY;
+  
+  /* Process Unlocked */
+  __HAL_UNLOCK(hcryp);
+  
+  /* Return function status */
+  return HAL_OK;
+}
+
+/**
+  * @brief  Initializes the CRYP peripheral in AES CCM decryption mode then
+  *         decrypted pCypherData. The cypher data are available in pPlainData.
+  * @param  hcryp: CRYP handle
+  * @param  pPlainData: Pointer to the plaintext buffer
+  * @param  Size: Length of the plaintext buffer, must be a multiple of 16
+  * @param  pCypherData: Pointer to the cyphertext buffer
+  * @param  Timeout: Timeout duration
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_CRYPEx_AESCCM_Decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData, uint32_t Timeout)
+{
+  uint32_t timeout = 0;   
+  uint32_t headersize = hcryp->Init.HeaderSize;
+  uint32_t headeraddr = (uint32_t)hcryp->Init.Header;
+  uint32_t loopcounter = 0;
+  uint32_t bufferidx = 0;
+  uint8_t blockb0[16] = {0};/* Block B0 */
+  uint8_t ctr[16] = {0}; /* Counter */
+  uint32_t b0addr = (uint32_t)blockb0;
+  
+  /* Process Locked */
+  __HAL_LOCK(hcryp);
+  
+  /* Change the CRYP peripheral state */
+  hcryp->State = HAL_CRYP_STATE_BUSY;
+  
+  /* Check if initialization phase has already been performed */
+  if(hcryp->Phase == HAL_CRYP_PHASE_READY)
+  {
+    /************************ Formatting the header block *********************/
+    if(headersize != 0)
+    {
+      /* Check that the associated data (or header) length is lower than 2^16 - 2^8 = 65536 - 256 = 65280 */
+      if(headersize < 65280)
+      {
+        hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize >> 8) & 0xFF);
+        hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize) & 0xFF);
+        headersize += 2;
+      }
+      else
+      {
+        /* Header is encoded as 0xff || 0xfe || [headersize]32, i.e., six octets */
+        hcryp->Init.pScratch[bufferidx++] = 0xFF;
+        hcryp->Init.pScratch[bufferidx++] = 0xFE;
+        hcryp->Init.pScratch[bufferidx++] = headersize & 0xff000000;
+        hcryp->Init.pScratch[bufferidx++] = headersize & 0x00ff0000;
+        hcryp->Init.pScratch[bufferidx++] = headersize & 0x0000ff00;
+        hcryp->Init.pScratch[bufferidx++] = headersize & 0x000000ff;
+        headersize += 6;
+      }
+      /* Copy the header buffer in internal buffer "hcryp->Init.pScratch" */
+      for(loopcounter = 0; loopcounter < headersize; loopcounter++)
+      {
+        hcryp->Init.pScratch[bufferidx++] = hcryp->Init.Header[loopcounter];
+      }
+      /* Check if the header size is modulo 16 */
+      if ((headersize % 16) != 0)
+      {
+        /* Padd the header buffer with 0s till the hcryp->Init.pScratch length is modulo 16 */
+        for(loopcounter = headersize; loopcounter <= ((headersize/16) + 1) * 16; loopcounter++)
+        {
+          hcryp->Init.pScratch[loopcounter] = 0;
+        }
+        /* Set the header size to modulo 16 */
+        headersize = ((headersize/16) + 1) * 16;
+      }
+      /* Set the pointer headeraddr to hcryp->Init.pScratch */
+      headeraddr = (uint32_t)hcryp->Init.pScratch;
+    }
+    /*********************** Formatting the block B0 **************************/
+    if(headersize != 0)
+    {
+      blockb0[0] = 0x40;
+    }
+    /* Flags byte */
+    /* blockb0[0] |= 0u | (((( (uint8_t) hcryp->Init.TagSize - 2) / 2) & 0x07 ) << 3 ) | ( ( (uint8_t) (15 - hcryp->Init.IVSize) - 1) & 0x07) */
+    blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)(((uint8_t)(hcryp->Init.TagSize - (uint8_t)(2))) >> 1) & (uint8_t)0x07 ) << 3);
+    blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)((uint8_t)(15) - hcryp->Init.IVSize) - (uint8_t)1) & (uint8_t)0x07);
+    
+    for (loopcounter = 0; loopcounter < hcryp->Init.IVSize; loopcounter++)
+    {
+      blockb0[loopcounter+1] = hcryp->Init.pInitVect[loopcounter];
+    }
+    for ( ; loopcounter < 13; loopcounter++)
+    {
+      blockb0[loopcounter+1] = 0;
+    }
+    
+    blockb0[14] = (Size >> 8);
+    blockb0[15] = (Size & 0xFF);
+    
+    /************************* Formatting the initial counter *****************/
+    /* Byte 0:
+       Bits 7 and 6 are reserved and shall be set to 0
+       Bits 3, 4, and 5 shall also be set to 0, to ensure that all the counter 
+       blocks are distinct from B0
+       Bits 0, 1, and 2 contain the same encoding of q as in B0
+    */
+    ctr[0] = blockb0[0] & 0x07;
+    /* byte 1 to NonceSize is the IV (Nonce) */
+    for(loopcounter = 1; loopcounter < hcryp->Init.IVSize + 1; loopcounter++)
+    {
+      ctr[loopcounter] = blockb0[loopcounter];
+    }
+    /* Set the LSB to 1 */
+    ctr[15] |= 0x01;
+    
+    /* Set the key */
+    CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
+    
+    /* Set the CRYP peripheral in AES CCM mode */
+    __HAL_CRYP_SET_MODE(CRYP_CR_ALGOMODE_AES_CCM_DECRYPT);
+    
+    /* Set the Initialization Vector */
+    CRYPEx_GCMCCM_SetInitVector(hcryp, ctr, CRYP_KEYSIZE_128B);
+    
+    /* Select init phase */
+    __HAL_CRYP_SET_PHASE(CRYP_PHASE_INIT);
+    
+    b0addr = (uint32_t)blockb0;
+    /* Write the blockb0 block in the IN FIFO */
+    CRYP->DR = *(uint32_t*)(b0addr);
+    b0addr+=4;
+    CRYP->DR = *(uint32_t*)(b0addr);
+    b0addr+=4;
+    CRYP->DR = *(uint32_t*)(b0addr);
+    b0addr+=4;
+    CRYP->DR = *(uint32_t*)(b0addr);
+    
+    /* Enable the CRYP peripheral */
+    __HAL_CRYP_ENABLE();
+    
+    /* Get timeout */
+    timeout = HAL_GetTick() + Timeout;
+ 
+    while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN)
+    {
+      /* Check for the Timeout */
+      if(Timeout != HAL_MAX_DELAY)
+      {
+        if(HAL_GetTick() >= timeout)
+        {
+          /* Change state */
+          hcryp->State = HAL_CRYP_STATE_TIMEOUT;
+          
+          /* Process Unlocked */          
+          __HAL_UNLOCK(hcryp);
+        
+          return HAL_TIMEOUT;
+        }
+      }
+    }
+    /***************************** Header phase *******************************/
+    if(headersize != 0)
+    {
+      /* Select header phase */
+      __HAL_CRYP_SET_PHASE(CRYP_PHASE_HEADER);
+      
+      /* Enable Crypto processor */
+      __HAL_CRYP_ENABLE();
+      
+      for(loopcounter = 0; (loopcounter < headersize); loopcounter+=16)
+      {
+        /* Get timeout */
+        timeout = HAL_GetTick() + Timeout;
+
+        while(HAL_IS_BIT_CLR(CRYP->SR, CRYP_FLAG_IFEM))
+        {
+          /* Check for the Timeout */
+          if(Timeout != HAL_MAX_DELAY)
+          {
+            if(HAL_GetTick() >= timeout)
+            {
+              /* Change state */
+              hcryp->State = HAL_CRYP_STATE_TIMEOUT;
+              
+              /* Process Unlocked */          
+              __HAL_UNLOCK(hcryp);
+              
+              return HAL_TIMEOUT;
+            }
+          }
+        }
+        /* Write the header block in the IN FIFO */
+        CRYP->DR = *(uint32_t*)(headeraddr);
+        headeraddr+=4;
+        CRYP->DR = *(uint32_t*)(headeraddr);
+        headeraddr+=4;
+        CRYP->DR = *(uint32_t*)(headeraddr);
+        headeraddr+=4;
+        CRYP->DR = *(uint32_t*)(headeraddr);
+        headeraddr+=4;
+      }
+      
+      /* Get timeout */
+      timeout = HAL_GetTick() + Timeout;
+
+      while((CRYP->SR & CRYP_FLAG_BUSY) == CRYP_FLAG_BUSY)
+      {
+      /* Check for the Timeout */
+        if(Timeout != HAL_MAX_DELAY)
+        {
+          if(HAL_GetTick() >= timeout)
+          {
+            /* Change state */
+            hcryp->State = HAL_CRYP_STATE_TIMEOUT;
+            
+            /* Process Unlocked */          
+            __HAL_UNLOCK(hcryp);
+            
+            return HAL_TIMEOUT;
+          }
+        }
+      }
+    }
+    /* Save formatted counter into the scratch buffer pScratch */
+    for(loopcounter = 0; (loopcounter < 16); loopcounter++)
+    {
+      hcryp->Init.pScratch[loopcounter] = ctr[loopcounter];
+    }
+    /* Reset bit 0 */
+    hcryp->Init.pScratch[15] &= 0xfe;
+    /* Select payload phase once the header phase is performed */
+    __HAL_CRYP_SET_PHASE(CRYP_PHASE_PAYLOAD);
+    
+    /* Flush FIFO */
+    __HAL_CRYP_FIFO_FLUSH();
+    
+    /* Enable the CRYP peripheral */
+    __HAL_CRYP_ENABLE();
+    
+    /* Set the phase */
+    hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
+  }
+  
+  /* Write Plain Data and Get Cypher Data */
+  if(CRYPEx_GCMCCM_ProcessData(hcryp, pCypherData, Size, pPlainData, Timeout) != HAL_OK)
+  {
+    return HAL_TIMEOUT;
+  }
+  
+  /* Change the CRYP peripheral state */
+  hcryp->State = HAL_CRYP_STATE_READY;
+  
+  /* Process Unlocked */
+  __HAL_UNLOCK(hcryp);
+  
+  /* Return function status */
+  return HAL_OK;
+}
+
+/**
+  * @brief  Initializes the CRYP peripheral in AES GCM encryption mode using IT.
