This is the Interface library for WIZnet W5500 chip which forked of EthernetInterfaceW5500, WIZnetInterface and WIZ550ioInterface. This library has simple name as "W5500Interface". and can be used for Wiz550io users also.

Dependents:   EvrythngApi Websocket_Ethernet_HelloWorld_W5500 Websocket_Ethernet_W5500 CurrentWeatherData_W5500 ... more

Information

It has EthernetInterface class like official EthernetInterface , but uses Wiznet chip driver codes.

So this library can use only the WIZnet W5500 or WIZ550io users.

This library has referred to many project such as WIZ550ioInterface, WiflyInterface and WIZnet Library.

Thanks all.

WIZnet/W5500.cpp

Committer:
embeddist
Date:
2015-04-28
Revision:
11:5499fa2d8898
Parent:
10:713b6d2aaefb

File content as of revision 11:5499fa2d8898:


#include "mbed.h"
#include "mbed_debug.h"
#include "wiznet.h"
#include "DNSClient.h"

#ifdef USE_W5500

//Debug is disabled by default
#if 0
#define DBG(...) do{debug("%p %d %s ", this,__LINE__,__PRETTY_FUNCTION__); debug(__VA_ARGS__); } while(0);
//#define DBG(x, ...) debug("[W5500:DBG]"x"\r\n", ##__VA_ARGS__);
#define WARN(x, ...) debug("[W5500:WARN]"x"\r\n", ##__VA_ARGS__);
#define ERR(x, ...) debug("[W5500:ERR]"x"\r\n", ##__VA_ARGS__);
#else
#define DBG(x, ...)
#define WARN(x, ...)
#define ERR(x, ...)
#endif

#if 1
#define INFO(x, ...) debug("[W5500:INFO]"x"\r\n", ##__VA_ARGS__);
#else
#define INFO(x, ...)
#endif

#define DBG_SPI 0

WIZnet_Chip* WIZnet_Chip::inst;

WIZnet_Chip::WIZnet_Chip(PinName mosi, PinName miso, PinName sclk, PinName _cs, PinName _reset):
    cs(_cs), reset_pin(_reset)
{
    spi = new SPI(mosi, miso, sclk);
    cs = 1;
    reset_pin = 1;
    inst = this;
    sock_any_port = SOCK_ANY_PORT_NUM;
}

WIZnet_Chip::WIZnet_Chip(SPI* spi, PinName _cs, PinName _reset):
    cs(_cs), reset_pin(_reset)
{
    this->spi = spi;
    cs = 1;
    reset_pin = 1;
    inst = this;
    sock_any_port = SOCK_ANY_PORT_NUM;
}

bool WIZnet_Chip::setmac()
{

    for (int i =0; i < 6; i++) reg_wr<uint8_t>(SHAR+i, mac[i]);

    return true;
}

// Set the IP
bool WIZnet_Chip::setip()
{
    reg_wr<uint32_t>(SIPR, ip);
    reg_wr<uint32_t>(GAR, gateway);
    reg_wr<uint32_t>(SUBR, netmask);
    return true;
}

bool WIZnet_Chip::linkstatus()
{
    if ( (reg_rd<uint8_t>(PHYCFGR) & 0x01) != 0x01 )
        return false;

    return true;
}


bool WIZnet_Chip::setProtocol(int socket, Protocol p)
{
    if (socket < 0) {
        return false;
    }
    sreg<uint8_t>(socket, Sn_MR, p);
    return true;
}

bool WIZnet_Chip::connect(int socket, const char * host, int port, int timeout_ms)
{
    if (socket < 0) {
        return false;
    }
    sreg<uint8_t>(socket, Sn_MR, TCP);
    scmd(socket, OPEN);
    sreg_ip(socket, Sn_DIPR, host);
    sreg<uint16_t>(socket, Sn_DPORT, port);
    sreg<uint16_t>(socket, Sn_PORT, new_port());
    scmd(socket, CONNECT);
    Timer t;
    t.reset();
    t.start();
    while(!is_connected(socket)) {
        if (t.read_ms() > timeout_ms) {
            return false;
        }
    }
    return true;
}