+  * @param  hcryp: CRYP handle
+  * @param  pPlainData: Pointer to the plaintext buffer
+  * @param  Size: Length of the plaintext buffer, must be a multiple of 16
+  * @param  pCypherData: Pointer to the cyphertext buffer
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_CRYPEx_AESGCM_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData)
+{
+  uint32_t timeout = 0;   
+  uint32_t inputaddr;
+  uint32_t outputaddr;
+  
+  if(hcryp->State == HAL_CRYP_STATE_READY)
+  {
+    /* Process Locked */
+    __HAL_LOCK(hcryp);
+    
+    /* Get the buffer addresses and sizes */    
+    hcryp->CrypInCount = Size;
+    hcryp->pCrypInBuffPtr = pPlainData;
+    hcryp->pCrypOutBuffPtr = pCypherData;
+    hcryp->CrypOutCount = Size;
+    
+    /* Change the CRYP peripheral state */
+    hcryp->State = HAL_CRYP_STATE_BUSY;
+    
+    /* Check if initialization phase has already been performed */
+    if(hcryp->Phase == HAL_CRYP_PHASE_READY)
+    {
+      /* Set the key */
+      CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
+      
+      /* Set the CRYP peripheral in AES GCM mode */
+      __HAL_CRYP_SET_MODE(CRYP_CR_ALGOMODE_AES_GCM_ENCRYPT);
+      
+      /* Set the Initialization Vector */
+      CRYPEx_GCMCCM_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B);
+      
+      /* Flush FIFO */
+      __HAL_CRYP_FIFO_FLUSH();
+      
+      /* Enable CRYP to start the init phase */
+      __HAL_CRYP_ENABLE();
+      
+      /* Get timeout */
+      timeout = HAL_GetTick() + 1;
+
+      while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN)
+      {
+        /* Check for the Timeout */
+        
+        if(HAL_GetTick() >= timeout)
+        {
+          /* Change state */
+          hcryp->State = HAL_CRYP_STATE_TIMEOUT;
+          
+          /* Process Unlocked */          
+          __HAL_UNLOCK(hcryp);
+          
+          return HAL_TIMEOUT;
+          
+        }
+      }
+      
+      /* Set the header phase */
+      if(CRYPEx_GCMCCM_SetHeaderPhase(hcryp, hcryp->Init.Header, hcryp->Init.HeaderSize, 1) != HAL_OK)
+      {
+        return HAL_TIMEOUT;
+      }
+      /* Disable the CRYP peripheral */
+      __HAL_CRYP_DISABLE();
+      
+      /* Select payload phase once the header phase is performed */
+      __HAL_CRYP_SET_PHASE(CRYP_PHASE_PAYLOAD);
+      
+      /* Flush FIFO */
+      __HAL_CRYP_FIFO_FLUSH();
+      
+      /* Set the phase */
+      hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
+    }
+    
+    if(Size != 0)
+    {
+      /* Enable Interrupts */
+      __HAL_CRYP_ENABLE_IT(CRYP_IT_INI | CRYP_IT_OUTI);
+      /* Enable the CRYP peripheral */
+      __HAL_CRYP_ENABLE();
+    }
+    else
+    {
+      /* Process Locked */
+      __HAL_UNLOCK(hcryp);
+      /* Change the CRYP state and phase */
+      hcryp->State = HAL_CRYP_STATE_READY;
+    }
+    /* Return function status */
+    return HAL_OK;
+  }
+  else if (__HAL_CRYP_GET_IT(CRYP_IT_INI))
+  {
+    inputaddr = (uint32_t)hcryp->pCrypInBuffPtr;
+    /* Write the Input block in the IN FIFO */
+    CRYP->DR = *(uint32_t*)(inputaddr);
+    inputaddr+=4;
+    CRYP->DR = *(uint32_t*)(inputaddr);
+    inputaddr+=4;
+    CRYP->DR  = *(uint32_t*)(inputaddr);
+    inputaddr+=4;
+    CRYP->DR = *(uint32_t*)(inputaddr);
+    hcryp->pCrypInBuffPtr += 16;
+    hcryp->CrypInCount -= 16;
+    if(hcryp->CrypInCount == 0)
+    {
+      __HAL_CRYP_DISABLE_IT(CRYP_IT_INI);
+      /* Call the Input data transfer complete callback */
+      HAL_CRYP_InCpltCallback(hcryp);
+    }
+  }
+  else if (__HAL_CRYP_GET_IT(CRYP_IT_OUTI))
+  {
+    outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr;
+    /* Read the Output block from the Output FIFO */
+    *(uint32_t*)(outputaddr) = CRYP->DOUT;
+    outputaddr+=4;
+    *(uint32_t*)(outputaddr) = CRYP->DOUT;
+    outputaddr+=4;
+    *(uint32_t*)(outputaddr) = CRYP->DOUT;
+    outputaddr+=4;
+    *(uint32_t*)(outputaddr) = CRYP->DOUT;
+    hcryp->pCrypOutBuffPtr += 16;
+    hcryp->CrypOutCount -= 16;
+    if(hcryp->CrypOutCount == 0)
+    {
+      __HAL_CRYP_DISABLE_IT(CRYP_IT_OUTI);
+      /* Process Unlocked */
+      __HAL_UNLOCK(hcryp);
+      /* Change the CRYP peripheral state */
+      hcryp->State = HAL_CRYP_STATE_READY;
+      /* Call Input transfer complete callback */
+      HAL_CRYP_OutCpltCallback(hcryp);
+    }
+  }
+  
+  /* Return function status */
+  return HAL_OK;
+}
+
+/**
+  * @brief  Initializes the CRYP peripheral in AES CCM encryption mode using interrupt.
+  * @param  hcryp: CRYP handle
+  * @param  pPlainData: Pointer to the plaintext buffer
+  * @param  Size: Length of the plaintext buffer, must be a multiple of 16
+  * @param  pCypherData: Pointer to the cyphertext buffer
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_CRYPEx_AESCCM_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData)
+{
+  uint32_t timeout = 0;   
+  uint32_t inputaddr;
+  uint32_t outputaddr;
+  
+  uint32_t headersize = hcryp->Init.HeaderSize;
+  uint32_t headeraddr = (uint32_t)hcryp->Init.Header;
+  uint32_t loopcounter = 0;
+  uint32_t bufferidx = 0;
+  uint8_t blockb0[16] = {0};/* Block B0 */
+  uint8_t ctr[16] = {0}; /* Counter */
+  uint32_t b0addr = (uint32_t)blockb0;
+  
+  if(hcryp->State == HAL_CRYP_STATE_READY)
+  {
+    /* Process Locked */
+    __HAL_LOCK(hcryp);
+    
+    hcryp->CrypInCount = Size;
+    hcryp->pCrypInBuffPtr = pPlainData;
+    hcryp->pCrypOutBuffPtr = pCypherData;
+    hcryp->CrypOutCount = Size;
+    
+    /* Change the CRYP peripheral state */
+    hcryp->State = HAL_CRYP_STATE_BUSY;
+    
+    /* Check if initialization phase has already been performed */
+    if(hcryp->Phase == HAL_CRYP_PHASE_READY)
+    {    
+      /************************ Formatting the header block *******************/
+      if(headersize != 0)
+      {
+        /* Check that the associated data (or header) length is lower than 2^16 - 2^8 = 65536 - 256 = 65280 */
+        if(headersize < 65280)
+        {
+          hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize >> 8) & 0xFF);
+          hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize) & 0xFF);
+          headersize += 2;
+        }
+        else
+        {
+          /* Header is encoded as 0xff || 0xfe || [headersize]32, i.e., six octets */
+          hcryp->Init.pScratch[bufferidx++] = 0xFF;
+          hcryp->Init.pScratch[bufferidx++] = 0xFE;
+          hcryp->Init.pScratch[bufferidx++] = headersize & 0xff000000;
+          hcryp->Init.pScratch[bufferidx++] = headersize & 0x00ff0000;
+          hcryp->Init.pScratch[bufferidx++] = headersize & 0x0000ff00;
+          hcryp->Init.pScratch[bufferidx++] = headersize & 0x000000ff;
+          headersize += 6;
+        }
+        /* Copy the header buffer in internal buffer "hcryp->Init.pScratch" */
+        for(loopcounter = 0; loopcounter < headersize; loopcounter++)
+        {
+          hcryp->Init.pScratch[bufferidx++] = hcryp->Init.Header[loopcounter];
+        }
+        /* Check if the header size is modulo 16 */
+        if ((headersize % 16) != 0)
+        {
+          /* Padd the header buffer with 0s till the hcryp->Init.pScratch length is modulo 16 */
+          for(loopcounter = headersize; loopcounter <= ((headersize/16) + 1) * 16; loopcounter++)
+          {
+            hcryp->Init.pScratch[loopcounter] = 0;
+          }
+          /* Set the header size to modulo 16 */
+          headersize = ((headersize/16) + 1) * 16;
+        }
+        /* Set the pointer headeraddr to hcryp->Init.pScratch */
+        headeraddr = (uint32_t)hcryp->Init.pScratch;
+      }
+      /*********************** Formatting the block B0 ************************/
+      if(headersize != 0)
+      {
+        blockb0[0] = 0x40;
+      }
+      /* Flags byte */
+      /* blockb0[0] |= 0u | (((( (uint8_t) hcryp->Init.TagSize - 2) / 2) & 0x07 ) << 3 ) | ( ( (uint8_t) (15 - hcryp->Init.IVSize) - 1) & 0x07) */
+      blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)(((uint8_t)(hcryp->Init.TagSize - (uint8_t)(2))) >> 1) & (uint8_t)0x07 ) << 3);
+      blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)((uint8_t)(15) - hcryp->Init.IVSize) - (uint8_t)1) & (uint8_t)0x07);
+      
+      for (loopcounter = 0; loopcounter < hcryp->Init.IVSize; loopcounter++)
+      {
+        blockb0[loopcounter+1] = hcryp->Init.pInitVect[loopcounter];
+      }
+      for ( ; loopcounter < 13; loopcounter++)
+      {
+        blockb0[loopcounter+1] = 0;
+      }
+      
+      blockb0[14] = (Size >> 8);
+      blockb0[15] = (Size & 0xFF);
+      
+      /************************* Formatting the initial counter ***************/
+      /* Byte 0:
+         Bits 7 and 6 are reserved and shall be set to 0
+         Bits 3, 4, and 5 shall also be set to 0, to ensure that all the counter 
+         blocks are distinct from B0
+         Bits 0, 1, and 2 contain the same encoding of q as in B0
+      */
+      ctr[0] = blockb0[0] & 0x07;
+      /* byte 1 to NonceSize is the IV (Nonce) */
+      for(loopcounter = 1; loopcounter < hcryp->Init.IVSize + 1; loopcounter++)
+      {
+        ctr[loopcounter] = blockb0[loopcounter];
+      }
+      /* Set the LSB to 1 */
+      ctr[15] |= 0x01;
+      
+      /* Set the key */
+      CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
+      
+      /* Set the CRYP peripheral in AES CCM mode */
+      __HAL_CRYP_SET_MODE(CRYP_CR_ALGOMODE_AES_CCM_ENCRYPT);
+      
+      /* Set the Initialization Vector */
+      CRYPEx_GCMCCM_SetInitVector(hcryp, ctr, hcryp->Init.KeySize);
+      
+      /* Select init phase */
+      __HAL_CRYP_SET_PHASE(CRYP_PHASE_INIT);
+      
+      b0addr = (uint32_t)blockb0;
+      /* Write the blockb0 block in the IN FIFO */
+      CRYP->DR = *(uint32_t*)(b0addr);
+      b0addr+=4;
+      CRYP->DR = *(uint32_t*)(b0addr);
+      b0addr+=4;
+      CRYP->DR = *(uint32_t*)(b0addr);
+      b0addr+=4;
+      CRYP->DR = *(uint32_t*)(b0addr);
+      
+      /* Enable the CRYP peripheral */
+      __HAL_CRYP_ENABLE();
+      
+      /* Get timeout */
+      timeout = HAL_GetTick() + 1;
+
+      while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN)
+      {
+        /* Check for the Timeout */
+        if(HAL_GetTick() >= timeout)
+        {
+          /* Change state */
+          hcryp->State = HAL_CRYP_STATE_TIMEOUT;
+          
+          /* Process Unlocked */          
+          __HAL_UNLOCK(hcryp);
+          
+          return HAL_TIMEOUT;
+        }
+      }
+      /***************************** Header phase *****************************/
+      if(headersize != 0)
+      {
+        /* Select header phase */
+        __HAL_CRYP_SET_PHASE(CRYP_PHASE_HEADER);
+        
+        /* Enable Crypto processor */
+        __HAL_CRYP_ENABLE();
+        
+        for(loopcounter = 0; (loopcounter < headersize); loopcounter+=16)
+        {
+          /* Get timeout */
+          timeout = HAL_GetTick() + 1;
+
+          while(HAL_IS_BIT_CLR(CRYP->SR, CRYP_FLAG_IFEM))
+          {
+            /* Check for the Timeout */
+            if(HAL_GetTick() >= timeout)
+            {
+              /* Change state */
+              hcryp->State = HAL_CRYP_STATE_TIMEOUT;
+              
+              /* Process Unlocked */          
+              __HAL_UNLOCK(hcryp);
+              
+              return HAL_TIMEOUT;
+            }
+          }
+          /* Write the header block in the IN FIFO */
+          CRYP->DR = *(uint32_t*)(headeraddr);
+          headeraddr+=4;
+          CRYP->DR = *(uint32_t*)(headeraddr);
+          headeraddr+=4;
+          CRYP->DR = *(uint32_t*)(headeraddr);
+          headeraddr+=4;
+          CRYP->DR = *(uint32_t*)(headeraddr);
+          headeraddr+=4;
+        }
+        
+        /* Get timeout */
+        timeout = HAL_GetTick() + 1;
+
+        while((CRYP->SR & CRYP_FLAG_BUSY) == CRYP_FLAG_BUSY)
+        {
+          /* Check for the Timeout */
+          if(HAL_GetTick() >= timeout)
+          {
+            /* Change state */
+            hcryp->State = HAL_CRYP_STATE_TIMEOUT;
+            
+            /* Process Unlocked */          
+            __HAL_UNLOCK(hcryp);
+            
+            return HAL_TIMEOUT;
+          }
+        }
+      }
+      /* Save formatted counter into the scratch buffer pScratch */
+      for(loopcounter = 0; (loopcounter < 16); loopcounter++)
+      {
+        hcryp->Init.pScratch[loopcounter] = ctr[loopcounter];
+      }
+      /* Reset bit 0 */
+      hcryp->Init.pScratch[15] &= 0xfe;
+      
+      /* Select payload phase once the header phase is performed */
+      __HAL_CRYP_SET_PHASE(CRYP_PHASE_PAYLOAD);
+      
+      /* Flush FIFO */
+      __HAL_CRYP_FIFO_FLUSH();
+      
+      /* Set the phase */
+      hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
+    }
+    
+    if(Size != 0)
+    {
+      /* Enable Interrupts */
+      __HAL_CRYP_ENABLE_IT(CRYP_IT_INI | CRYP_IT_OUTI);
+      /* Enable the CRYP peripheral */
+      __HAL_CRYP_ENABLE();
+    }
+    else
+    {
+      /* Change the CRYP state and phase */
+      hcryp->State = HAL_CRYP_STATE_READY;
+    }
+    
+    /* Return function status */
+    return HAL_OK;
+  }
+  else if (__HAL_CRYP_GET_IT(CRYP_IT_INI))
+  {
+    inputaddr = (uint32_t)hcryp->pCrypInBuffPtr;
+    /* Write the Input block in the IN FIFO */
+    CRYP->DR = *(uint32_t*)(inputaddr);
+    inputaddr+=4;
+    CRYP->DR = *(uint32_t*)(inputaddr);
+    inputaddr+=4;
+    CRYP->DR  = *(uint32_t*)(inputaddr);
+    inputaddr+=4;
+    CRYP->DR = *(uint32_t*)(inputaddr);
+    hcryp->pCrypInBuffPtr += 16;
+    hcryp->CrypInCount -= 16;
+    if(hcryp->CrypInCount == 0)
+    {
+      __HAL_CRYP_DISABLE_IT(CRYP_IT_INI);
+      /* Call Input transfer complete callback */
+      HAL_CRYP_InCpltCallback(hcryp);
+    }
+  }
+  else if (__HAL_CRYP_GET_IT(CRYP_IT_OUTI))
+  {
+    outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr;
+    /* Read the Output block from the Output FIFO */
+    *(uint32_t*)(outputaddr) = CRYP->DOUT;
+    outputaddr+=4;
+    *(uint32_t*)(outputaddr) = CRYP->DOUT;
+    outputaddr+=4;
+    *(uint32_t*)(outputaddr) = CRYP->DOUT;
+    outputaddr+=4;
+    *(uint32_t*)(outputaddr) = CRYP->DOUT;
+    hcryp->pCrypOutBuffPtr += 16;
+    hcryp->CrypOutCount -= 16;
+    if(hcryp->CrypOutCount == 0)
+    {
+      __HAL_CRYP_DISABLE_IT(CRYP_IT_OUTI);
+      /* Process Unlocked */
+      __HAL_UNLOCK(hcryp);
+      /* Change the CRYP peripheral state */
+      hcryp->State = HAL_CRYP_STATE_READY;
+      /* Call Input transfer complete callback */
+      HAL_CRYP_OutCpltCallback(hcryp);
+    }
+  }
+  
+  /* Return function status */
+  return HAL_OK;
+}
+
+/**
+  * @brief  Initializes the CRYP peripheral in AES GCM decryption mode using IT.
+  * @param  hcryp: CRYP handle
+  * @param  pCypherData: Pointer to the cyphertext buffer
+  * @param  Size: Length of the cyphertext buffer, must be a multiple of 16
+  * @param  pPlainData: Pointer to the plaintext buffer
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_CRYPEx_AESGCM_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData)
+{
+  uint32_t timeout = 0;   
+  uint32_t inputaddr;
+  uint32_t outputaddr;
+  
+  if(hcryp->State == HAL_CRYP_STATE_READY)
+  {
+    /* Process Locked */
+    __HAL_LOCK(hcryp);
+    
+    /* Get the buffer addresses and sizes */    
+    hcryp->CrypInCount = Size;
+    hcryp->pCrypInBuffPtr = pCypherData;
+    hcryp->pCrypOutBuffPtr = pPlainData;
+    hcryp->CrypOutCount = Size;
+    
+    /* Change the CRYP peripheral state */
+    hcryp->State = HAL_CRYP_STATE_BUSY;
+    
+    /* Check if initialization phase has already been performed */
+    if(hcryp->Phase == HAL_CRYP_PHASE_READY)
+    {
+      /* Set the key */
+      CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
+      
+      /* Set the CRYP peripheral in AES GCM decryption mode */
+      __HAL_CRYP_SET_MODE(CRYP_CR_ALGOMODE_AES_GCM_DECRYPT);
+      
+      /* Set the Initialization Vector */
+      CRYPEx_GCMCCM_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B);
+      
+      /* Flush FIFO */
+      __HAL_CRYP_FIFO_FLUSH();
+      
+      /* Enable CRYP to start the init phase */
+      __HAL_CRYP_ENABLE();
+      
+      /* Get timeout */
+      timeout = HAL_GetTick() + 1;
+      
+      while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN)
+      {
+        /* Check for the Timeout */
+        if(HAL_GetTick() >= timeout)
+        {
+          /* Change state */
+          hcryp->State = HAL_CRYP_STATE_TIMEOUT;
+          
+          /* Process Unlocked */          
+          __HAL_UNLOCK(hcryp);
+          
+          return HAL_TIMEOUT;
+        }
+      }
+      
+      /* Set the header phase */
+      if(CRYPEx_GCMCCM_SetHeaderPhase(hcryp, hcryp->Init.Header, hcryp->Init.HeaderSize, 1) != HAL_OK)
+      {
+        return HAL_TIMEOUT;
+      }
+      /* Disable the CRYP peripheral */
+      __HAL_CRYP_DISABLE();
+      
+      /* Select payload phase once the header phase is performed */
+      __HAL_CRYP_SET_PHASE(CRYP_PHASE_PAYLOAD);
+      
+      /* Set the phase */
+      hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
+    }
+    
+    if(Size != 0)
+    {
+      /* Enable Interrupts */
+      __HAL_CRYP_ENABLE_IT(CRYP_IT_INI | CRYP_IT_OUTI);
+      /* Enable the CRYP peripheral */
+      __HAL_CRYP_ENABLE();
+    }
+    else
+    {
+      /* Process Locked */
+      __HAL_UNLOCK(hcryp);
+      /* Change the CRYP state and phase */
+      hcryp->State = HAL_CRYP_STATE_READY;
+    }
+    
+    /* Return function status */
+    return HAL_OK;
+  }
+  else if (__HAL_CRYP_GET_IT(CRYP_IT_INI))
+  {
+    inputaddr = (uint32_t)hcryp->pCrypInBuffPtr;
+    /* Write the Input block in the IN FIFO */
+    CRYP->DR = *(uint32_t*)(inputaddr);
+    inputaddr+=4;
+    CRYP->DR = *(uint32_t*)(inputaddr);
+    inputaddr+=4;
+    CRYP->DR  = *(uint32_t*)(inputaddr);
+    inputaddr+=4;
+    CRYP->DR = *(uint32_t*)(inputaddr);
+    hcryp->pCrypInBuffPtr += 16;
+    hcryp->CrypInCount -= 16;
+    if(hcryp->CrypInCount == 0)
+    {
+      __HAL_CRYP_DISABLE_IT(CRYP_IT_INI);
+      /* Call the Input data transfer complete callback */
+      HAL_CRYP_InCpltCallback(hcryp);
+    }
+  }
+  else if (__HAL_CRYP_GET_IT(CRYP_IT_OUTI))
+  {
+    outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr;
+    /* Read the Output block from the Output FIFO */
+    *(uint32_t*)(outputaddr) = CRYP->DOUT;
+    outputaddr+=4;
+    *(uint32_t*)(outputaddr) = CRYP->DOUT;
+    outputaddr+=4;
+    *(uint32_t*)(outputaddr) = CRYP->DOUT;
+    outputaddr+=4;
+    *(uint32_t*)(outputaddr) = CRYP->DOUT;
+    hcryp->pCrypOutBuffPtr += 16;
+    hcryp->CrypOutCount -= 16;
+    if(hcryp->CrypOutCount == 0)
+    {
+      __HAL_CRYP_DISABLE_IT(CRYP_IT_OUTI);
+      /* Process Unlocked */
+      __HAL_UNLOCK(hcryp);
+      /* Change the CRYP peripheral state */
+      hcryp->State = HAL_CRYP_STATE_READY;
+      /* Call Input transfer complete callback */
+      HAL_CRYP_OutCpltCallback(hcryp);
+    }
+  }
+  
+  /* Return function status */
+  return HAL_OK;
+}
+
+/**
+  * @brief  Initializes the CRYP peripheral in AES CCM decryption mode using interrupt
+  *         then decrypted pCypherData. The cypher data are available in pPlainData.