bool WIZnet_Chip::gethostbyname(const char* host, uint32_t* ip)
{
    uint32_t addr = str_to_ip(host);
    char buf[17];
    snprintf(buf, sizeof(buf), "%d.%d.%d.%d", (addr>>24)&0xff, (addr>>16)&0xff, (addr>>8)&0xff, addr&0xff);
    if (strcmp(buf, host) == 0) {
        *ip = addr;
        return true;
    }
    DNSClient client;
    if(client.lookup(host)) {
        *ip = client.ip;
        return true;
    }
    return false;
}

bool WIZnet_Chip::disconnect()
{
    return true;
}

bool WIZnet_Chip::is_connected(int socket)
{
    uint8_t tmpSn_SR;
    tmpSn_SR = sreg<uint8_t>(socket, Sn_SR);
    // packet sending is possible, when state is SOCK_CLOSE_WAIT.
    if ((tmpSn_SR == SOCK_ESTABLISHED) || (tmpSn_SR == SOCK_CLOSE_WAIT)) {
        return true;
    }
    return false;
}

// Reset the chip & set the buffer
void WIZnet_Chip::reset()
{
    reset_pin = 1;
    reset_pin = 0;
    wait_us(500); // 500us (w5500)
    reset_pin = 1;
    wait_ms(400); // 400ms (w5500)

#if defined(USE_WIZ550IO_MAC)
    //reg_rd_mac(SHAR, mac); // read the MAC address inside the module
#endif

    //reg_wr_mac(SHAR, mac);

    // set RX and TX buffer size
    for (int socket = 0; socket < MAX_SOCK_NUM; socket++) {
        sreg<uint8_t>(socket, Sn_RXBUF_SIZE, 2);
        sreg<uint8_t>(socket, Sn_TXBUF_SIZE, 2);
    }
}


bool WIZnet_Chip::close(int socket)
{
    if (socket < 0) {
        return false;
    }
    // if not connected, return
    if (sreg<uint8_t>(socket, Sn_SR) == SOCK_CLOSED) {
        return true;
    }
    if (sreg<uint8_t>(socket, Sn_MR) == TCP) {
        scmd(socket, DISCON);
    }
    scmd(socket, CLOSE);
    sreg<uint8_t>(socket, Sn_IR, 0xff);
    return true;
}

int WIZnet_Chip::wait_readable(int socket, int wait_time_ms, int req_size)
{
    if (socket < 0) {
        return -1;
    }
    Timer t;
    t.reset();
    t.start();
    while(1) {
        //int size = sreg<uint16_t>(socket, Sn_RX_RSR);
        int size, size2;
        // during the reading Sn_RX_RSR, it has the possible change of this register.
        // so read twice and get same value then use size information.
        do {
            size = sreg<uint16_t>(socket, Sn_RX_RSR);
            size2 = sreg<uint16_t>(socket, Sn_RX_RSR);
        } while (size != size2);

        if (size > req_size) {
            return size;
        }
        if (wait_time_ms != (-1) && t.read_ms() > wait_time_ms) {
            break;
        }
    }
    return -1;
}

int WIZnet_Chip::wait_writeable(int socket, int wait_time_ms, int req_size)
{
    if (socket < 0) {
        return -1;
    }
    Timer t;
    t.reset();
    t.start();
    while(1) {
        //int size = sreg<uint16_t>(socket, Sn_TX_FSR);
        int size, size2;
        // during the reading Sn_TX_FSR, it has the possible change of this register.
        // so read twice and get same value then use size information.
        do {
            size = sreg<uint16_t>(socket, Sn_TX_FSR);
            size2 = sreg<uint16_t>(socket, Sn_TX_FSR);
        } while (size != size2);
        if (size > req_size) {
            return size;
        }
        if (wait_time_ms != (-1) && t.read_ms() > wait_time_ms) {
            break;
        }
    }
    return -1;
}

int WIZnet_Chip::send(int socket, const char * str, int len)
{
    if (socket < 0) {
        return -1;
    }
    uint16_t ptr = sreg<uint16_t>(socket, Sn_TX_WR);
    uint8_t cntl_byte = (0x14 + (socket << 5));
    spi_write(ptr, cntl_byte, (uint8_t*)str, len);
    sreg<uint16_t>(socket, Sn_TX_WR, ptr + len);
    scmd(socket, SEND);
    uint8_t tmp_Sn_IR;
    while (( (tmp_Sn_IR = sreg<uint8_t>(socket, Sn_IR)) & INT_SEND_OK) != INT_SEND_OK) {
        // @Jul.10, 2014 fix contant name, and udp sendto function.
        switch (sreg<uint8_t>(socket, Sn_SR)) {
            case SOCK_CLOSED :
                close(socket);
                return 0;
                //break;
            case SOCK_UDP :
                // ARP timeout is possible.
                if ((tmp_Sn_IR & INT_TIMEOUT) == INT_TIMEOUT) {
                    sreg<uint8_t>(socket, Sn_IR, INT_TIMEOUT);
                    return 0;
                }
                break;
            default :
                break;
        }
    }
    sreg<uint8_t>(socket, Sn_IR, INT_SEND_OK);