+  * @param  hcryp: CRYP handle
+  * @param  pCypherData: Pointer to the cyphertext buffer 
+  * @param  Size: Length of the plaintext buffer, must be a multiple of 16
+  * @param  pPlainData: Pointer to the plaintext buffer  
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_CRYPEx_AESCCM_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData)
+{
+  uint32_t inputaddr;
+  uint32_t outputaddr;
+  uint32_t timeout = 0;
+  uint32_t headersize = hcryp->Init.HeaderSize;
+  uint32_t headeraddr = (uint32_t)hcryp->Init.Header;
+  uint32_t loopcounter = 0;
+  uint32_t bufferidx = 0;
+  uint8_t blockb0[16] = {0};/* Block B0 */
+  uint8_t ctr[16] = {0}; /* Counter */
+  uint32_t b0addr = (uint32_t)blockb0;
+  
+  if(hcryp->State == HAL_CRYP_STATE_READY)
+  {
+    /* Process Locked */
+    __HAL_LOCK(hcryp);
+    
+    hcryp->CrypInCount = Size;
+    hcryp->pCrypInBuffPtr = pCypherData;
+    hcryp->pCrypOutBuffPtr = pPlainData;
+    hcryp->CrypOutCount = Size;
+    
+    /* Change the CRYP peripheral state */
+    hcryp->State = HAL_CRYP_STATE_BUSY;
+    
+    /* Check if initialization phase has already been performed */
+    if(hcryp->Phase == HAL_CRYP_PHASE_READY)
+    {
+      /************************ Formatting the header block *******************/
+      if(headersize != 0)
+      {
+        /* Check that the associated data (or header) length is lower than 2^16 - 2^8 = 65536 - 256 = 65280 */
+        if(headersize < 65280)
+        {
+          hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize >> 8) & 0xFF);
+          hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize) & 0xFF);
+          headersize += 2;
+        }
+        else
+        {
+          /* Header is encoded as 0xff || 0xfe || [headersize]32, i.e., six octets */
+          hcryp->Init.pScratch[bufferidx++] = 0xFF;
+          hcryp->Init.pScratch[bufferidx++] = 0xFE;
+          hcryp->Init.pScratch[bufferidx++] = headersize & 0xff000000;
+          hcryp->Init.pScratch[bufferidx++] = headersize & 0x00ff0000;
+          hcryp->Init.pScratch[bufferidx++] = headersize & 0x0000ff00;
+          hcryp->Init.pScratch[bufferidx++] = headersize & 0x000000ff;
+          headersize += 6;
+        }
+        /* Copy the header buffer in internal buffer "hcryp->Init.pScratch" */
+        for(loopcounter = 0; loopcounter < headersize; loopcounter++)
+        {
+          hcryp->Init.pScratch[bufferidx++] = hcryp->Init.Header[loopcounter];
+        }
+        /* Check if the header size is modulo 16 */
+        if ((headersize % 16) != 0)
+        {
+          /* Padd the header buffer with 0s till the hcryp->Init.pScratch length is modulo 16 */
+          for(loopcounter = headersize; loopcounter <= ((headersize/16) + 1) * 16; loopcounter++)
+          {
+            hcryp->Init.pScratch[loopcounter] = 0;
+          }
+          /* Set the header size to modulo 16 */
+          headersize = ((headersize/16) + 1) * 16;
+        }
+        /* Set the pointer headeraddr to hcryp->Init.pScratch */
+        headeraddr = (uint32_t)hcryp->Init.pScratch;
+      }
+      /*********************** Formatting the block B0 ************************/
+      if(headersize != 0)
+      {
+        blockb0[0] = 0x40;
+      }
+      /* Flags byte */
+      /* blockb0[0] |= 0u | (((( (uint8_t) hcryp->Init.TagSize - 2) / 2) & 0x07 ) << 3 ) | ( ( (uint8_t) (15 - hcryp->Init.IVSize) - 1) & 0x07) */
+      blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)(((uint8_t)(hcryp->Init.TagSize - (uint8_t)(2))) >> 1) & (uint8_t)0x07 ) << 3);
+      blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)((uint8_t)(15) - hcryp->Init.IVSize) - (uint8_t)1) & (uint8_t)0x07);
+      
+      for (loopcounter = 0; loopcounter < hcryp->Init.IVSize; loopcounter++)
+      {
+        blockb0[loopcounter+1] = hcryp->Init.pInitVect[loopcounter];
+      }
+      for ( ; loopcounter < 13; loopcounter++)
+      {
+        blockb0[loopcounter+1] = 0;
+      }
+      
+      blockb0[14] = (Size >> 8);
+      blockb0[15] = (Size & 0xFF);
+      
+      /************************* Formatting the initial counter ***************/
+      /* Byte 0:
+         Bits 7 and 6 are reserved and shall be set to 0
+         Bits 3, 4, and 5 shall also be set to 0, to ensure that all the counter 
+         blocks are distinct from B0
+         Bits 0, 1, and 2 contain the same encoding of q as in B0
+      */
+      ctr[0] = blockb0[0] & 0x07;
+      /* byte 1 to NonceSize is the IV (Nonce) */
+      for(loopcounter = 1; loopcounter < hcryp->Init.IVSize + 1; loopcounter++)
+      {
+        ctr[loopcounter] = blockb0[loopcounter];
+      }
+      /* Set the LSB to 1 */
+      ctr[15] |= 0x01;
+      
+      /* Set the key */
+      CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
+      
+      /* Set the CRYP peripheral in AES CCM mode */
+      __HAL_CRYP_SET_MODE(CRYP_CR_ALGOMODE_AES_CCM_DECRYPT);
+      
+      /* Set the Initialization Vector */
+      CRYPEx_GCMCCM_SetInitVector(hcryp, ctr, hcryp->Init.KeySize);
+      
+      /* Select init phase */
+      __HAL_CRYP_SET_PHASE(CRYP_PHASE_INIT);
+      
+      b0addr = (uint32_t)blockb0;
+      /* Write the blockb0 block in the IN FIFO */
+      CRYP->DR = *(uint32_t*)(b0addr);
+      b0addr+=4;
+      CRYP->DR = *(uint32_t*)(b0addr);
+      b0addr+=4;
+      CRYP->DR = *(uint32_t*)(b0addr);
+      b0addr+=4;
+      CRYP->DR = *(uint32_t*)(b0addr);
+      
+      /* Enable the CRYP peripheral */
+      __HAL_CRYP_ENABLE();
+      
+      /* Get timeout */
+      timeout = HAL_GetTick() + 1;
+
+      while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN)
+      {
+        /* Check for the Timeout */
+        if(HAL_GetTick() >= timeout)
+        {
+          /* Change state */
+          hcryp->State = HAL_CRYP_STATE_TIMEOUT;
+          
+          /* Process Unlocked */          
+          __HAL_UNLOCK(hcryp);
+          
+          return HAL_TIMEOUT;
+        }
+      }
+      /***************************** Header phase *****************************/
+      if(headersize != 0)
+      {
+        /* Select header phase */
+        __HAL_CRYP_SET_PHASE(CRYP_PHASE_HEADER);
+        
+        /* Enable Crypto processor */
+        __HAL_CRYP_ENABLE();
+        
+        for(loopcounter = 0; (loopcounter < headersize); loopcounter+=16)
+        {
+          /* Get timeout */
+          timeout = HAL_GetTick() + 1;
+
+          while(HAL_IS_BIT_CLR(CRYP->SR, CRYP_FLAG_IFEM))
+          {
+            /* Check for the Timeout */
+            if(HAL_GetTick() >= timeout)
+            {
+              /* Change state */
+              hcryp->State = HAL_CRYP_STATE_TIMEOUT;
+              
+              /* Process Unlocked */          
+              __HAL_UNLOCK(hcryp);
+              
+              return HAL_TIMEOUT;
+            }
+          }
+          /* Write the header block in the IN FIFO */
+          CRYP->DR = *(uint32_t*)(headeraddr);
+          headeraddr+=4;
+          CRYP->DR = *(uint32_t*)(headeraddr);
+          headeraddr+=4;
+          CRYP->DR = *(uint32_t*)(headeraddr);
+          headeraddr+=4;
+          CRYP->DR = *(uint32_t*)(headeraddr);
+          headeraddr+=4;
+        }
+        
+        /* Get timeout */
+        timeout = HAL_GetTick() + 1;
+
+        while((CRYP->SR & CRYP_FLAG_BUSY) == CRYP_FLAG_BUSY)
+        {
+          /* Check for the Timeout */
+          if(HAL_GetTick() >= timeout)
+          {
+            /* Change state */
+            hcryp->State = HAL_CRYP_STATE_TIMEOUT;
+            
+            /* Process Unlocked */          
+            __HAL_UNLOCK(hcryp);
+            
+            return HAL_TIMEOUT;
+          }
+        }
+      }
+      /* Save formatted counter into the scratch buffer pScratch */
+      for(loopcounter = 0; (loopcounter < 16); loopcounter++)
+      {
+        hcryp->Init.pScratch[loopcounter] = ctr[loopcounter];
+      }
+      /* Reset bit 0 */
+      hcryp->Init.pScratch[15] &= 0xfe;
+      /* Select payload phase once the header phase is performed */
+      __HAL_CRYP_SET_PHASE(CRYP_PHASE_PAYLOAD);
+      
+      /* Flush FIFO */
+      __HAL_CRYP_FIFO_FLUSH();
+      
+      /* Set the phase */
+      hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
+    }
+    
+    /* Enable Interrupts */
+    __HAL_CRYP_ENABLE_IT(CRYP_IT_INI | CRYP_IT_OUTI);
+    
+    /* Enable the CRYP peripheral */
+    __HAL_CRYP_ENABLE();
+    
+    /* Return function status */
+    return HAL_OK;
+  }
+  else if (__HAL_CRYP_GET_IT(CRYP_IT_INI))
+  {
+    inputaddr = (uint32_t)hcryp->pCrypInBuffPtr;
+    /* Write the Input block in the IN FIFO */
+    CRYP->DR = *(uint32_t*)(inputaddr);
+    inputaddr+=4;
+    CRYP->DR = *(uint32_t*)(inputaddr);
+    inputaddr+=4;
+    CRYP->DR  = *(uint32_t*)(inputaddr);
+    inputaddr+=4;
+    CRYP->DR = *(uint32_t*)(inputaddr);
+    hcryp->pCrypInBuffPtr += 16;
+    hcryp->CrypInCount -= 16;
+    if(hcryp->CrypInCount == 0)
+    {
+      __HAL_CRYP_DISABLE_IT(CRYP_IT_INI);
+      /* Call the Input data transfer complete callback */
+      HAL_CRYP_InCpltCallback(hcryp);
+    }
+  }
+  else if (__HAL_CRYP_GET_IT(CRYP_IT_OUTI))
+  {
+    outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr;
+    /* Read the Output block from the Output FIFO */
+    *(uint32_t*)(outputaddr) = CRYP->DOUT;
+    outputaddr+=4;
+    *(uint32_t*)(outputaddr) = CRYP->DOUT;
+    outputaddr+=4;
+    *(uint32_t*)(outputaddr) = CRYP->DOUT;
+    outputaddr+=4;
+    *(uint32_t*)(outputaddr) = CRYP->DOUT;
+    hcryp->pCrypOutBuffPtr += 16;
+    hcryp->CrypOutCount -= 16;
+    if(hcryp->CrypOutCount == 0)
+    {
+      __HAL_CRYP_DISABLE_IT(CRYP_IT_OUTI);
+      /* Process Unlocked */
+      __HAL_UNLOCK(hcryp);
+      /* Change the CRYP peripheral state */
+      hcryp->State = HAL_CRYP_STATE_READY;
+      /* Call Input transfer complete callback */
+      HAL_CRYP_OutCpltCallback(hcryp);
+    }
+  }
+  
+  /* Return function status */
+  return HAL_OK;
+}
+
+/**
+  * @brief  Initializes the CRYP peripheral in AES GCM encryption mode using DMA.
+  * @param  hcryp: CRYP handle
+  * @param  pPlainData: Pointer to the plaintext buffer
+  * @param  Size: Length of the plaintext buffer, must be a multiple of 16
+  * @param  pCypherData: Pointer to the cyphertext buffer
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_CRYPEx_AESGCM_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData)
+{
+  uint32_t timeout = 0;
+  uint32_t inputaddr;
+  uint32_t outputaddr;
+  
+  if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS))
+  {
+    /* Process Locked */
+    __HAL_LOCK(hcryp);
+    
+    inputaddr  = (uint32_t)pPlainData;
+    outputaddr = (uint32_t)pCypherData;
+    
+    /* Change the CRYP peripheral state */
+    hcryp->State = HAL_CRYP_STATE_BUSY;
+    
+    /* Check if initialization phase has already been performed */
+    if(hcryp->Phase == HAL_CRYP_PHASE_READY)
+    {
+      /* Set the key */
+      CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
+      
+      /* Set the CRYP peripheral in AES GCM mode */
+      __HAL_CRYP_SET_MODE(CRYP_CR_ALGOMODE_AES_GCM_ENCRYPT);
+      
+      /* Set the Initialization Vector */
+      CRYPEx_GCMCCM_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B);
+      
+      /* Flush FIFO */
+      __HAL_CRYP_FIFO_FLUSH();
+      
+      /* Enable CRYP to start the init phase */
+      __HAL_CRYP_ENABLE();
+      
+      /* Get timeout */
+      timeout = HAL_GetTick() + 1;
+
+      while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN)
+      {
+        /* Check for the Timeout */
+        if(HAL_GetTick() >= timeout)
+        {
+          /* Change state */
+          hcryp->State = HAL_CRYP_STATE_TIMEOUT;
+          
+          /* Process Unlocked */          
+          __HAL_UNLOCK(hcryp);
+          
+          return HAL_TIMEOUT;
+        }
+      }
+      /* Flush FIFO */
+      __HAL_CRYP_FIFO_FLUSH();
+      
+      /* Set the header phase */
+      if(CRYPEx_GCMCCM_SetHeaderPhase(hcryp, hcryp->Init.Header, hcryp->Init.HeaderSize, 1) != HAL_OK)
+      {
+        return HAL_TIMEOUT;
+      }
+      /* Disable the CRYP peripheral */
+      __HAL_CRYP_DISABLE();
+      
+      /* Select payload phase once the header phase is performed */
+      __HAL_CRYP_SET_PHASE(CRYP_PHASE_PAYLOAD);
+      
+      /* Flush FIFO */
+      __HAL_CRYP_FIFO_FLUSH();
+      
+      /* Set the phase */
+      hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
+    }
+    
+    /* Set the input and output addresses and start DMA transfer */ 
+    CRYPEx_GCMCCM_SetDMAConfig(hcryp, inputaddr, Size, outputaddr);
+    
+    /* Unlock process */
+    __HAL_UNLOCK(hcryp);
+    
+    /* Return function status */
+    return HAL_OK;
+  }
+  else
+  {
+    return HAL_ERROR;   
+  }
+}
+
+/**
+  * @brief  Initializes the CRYP peripheral in AES CCM encryption mode using interrupt.
+  * @param  hcryp: CRYP handle
+  * @param  pPlainData: Pointer to the plaintext buffer
+  * @param  Size: Length of the plaintext buffer, must be a multiple of 16
+  * @param  pCypherData: Pointer to the cyphertext buffer
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_CRYPEx_AESCCM_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData)
+{
+  uint32_t timeout = 0;   
+  uint32_t inputaddr;
+  uint32_t outputaddr;
+  uint32_t headersize;
+  uint32_t headeraddr;
+  uint32_t loopcounter = 0;
+  uint32_t bufferidx = 0;
+  uint8_t blockb0[16] = {0};/* Block B0 */
+  uint8_t ctr[16] = {0}; /* Counter */
+  uint32_t b0addr = (uint32_t)blockb0;
+  
+  if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS))
+  {
+    /* Process Locked */
+    __HAL_LOCK(hcryp);
+    
+    inputaddr  = (uint32_t)pPlainData;
+    outputaddr = (uint32_t)pCypherData;
+    
+    headersize = hcryp->Init.HeaderSize;
+    headeraddr = (uint32_t)hcryp->Init.Header;
+    
+    hcryp->CrypInCount = Size;
+    hcryp->pCrypInBuffPtr = pPlainData;
+    hcryp->pCrypOutBuffPtr = pCypherData;
+    hcryp->CrypOutCount = Size;
+    
+    /* Change the CRYP peripheral state */
+    hcryp->State = HAL_CRYP_STATE_BUSY;
+    
+    /* Check if initialization phase has already been performed */
+    if(hcryp->Phase == HAL_CRYP_PHASE_READY)
+    {
+      /************************ Formatting the header block *******************/
+      if(headersize != 0)
+      {
+        /* Check that the associated data (or header) length is lower than 2^16 - 2^8 = 65536 - 256 = 65280 */
+        if(headersize < 65280)
+        {
+          hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize >> 8) & 0xFF);
+          hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize) & 0xFF);
+          headersize += 2;
+        }
+        else
+        {
+          /* Header is encoded as 0xff || 0xfe || [headersize]32, i.e., six octets */
+          hcryp->Init.pScratch[bufferidx++] = 0xFF;
+          hcryp->Init.pScratch[bufferidx++] = 0xFE;
+          hcryp->Init.pScratch[bufferidx++] = headersize & 0xff000000;
+          hcryp->Init.pScratch[bufferidx++] = headersize & 0x00ff0000;
+          hcryp->Init.pScratch[bufferidx++] = headersize & 0x0000ff00;
+          hcryp->Init.pScratch[bufferidx++] = headersize & 0x000000ff;
+          headersize += 6;
+        }
+        /* Copy the header buffer in internal buffer "hcryp->Init.pScratch" */
+        for(loopcounter = 0; loopcounter < headersize; loopcounter++)
+        {
+          hcryp->Init.pScratch[bufferidx++] = hcryp->Init.Header[loopcounter];
+        }
+        /* Check if the header size is modulo 16 */
+        if ((headersize % 16) != 0)
+        {
+          /* Padd the header buffer with 0s till the hcryp->Init.pScratch length is modulo 16 */
+          for(loopcounter = headersize; loopcounter <= ((headersize/16) + 1) * 16; loopcounter++)
+          {
+            hcryp->Init.pScratch[loopcounter] = 0;
+          }
+          /* Set the header size to modulo 16 */
+          headersize = ((headersize/16) + 1) * 16;
+        }
+        /* Set the pointer headeraddr to hcryp->Init.pScratch */
+        headeraddr = (uint32_t)hcryp->Init.pScratch;
+      }
+      /*********************** Formatting the block B0 ************************/
+      if(headersize != 0)
+      {
+        blockb0[0] = 0x40;
+      }
+      /* Flags byte */
+      /* blockb0[0] |= 0u | (((( (uint8_t) hcryp->Init.TagSize - 2) / 2) & 0x07 ) << 3 ) | ( ( (uint8_t) (15 - hcryp->Init.IVSize) - 1) & 0x07) */
+      blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)(((uint8_t)(hcryp->Init.TagSize - (uint8_t)(2))) >> 1) & (uint8_t)0x07 ) << 3);
+      blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)((uint8_t)(15) - hcryp->Init.IVSize) - (uint8_t)1) & (uint8_t)0x07);
+      
+      for (loopcounter = 0; loopcounter < hcryp->Init.IVSize; loopcounter++)
+      {
+        blockb0[loopcounter+1] = hcryp->Init.pInitVect[loopcounter];
+      }
+      for ( ; loopcounter < 13; loopcounter++)
+      {
+        blockb0[loopcounter+1] = 0;
+      }
+      
+      blockb0[14] = (Size >> 8);
+      blockb0[15] = (Size & 0xFF);
+      
+      /************************* Formatting the initial counter ***************/
+      /* Byte 0:
+         Bits 7 and 6 are reserved and shall be set to 0
+         Bits 3, 4, and 5 shall also be set to 0, to ensure that all the counter 
+         blocks are distinct from B0
+         Bits 0, 1, and 2 contain the same encoding of q as in B0
+      */
+      ctr[0] = blockb0[0] & 0x07;
+      /* byte 1 to NonceSize is the IV (Nonce) */
+      for(loopcounter = 1; loopcounter < hcryp->Init.IVSize + 1; loopcounter++)
+      {
+        ctr[loopcounter] = blockb0[loopcounter];
+      }
+      /* Set the LSB to 1 */
+      ctr[15] |= 0x01;
+      
+      /* Set the key */
+      CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
+      
+      /* Set the CRYP peripheral in AES CCM mode */
+      __HAL_CRYP_SET_MODE(CRYP_CR_ALGOMODE_AES_CCM_ENCRYPT);
+      
+      /* Set the Initialization Vector */
+      CRYPEx_GCMCCM_SetInitVector(hcryp, ctr, CRYP_KEYSIZE_128B);
+      
+      /* Select init phase */
+      __HAL_CRYP_SET_PHASE(CRYP_PHASE_INIT);
+      
+      b0addr = (uint32_t)blockb0;
+      /* Write the blockb0 block in the IN FIFO */
+      CRYP->DR = *(uint32_t*)(b0addr);
+      b0addr+=4;
+      CRYP->DR = *(uint32_t*)(b0addr);
+      b0addr+=4;
+      CRYP->DR = *(uint32_t*)(b0addr);
+      b0addr+=4;
+      CRYP->DR = *(uint32_t*)(b0addr);
+      
+      /* Enable the CRYP peripheral */
+      __HAL_CRYP_ENABLE();
+      
+      /* Get timeout */