    return len;
}

int WIZnet_Chip::recv(int socket, char* buf, int len)
{
    if (socket < 0) {
        return -1;
    }
    uint16_t ptr = sreg<uint16_t>(socket, Sn_RX_RD);
    uint8_t cntl_byte = (0x18 + (socket << 5));
    spi_read(ptr, cntl_byte, (uint8_t*)buf, len);
    sreg<uint16_t>(socket, Sn_RX_RD, ptr + len);
    scmd(socket, RECV);
    return len;
}

int WIZnet_Chip::new_socket()
{
    for(int s = 0; s < MAX_SOCK_NUM; s++) {
        if (sreg<uint8_t>(s, Sn_SR) == SOCK_CLOSED) {
            return s;
        }
    }
    return -1;
}

uint16_t WIZnet_Chip::new_port()
{
    uint16_t port = rand();
    port |= 49152;
    return port;
}

void WIZnet_Chip::scmd(int socket, Command cmd)
{
    sreg<uint8_t>(socket, Sn_CR, cmd);
    while(sreg<uint8_t>(socket, Sn_CR));
}

void WIZnet_Chip::spi_write(uint16_t addr, uint8_t cb, const uint8_t *buf, uint16_t len)
{
    cs = 0;
    spi->write(addr >> 8);
    spi->write(addr & 0xff);
    spi->write(cb);
    for(int i = 0; i < len; i++) {
        spi->write(buf[i]);
    }
    cs = 1;

#if DBG_SPI
    debug("[SPI]W %04x(%02x %d)", addr, cb, len);
    for(int i = 0; i < len; i++) {
        debug(" %02x", buf[i]);
        if (i > 16) {
            debug(" ...");
            break;
        }
    }
    debug("\r\n");
#endif
}

void WIZnet_Chip::spi_read(uint16_t addr, uint8_t cb, uint8_t *buf, uint16_t len)
{
    cs = 0;
    spi->write(addr >> 8);
    spi->write(addr & 0xff);
    spi->write(cb);
    for(int i = 0; i < len; i++) {
        buf[i] = spi->write(0);
    }
    cs = 1;

#if DBG_SPI
    debug("[SPI]R %04x(%02x %d)", addr, cb, len);
    for(int i = 0; i < len; i++) {
        debug(" %02x", buf[i]);
        if (i > 16) {
            debug(" ...");
            break;
        }
    }
    debug("\r\n");
    if ((addr&0xf0ff)==0x4026 || (addr&0xf0ff)==0x4003) {
        wait_ms(200);
    }
#endif
}

uint32_t str_to_ip(const char* str)
{
    uint32_t ip = 0;
    char* p = (char*)str;
    for(int i = 0; i < 4; i++) {
        ip |= atoi(p);
        p = strchr(p, '.');
        if (p == NULL) {
            break;
        }
        ip <<= 8;
        p++;
    }
    return ip;
}

void printfBytes(char* str, uint8_t* buf, int len)
{
    printf("%s %d:", str, len);
    for(int i = 0; i < len; i++) {
        printf(" %02x", buf[i]);
    }
    printf("\n");
}

void printHex(uint8_t* buf, int len)
{
    for(int i = 0; i < len; i++) {
        if ((i%16) == 0) {
            printf("%p", buf+i);
        }
        printf(" %02x", buf[i]);
        if ((i%16) == 15) {
            printf("\n");
        }
    }
    printf("\n");
}

void debug_hex(uint8_t* buf, int len)
{
    for(int i = 0; i < len; i++) {
        if ((i%16) == 0) {
            debug("%p", buf+i);
        }
        debug(" %02x", buf[i]);
        if ((i%16) == 15) {
            debug("\n");
        }
    }
    debug("\n");
}

#endif