+      timeout = HAL_GetTick() + 1;
+ 
+      while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN)
+      {
+        /* Check for the Timeout */
+        if(HAL_GetTick() >= timeout)
+        {
+          /* Change state */
+          hcryp->State = HAL_CRYP_STATE_TIMEOUT;
+          
+          /* Process Unlocked */          
+          __HAL_UNLOCK(hcryp);
+          
+          return HAL_TIMEOUT;
+        }
+      }
+      /***************************** Header phase *****************************/
+      if(headersize != 0)
+      {
+        /* Select header phase */
+        __HAL_CRYP_SET_PHASE(CRYP_PHASE_HEADER);
+        
+        /* Enable Crypto processor */
+        __HAL_CRYP_ENABLE();
+        
+        for(loopcounter = 0; (loopcounter < headersize); loopcounter+=16)
+        {
+          /* Get timeout */
+          timeout = HAL_GetTick() + 1;
+          
+          while(HAL_IS_BIT_CLR(CRYP->SR, CRYP_FLAG_IFEM))
+          {
+            /* Check for the Timeout */
+            if(HAL_GetTick() >= timeout)
+            {
+              /* Change state */
+              hcryp->State = HAL_CRYP_STATE_TIMEOUT;
+              
+              /* Process Unlocked */          
+              __HAL_UNLOCK(hcryp);
+              
+              return HAL_TIMEOUT;
+            }
+          }
+          /* Write the header block in the IN FIFO */
+          CRYP->DR = *(uint32_t*)(headeraddr);
+          headeraddr+=4;
+          CRYP->DR = *(uint32_t*)(headeraddr);
+          headeraddr+=4;
+          CRYP->DR = *(uint32_t*)(headeraddr);
+          headeraddr+=4;
+          CRYP->DR = *(uint32_t*)(headeraddr);
+          headeraddr+=4;
+        }
+        
+        /* Get timeout */
+        timeout = HAL_GetTick() + 1;
+
+        while((CRYP->SR & CRYP_FLAG_BUSY) == CRYP_FLAG_BUSY)
+        {
+          /* Check for the Timeout */
+          if(HAL_GetTick() >= timeout)
+          {
+            /* Change state */
+            hcryp->State = HAL_CRYP_STATE_TIMEOUT;
+            
+            /* Process Unlocked */          
+            __HAL_UNLOCK(hcryp);
+            
+            return HAL_TIMEOUT;
+          }
+        }
+      }
+      /* Save formatted counter into the scratch buffer pScratch */
+      for(loopcounter = 0; (loopcounter < 16); loopcounter++)
+      {
+        hcryp->Init.pScratch[loopcounter] = ctr[loopcounter];
+      }
+      /* Reset bit 0 */
+      hcryp->Init.pScratch[15] &= 0xfe;
+      
+      /* Select payload phase once the header phase is performed */
+      __HAL_CRYP_SET_PHASE(CRYP_PHASE_PAYLOAD);
+      
+      /* Flush FIFO */
+      __HAL_CRYP_FIFO_FLUSH();
+      
+      /* Set the phase */
+      hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
+    }
+    
+    /* Set the input and output addresses and start DMA transfer */ 
+    CRYPEx_GCMCCM_SetDMAConfig(hcryp, inputaddr, Size, outputaddr);
+    
+    /* Unlock process */
+    __HAL_UNLOCK(hcryp);
+    
+    /* Return function status */
+    return HAL_OK;
+  }
+  else
+  {
+    return HAL_ERROR;   
+  }
+}
+
+/**
+  * @brief  Initializes the CRYP peripheral in AES GCM decryption mode using DMA.
+  * @param  hcryp: CRYP handle
+  * @param  pCypherData: Pointer to the cyphertext buffer.
+  * @param  Size: Length of the cyphertext buffer, must be a multiple of 16
+  * @param  pPlainData: Pointer to the plaintext buffer
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_CRYPEx_AESGCM_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData)
+{
+  uint32_t timeout = 0;   
+  uint32_t inputaddr;
+  uint32_t outputaddr;
+  
+  if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS))
+  {
+    /* Process Locked */
+    __HAL_LOCK(hcryp);
+    
+    inputaddr  = (uint32_t)pCypherData;
+    outputaddr = (uint32_t)pPlainData;
+    
+    /* Change the CRYP peripheral state */
+    hcryp->State = HAL_CRYP_STATE_BUSY;
+    
+    /* Check if initialization phase has already been performed */
+    if(hcryp->Phase == HAL_CRYP_PHASE_READY)
+    {
+      /* Set the key */
+      CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
+      
+      /* Set the CRYP peripheral in AES GCM decryption mode */
+      __HAL_CRYP_SET_MODE(CRYP_CR_ALGOMODE_AES_GCM_DECRYPT);
+      
+      /* Set the Initialization Vector */
+      CRYPEx_GCMCCM_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B);
+      
+      /* Enable CRYP to start the init phase */
+      __HAL_CRYP_ENABLE();
+      
+      /* Get timeout */
+      timeout = HAL_GetTick() + 1;
+
+      while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN)
+      {
+        /* Check for the Timeout */
+        if(HAL_GetTick() >= timeout)
+        {
+          /* Change state */
+          hcryp->State = HAL_CRYP_STATE_TIMEOUT;
+          
+          /* Process Unlocked */          
+          __HAL_UNLOCK(hcryp);
+          
+          return HAL_TIMEOUT;
+        }
+      }
+      
+      /* Set the header phase */
+      if(CRYPEx_GCMCCM_SetHeaderPhase(hcryp, hcryp->Init.Header, hcryp->Init.HeaderSize, 1) != HAL_OK)
+      {
+        return HAL_TIMEOUT;
+      }
+      /* Disable the CRYP peripheral */
+      __HAL_CRYP_DISABLE();
+      
+      /* Select payload phase once the header phase is performed */
+      __HAL_CRYP_SET_PHASE(CRYP_PHASE_PAYLOAD);
+      
+      /* Set the phase */
+      hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
+    }
+    
+    /* Set the input and output addresses and start DMA transfer */ 
+    CRYPEx_GCMCCM_SetDMAConfig(hcryp, inputaddr, Size, outputaddr);
+    
+    /* Unlock process */
+    __HAL_UNLOCK(hcryp);
+    
+    /* Return function status */
+    return HAL_OK;
+  }
+  else
+  {
+    return HAL_ERROR;   
+  }
+}
+
+/**
+  * @brief  Initializes the CRYP peripheral in AES CCM decryption mode using DMA
+  *         then decrypted pCypherData. The cypher data are available in pPlainData.
+  * @param  hcryp: CRYP handle
+  * @param  pCypherData: Pointer to the cyphertext buffer  
+  * @param  Size: Length of the plaintext buffer, must be a multiple of 16
+  * @param  pPlainData: Pointer to the plaintext buffer  
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_CRYPEx_AESCCM_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData)
+{
+  uint32_t timeout = 0;   
+  uint32_t inputaddr;
+  uint32_t outputaddr;
+  uint32_t headersize;
+  uint32_t headeraddr;
+  uint32_t loopcounter = 0;
+  uint32_t bufferidx = 0;
+  uint8_t blockb0[16] = {0};/* Block B0 */
+  uint8_t ctr[16] = {0}; /* Counter */
+  uint32_t b0addr = (uint32_t)blockb0;
+  
+  if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS))
+  {
+    /* Process Locked */
+    __HAL_LOCK(hcryp);
+    
+    inputaddr  = (uint32_t)pCypherData;
+    outputaddr = (uint32_t)pPlainData;
+    
+    headersize = hcryp->Init.HeaderSize;
+    headeraddr = (uint32_t)hcryp->Init.Header;
+    
+    hcryp->CrypInCount = Size;
+    hcryp->pCrypInBuffPtr = pCypherData;
+    hcryp->pCrypOutBuffPtr = pPlainData;
+    hcryp->CrypOutCount = Size;
+    
+    /* Change the CRYP peripheral state */
+    hcryp->State = HAL_CRYP_STATE_BUSY;
+    
+    /* Check if initialization phase has already been performed */
+    if(hcryp->Phase == HAL_CRYP_PHASE_READY)
+    {
+      /************************ Formatting the header block *******************/
+      if(headersize != 0)
+      {
+        /* Check that the associated data (or header) length is lower than 2^16 - 2^8 = 65536 - 256 = 65280 */
+        if(headersize < 65280)
+        {
+          hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize >> 8) & 0xFF);
+          hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize) & 0xFF);
+          headersize += 2;
+        }
+        else
+        {
+          /* Header is encoded as 0xff || 0xfe || [headersize]32, i.e., six octets */
+          hcryp->Init.pScratch[bufferidx++] = 0xFF;
+          hcryp->Init.pScratch[bufferidx++] = 0xFE;
+          hcryp->Init.pScratch[bufferidx++] = headersize & 0xff000000;
+          hcryp->Init.pScratch[bufferidx++] = headersize & 0x00ff0000;
+          hcryp->Init.pScratch[bufferidx++] = headersize & 0x0000ff00;
+          hcryp->Init.pScratch[bufferidx++] = headersize & 0x000000ff;
+          headersize += 6;
+        }
+        /* Copy the header buffer in internal buffer "hcryp->Init.pScratch" */
+        for(loopcounter = 0; loopcounter < headersize; loopcounter++)
+        {
+          hcryp->Init.pScratch[bufferidx++] = hcryp->Init.Header[loopcounter];
+        }
+        /* Check if the header size is modulo 16 */
+        if ((headersize % 16) != 0)
+        {
+          /* Padd the header buffer with 0s till the hcryp->Init.pScratch length is modulo 16 */
+          for(loopcounter = headersize; loopcounter <= ((headersize/16) + 1) * 16; loopcounter++)
+          {
+            hcryp->Init.pScratch[loopcounter] = 0;
+          }
+          /* Set the header size to modulo 16 */
+          headersize = ((headersize/16) + 1) * 16;
+        }
+        /* Set the pointer headeraddr to hcryp->Init.pScratch */
+        headeraddr = (uint32_t)hcryp->Init.pScratch;
+      }
+      /*********************** Formatting the block B0 ************************/
+      if(headersize != 0)
+      {
+        blockb0[0] = 0x40;
+      }
+      /* Flags byte */
+      /* blockb0[0] |= 0u | (((( (uint8_t) hcryp->Init.TagSize - 2) / 2) & 0x07 ) << 3 ) | ( ( (uint8_t) (15 - hcryp->Init.IVSize) - 1) & 0x07) */
+      blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)(((uint8_t)(hcryp->Init.TagSize - (uint8_t)(2))) >> 1) & (uint8_t)0x07 ) << 3);
+      blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)((uint8_t)(15) - hcryp->Init.IVSize) - (uint8_t)1) & (uint8_t)0x07);
+      
+      for (loopcounter = 0; loopcounter < hcryp->Init.IVSize; loopcounter++)
+      {
+        blockb0[loopcounter+1] = hcryp->Init.pInitVect[loopcounter];
+      }
+      for ( ; loopcounter < 13; loopcounter++)
+      {
+        blockb0[loopcounter+1] = 0;
+      }
+      
+      blockb0[14] = (Size >> 8);
+      blockb0[15] = (Size & 0xFF);
+      
+      /************************* Formatting the initial counter ***************/
+      /* Byte 0:
+         Bits 7 and 6 are reserved and shall be set to 0
+         Bits 3, 4, and 5 shall also be set to 0, to ensure that all the counter 
+         blocks are distinct from B0
+         Bits 0, 1, and 2 contain the same encoding of q as in B0
+      */
+      ctr[0] = blockb0[0] & 0x07;
+      /* byte 1 to NonceSize is the IV (Nonce) */
+      for(loopcounter = 1; loopcounter < hcryp->Init.IVSize + 1; loopcounter++)
+      {
+        ctr[loopcounter] = blockb0[loopcounter];
+      }
+      /* Set the LSB to 1 */
+      ctr[15] |= 0x01;
+      
+      /* Set the key */
+      CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
+      
+      /* Set the CRYP peripheral in AES CCM mode */
+      __HAL_CRYP_SET_MODE(CRYP_CR_ALGOMODE_AES_CCM_DECRYPT);
+      
+      /* Set the Initialization Vector */
+      CRYPEx_GCMCCM_SetInitVector(hcryp, ctr, CRYP_KEYSIZE_128B);
+      
+      /* Select init phase */
+      __HAL_CRYP_SET_PHASE(CRYP_PHASE_INIT);
+      
+      b0addr = (uint32_t)blockb0;
+      /* Write the blockb0 block in the IN FIFO */
+      CRYP->DR = *(uint32_t*)(b0addr);
+      b0addr+=4;
+      CRYP->DR = *(uint32_t*)(b0addr);
+      b0addr+=4;
+      CRYP->DR = *(uint32_t*)(b0addr);
+      b0addr+=4;
+      CRYP->DR = *(uint32_t*)(b0addr);
+      
+      /* Enable the CRYP peripheral */
+      __HAL_CRYP_ENABLE();
+      
+      /* Get timeout */
+      timeout = HAL_GetTick() + 1;
+ 
+      while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN)
+      {
+        /* Check for the Timeout */
+        
+        if(HAL_GetTick() >= timeout)
+        {
+          /* Change state */
+          hcryp->State = HAL_CRYP_STATE_TIMEOUT;
+          
+          /* Process Unlocked */          
+          __HAL_UNLOCK(hcryp);
+          
+          return HAL_TIMEOUT;
+          
+        }
+      }
+      /***************************** Header phase *****************************/
+      if(headersize != 0)
+      {
+        /* Select header phase */
+        __HAL_CRYP_SET_PHASE(CRYP_PHASE_HEADER);
+        
+        /* Enable Crypto processor */
+        __HAL_CRYP_ENABLE();
+        
+        for(loopcounter = 0; (loopcounter < headersize); loopcounter+=16)
+        {
+          /* Get timeout */
+          timeout = HAL_GetTick() + 1;
+ 
+          while(HAL_IS_BIT_CLR(CRYP->SR, CRYP_FLAG_IFEM))
+          {
+            /* Check for the Timeout */
+            if(HAL_GetTick() >= timeout)
+            {
+              /* Change state */
+              hcryp->State = HAL_CRYP_STATE_TIMEOUT;
+              
+              /* Process Unlocked */          
+              __HAL_UNLOCK(hcryp);
+              
+              return HAL_TIMEOUT;
+            }
+          }
+          /* Write the header block in the IN FIFO */
+          CRYP->DR = *(uint32_t*)(headeraddr);
+          headeraddr+=4;
+          CRYP->DR = *(uint32_t*)(headeraddr);
+          headeraddr+=4;
+          CRYP->DR = *(uint32_t*)(headeraddr);
+          headeraddr+=4;
+          CRYP->DR = *(uint32_t*)(headeraddr);
+          headeraddr+=4;
+        }
+        
+/* Get timeout */
+        timeout = HAL_GetTick() + 1;
+
+        while((CRYP->SR & CRYP_FLAG_BUSY) == CRYP_FLAG_BUSY)
+        {
+          /* Check for the Timeout */
+          if(HAL_GetTick() >= timeout)
+          {
+            /* Change state */
+            hcryp->State = HAL_CRYP_STATE_TIMEOUT;
+            
+            /* Process Unlocked */          
+            __HAL_UNLOCK(hcryp);
+            
+            return HAL_TIMEOUT;
+          }
+        }
+      }
+      /* Save formatted counter into the scratch buffer pScratch */
+      for(loopcounter = 0; (loopcounter < 16); loopcounter++)
+      {
+        hcryp->Init.pScratch[loopcounter] = ctr[loopcounter];
+      }
+      /* Reset bit 0 */
+      hcryp->Init.pScratch[15] &= 0xfe;
+      /* Select payload phase once the header phase is performed */
+      __HAL_CRYP_SET_PHASE(CRYP_PHASE_PAYLOAD);
+      
+      /* Flush FIFO */
+      __HAL_CRYP_FIFO_FLUSH();
+      
+      /* Set the phase */
+      hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
+    }
+    /* Set the input and output addresses and start DMA transfer */ 
+    CRYPEx_GCMCCM_SetDMAConfig(hcryp, inputaddr, Size, outputaddr);
+    
+    /* Unlock process */
+    __HAL_UNLOCK(hcryp);
+    
+    /* Return function status */
+    return HAL_OK;
+  }
+  else
+  {
+    return HAL_ERROR;   
+  }
+}
+
+/**
+  * @brief  This function handles CRYP interrupt request.
+  * @param  hcryp: CRYP handle
+  * @retval None
+  */
+void HAL_CRYPEx_GCMCCM_IRQHandler(CRYP_HandleTypeDef *hcryp)
+{
+  switch(CRYP->CR & CRYP_CR_ALGOMODE_DIRECTION)
+  {    
+  case CRYP_CR_ALGOMODE_AES_GCM_ENCRYPT:
+    HAL_CRYPEx_AESGCM_Encrypt_IT(hcryp, NULL, 0, NULL);
+    break;
+    
+  case CRYP_CR_ALGOMODE_AES_GCM_DECRYPT:
+    HAL_CRYPEx_AESGCM_Decrypt_IT(hcryp, NULL, 0, NULL);
+    break;
+    
+  case CRYP_CR_ALGOMODE_AES_CCM_ENCRYPT:
+    HAL_CRYPEx_AESCCM_Encrypt_IT(hcryp, NULL, 0, NULL);
+    break;
+    
+  case CRYP_CR_ALGOMODE_AES_CCM_DECRYPT:
+    HAL_CRYPEx_AESCCM_Decrypt_IT(hcryp, NULL, 0, NULL);
+    break;
+    
+  default:
+    break;
+  }
+}
+
+/**
+  * @}
+  */
+
+/**
+  * @brief  DMA CRYP Input Data process complete callback. 
+  * @param  hdma: DMA handle
+  * @retval None
+  */
+static void CRYPEx_GCMCCM_DMAInCplt(DMA_HandleTypeDef *hdma)  
+{
+  CRYP_HandleTypeDef* hcryp = ( CRYP_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
+  
+  /* Disable the DMA transfer for input Fifo request by resetting the DIEN bit
+     in the DMACR register */
+  CRYP->DMACR &= (uint32_t)(~CRYP_DMACR_DIEN);
+  
+  /* Call input data transfer complete callback */
+  HAL_CRYP_InCpltCallback(hcryp);
+}
+
+/**
+  * @brief  DMA CRYP Output Data process complete callback.
+  * @param  hdma: DMA handle
+  * @retval None
+  */
+static void CRYPEx_GCMCCM_DMAOutCplt(DMA_HandleTypeDef *hdma)
+{
+  CRYP_HandleTypeDef* hcryp = ( CRYP_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
+  
+  /* Disable the DMA transfer for output Fifo request by resetting the DOEN bit
+     in the DMACR register */
+  CRYP->DMACR &= (uint32_t)(~CRYP_DMACR_DOEN);
+  
+  /* Enable the CRYP peripheral */
+  __HAL_CRYP_DISABLE();
+  
+  /* Change the CRYP peripheral state */
+  hcryp->State = HAL_CRYP_STATE_READY;
+  
+  /* Call output data transfer complete callback */
+  HAL_CRYP_OutCpltCallback(hcryp);
+}
+
+/**
+  * @brief  DMA CRYP communication error callback. 
+  * @param  hdma: DMA handle
+  * @retval None
+  */
+static void CRYPEx_GCMCCM_DMAError(DMA_HandleTypeDef *hdma)
+{
+  CRYP_HandleTypeDef* hcryp = ( CRYP_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
+  hcryp->State= HAL_CRYP_STATE_READY;
+  HAL_CRYP_ErrorCallback(hcryp);
+}
+
+/**
+  * @brief  Writes the Key in Key registers. 
+  * @param  hcryp: CRYP handle
+  * @param  Key: Pointer to Key buffer
+  * @param  KeySize: Size of Key
+  * @retval None
+  */
+static void CRYPEx_GCMCCM_SetKey(CRYP_HandleTypeDef *hcryp, uint8_t *Key, uint32_t KeySize)
+{
+  uint32_t keyaddr = (uint32_t)Key;
+  
+  switch(KeySize)
+  {
+  case CRYP_KEYSIZE_256B:
+    /* Key Initialisation */
+    CRYP->K0LR = __REV(*(uint32_t*)(keyaddr));
+    keyaddr+=4;
+    CRYP->K0RR = __REV(*(uint32_t*)(keyaddr));
+    keyaddr+=4;
+    CRYP->K1LR = __REV(*(uint32_t*)(keyaddr));
+    keyaddr+=4;
+    CRYP->K1RR = __REV(*(uint32_t*)(keyaddr));
+    keyaddr+=4;
+    CRYP->K2LR = __REV(*(uint32_t*)(keyaddr));
+    keyaddr+=4;
+    CRYP->K2RR = __REV(*(uint32_t*)(keyaddr));
+    keyaddr+=4;
+    CRYP->K3LR = __REV(*(uint32_t*)(keyaddr));
+    keyaddr+=4;
+    CRYP->K3RR = __REV(*(uint32_t*)(keyaddr));
+    break;
+  case CRYP_KEYSIZE_192B:
+    CRYP->K1LR = __REV(*(uint32_t*)(keyaddr));
+    keyaddr+=4;
+    CRYP->K1RR = __REV(*(uint32_t*)(keyaddr));
+    keyaddr+=4;
+    CRYP->K2LR = __REV(*(uint32_t*)(keyaddr));
+    keyaddr+=4;
+    CRYP->K2RR = __REV(*(uint32_t*)(keyaddr));
+    keyaddr+=4;
+    CRYP->K3LR = __REV(*(uint32_t*)(keyaddr));
+    keyaddr+=4;
+    CRYP->K3RR = __REV(*(uint32_t*)(keyaddr));
+    break;
+  case CRYP_KEYSIZE_128B:       
+    CRYP->K2LR = __REV(*(uint32_t*)(keyaddr));
+    keyaddr+=4;
+    CRYP->K2RR = __REV(*(uint32_t*)(keyaddr));
+    keyaddr+=4;
+    CRYP->K3LR = __REV(*(uint32_t*)(keyaddr));
+    keyaddr+=4;
+    CRYP->K3RR = __REV(*(uint32_t*)(keyaddr));
+    break;
+  default:
+    break;
+  }
+}
+
+/**
+  * @brief  Writes the InitVector/InitCounter in IV registers.
+  * @param  hcryp: CRYP handle
+  * @param  InitVector: Pointer to InitVector/InitCounter buffer
+  * @param  IVSize: Size of the InitVector/InitCounter
+  * @retval None
+  */
+static void CRYPEx_GCMCCM_SetInitVector(CRYP_HandleTypeDef *hcryp, uint8_t *InitVector, uint32_t IVSize)
+{
+  uint32_t ivaddr = (uint32_t)InitVector;
+  
+  switch(IVSize)
+  {
+  case CRYP_KEYSIZE_128B:
+    CRYP->IV0LR = __REV(*(uint32_t*)(ivaddr));
+    ivaddr+=4;
+    CRYP->IV0RR = __REV(*(uint32_t*)(ivaddr));
+    ivaddr+=4;
+    CRYP->IV1LR = __REV(*(uint32_t*)(ivaddr));
+    ivaddr+=4;
+    CRYP->IV1RR = __REV(*(uint32_t*)(ivaddr));
+    break;
+    /* Whatever key size 192 or 256, Init vector is written in IV0LR and IV0RR */
+  case CRYP_KEYSIZE_192B:
+    CRYP->IV0LR = __REV(*(uint32_t*)(ivaddr));
+    ivaddr+=4;
+    CRYP->IV0RR = __REV(*(uint32_t*)(ivaddr));
+    break;
+  case CRYP_KEYSIZE_256B:
+    CRYP->IV0LR = __REV(*(uint32_t*)(ivaddr));
+    ivaddr+=4;
+    CRYP->IV0RR = __REV(*(uint32_t*)(ivaddr));
+    break;
+  default:
+    break;
+  }
+}
+
+/**
+  * @brief  Process Data: Writes Input data in polling mode and read the Output data.
+  * @param  hcryp: CRYP handle
+  * @param  Input: Pointer to the Input buffer.
+  * @param  Ilength: Length of the Input buffer, must be a multiple of 16
+  * @param  Output: Pointer to the returned buffer
+  * @param  Timeout: Timeout value 
+  * @retval None
+  */
+static HAL_StatusTypeDef CRYPEx_GCMCCM_ProcessData(CRYP_HandleTypeDef *hcryp, uint8_t *Input, uint16_t Ilength, uint8_t *Output, uint32_t Timeout)
+{
+  uint32_t timeout = 0;   
+  uint32_t i = 0;
+  uint32_t inputaddr  = (uint32_t)Input;
+  uint32_t outputaddr = (uint32_t)Output;
+  
+  for(i=0; (i < Ilength); i+=16)
+  {
+    /* Write the Input block in the IN FIFO */
+    CRYP->DR = *(uint32_t*)(inputaddr);
+    inputaddr+=4;
+    CRYP->DR = *(uint32_t*)(inputaddr);
+    inputaddr+=4;
+    CRYP->DR  = *(uint32_t*)(inputaddr);
+    inputaddr+=4;
+    CRYP->DR = *(uint32_t*)(inputaddr);
+    inputaddr+=4;
+    
+    /* Get timeout */
+    timeout = HAL_GetTick() + Timeout;
+ 
+    while(HAL_IS_BIT_CLR(CRYP->SR, CRYP_FLAG_OFNE))
+    {
+      /* Check for the Timeout */
+      if(Timeout != HAL_MAX_DELAY)
+      {
+        if(HAL_GetTick() >= timeout)
+        {
+          /* Change state */
+          hcryp->State = HAL_CRYP_STATE_TIMEOUT;
+          
+          /* Process Unlocked */          
+          __HAL_UNLOCK(hcryp);
+          
+          return HAL_TIMEOUT;
+        }
+      }
+    }
+    /* Read the Output block from the OUT FIFO */
+    *(uint32_t*)(outputaddr) = CRYP->DOUT;
+    outputaddr+=4;
+    *(uint32_t*)(outputaddr) = CRYP->DOUT;
+    outputaddr+=4;
+    *(uint32_t*)(outputaddr) = CRYP->DOUT;
+    outputaddr+=4;
+    *(uint32_t*)(outputaddr) = CRYP->DOUT;
+    outputaddr+=4;
+  }
+  /* Return function status */
+  return HAL_OK;
+}
+
+/**
+  * @brief  Sets the header phase
+  * @param  hcryp: CRYP handle
+  * @param  Input: Pointer to the Input buffer.
+  * @param  Ilength: Length of the Input buffer, must be a multiple of 16
+  * @param  Timeout: Timeout value   
+  * @retval None
+  */
+static HAL_StatusTypeDef CRYPEx_GCMCCM_SetHeaderPhase(CRYP_HandleTypeDef *hcryp, uint8_t* Input, uint16_t Ilength, uint32_t Timeout)
+{
+  uint32_t timeout = 0;   
+  uint32_t loopcounter = 0;
+  uint32_t headeraddr = (uint32_t)Input;
+  
+  /***************************** Header phase *********************************/
+  if(hcryp->Init.HeaderSize != 0)
+  {
+    /* Select header phase */
+    __HAL_CRYP_SET_PHASE(CRYP_PHASE_HEADER);
+    /* Enable the CRYP peripheral */
+    __HAL_CRYP_ENABLE();
+    
+    for(loopcounter = 0; (loopcounter < hcryp->Init.HeaderSize); loopcounter+=16)
+    {
+      /* Get timeout */
+      timeout = HAL_GetTick() + Timeout;
+      
+      while(HAL_IS_BIT_CLR(CRYP->SR, CRYP_FLAG_IFEM))
+      {
+        /* Check for the Timeout */
+        if(Timeout != HAL_MAX_DELAY)
+        {
+          if(HAL_GetTick() >= timeout)
+          {
+            /* Change state */
+            hcryp->State = HAL_CRYP_STATE_TIMEOUT;
+            
+            /* Process Unlocked */          
+            __HAL_UNLOCK(hcryp);
+            
+            return HAL_TIMEOUT;
+          }
+        }
+      }
+      /* Write the Input block in the IN FIFO */
+      CRYP->DR = *(uint32_t*)(headeraddr);
+      headeraddr+=4;
+      CRYP->DR = *(uint32_t*)(headeraddr);
+      headeraddr+=4;
+      CRYP->DR = *(uint32_t*)(headeraddr);
+      headeraddr+=4;
+      CRYP->DR = *(uint32_t*)(headeraddr);
+      headeraddr+=4;
+    }
+    
+    /* Wait until the complete message has been processed */
+
+    /* Get timeout */
+    timeout = HAL_GetTick() + Timeout;
+
+    while((CRYP->SR & CRYP_FLAG_BUSY) == CRYP_FLAG_BUSY)
+    {
+      /* Check for the Timeout */
+      if(Timeout != HAL_MAX_DELAY)
+      {
+        if(HAL_GetTick() >= timeout)
+        {
+          /* Change state */
+          hcryp->State = HAL_CRYP_STATE_TIMEOUT;
+          
+          /* Process Unlocked */          
+          __HAL_UNLOCK(hcryp);
+          
+          return HAL_TIMEOUT;
+        }
+      }
+    }
+  }
+  /* Return function status */
+  return HAL_OK;
+}
+
+/**
+  * @brief  Sets the DMA configuration and start the DMA transfert.
+  * @param  hcryp: CRYP handle
+  * @param  inputaddr: Address of the Input buffer
+  * @param  Size: Size of the Input buffer, must be a multiple of 16
+  * @param  outputaddr: Address of the Output buffer
+  * @retval None
+  */
+static void CRYPEx_GCMCCM_SetDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size, uint32_t outputaddr)
+{
+  /* Set the CRYP DMA transfer complete callback */
+  hcryp->hdmain->XferCpltCallback = CRYPEx_GCMCCM_DMAInCplt;
+  /* Set the DMA error callback */
+  hcryp->hdmain->XferErrorCallback = CRYPEx_GCMCCM_DMAError;
+  
+  /* Set the CRYP DMA transfer complete callback */
+  hcryp->hdmaout->XferCpltCallback = CRYPEx_GCMCCM_DMAOutCplt;
+  /* Set the DMA error callback */
+  hcryp->hdmaout->XferErrorCallback = CRYPEx_GCMCCM_DMAError;
+  
+  /* Enable the CRYP peripheral */
+  __HAL_CRYP_ENABLE();
+  
+  /* Enable the DMA In DMA Stream */
+  HAL_DMA_Start_IT(hcryp->hdmain, inputaddr, (uint32_t)&CRYP->DR, Size/4);
+  
+  /* Enable In DMA request */
+  CRYP->DMACR = CRYP_DMACR_DIEN;
+  
+  /* Enable the DMA Out DMA Stream */
+  HAL_DMA_Start_IT(hcryp->hdmaout, (uint32_t)&CRYP->DOUT, outputaddr, Size/4);
+  
+  /* Enable Out DMA request */
+  CRYP->DMACR |= CRYP_DMACR_DOEN;
+}
+
+/**
+  * @}
+  */
+#endif /* STM32F437xx || STM32F439xx */
+
+#endif /* HAL_CRYP_MODULE_ENABLED */
+/**
+  * @}
+  */
+
+/**
+  * @}
+  */
+
+/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/