mbed library sources

Dependents:   Encrypted my_mbed lklk CyaSSL_DTLS_Cellular ... more

Superseded

This library was superseded by mbed-dev - https://os.mbed.com/users/mbed_official/code/mbed-dev/.

Development branch of the mbed library sources. This library is kept in synch with the latest changes from the mbed SDK and it is not guaranteed to work.

If you are looking for a stable and tested release, please import one of the official mbed library releases:

Import librarymbed

The official Mbed 2 C/C++ SDK provides the software platform and libraries to build your applications.

targets/hal/TARGET_STM/TARGET_NUCLEO_L152RE/spi_api.c

Committer:
mbed_official
Date:
2014-05-01
Revision:
177:d57c40a064c8
Parent:
174:8bb9f3a33240
Child:
190:bde2479eef9e

File content as of revision 177:d57c40a064c8:

/* mbed Microcontroller Library
 *******************************************************************************
 * Copyright (c) 2014, STMicroelectronics
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice,
 *    this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 *    this list of conditions and the following disclaimer in the documentation
 *    and/or other materials provided with the distribution.
 * 3. Neither the name of STMicroelectronics nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *******************************************************************************
 */
#include "spi_api.h"

#if DEVICE_SPI

#include <math.h>
#include "cmsis.h"
#include "pinmap.h"
#include "error.h"

static const PinMap PinMap_SPI_MOSI[] = {
    {PA_7,  SPI_1, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_SPI1)},
    {PA_12, SPI_1, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_SPI1)},
    {PB_5,  SPI_1, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_SPI1)},
//  {PB_5,  SPI_3, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_SPI3)},
    {PB_15, SPI_2, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_SPI2)},
    {PC_12, SPI_3, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_SPI3)},
    {NC,    NC,    0}
};

static const PinMap PinMap_SPI_MISO[] = {
    {PA_6,  SPI_1, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_SPI1)},
    {PA_11, SPI_1, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_SPI1)},
    {PB_4,  SPI_1, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_SPI1)},
//  {PB_4,  SPI_3, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_SPI3)},
    {PB_14, SPI_2, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_SPI2)},
    {PC_11, SPI_3, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_SPI3)},
    {NC,    NC,    0}
};

static const PinMap PinMap_SPI_SCLK[] = {
    {PA_5,  SPI_1, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_SPI1)},
    {PB_3,  SPI_1, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_SPI1)},
//  {PB_3,  SPI_3, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_SPI3)},
    {PB_13, SPI_2, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_SPI2)},
    {PC_10, SPI_3, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_SPI3)},
    {NC,    NC,    0}
};

static const PinMap PinMap_SPI_SSEL[] = {
    {PA_4,  SPI_1, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_SPI1)},
//  {PA_4,  SPI_3, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_SPI3)},
    {PA_15, SPI_1, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_SPI1)},
//  {PA_15, SPI_3, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_SPI3)},
    {PB_12, SPI_2, STM_PIN_DATA(GPIO_Mode_AF, GPIO_OType_PP, GPIO_PuPd_UP, GPIO_AF_SPI2)},
    {NC,    NC,    0}
};

static void init_spi(spi_t *obj) {
    SPI_TypeDef *spi = (SPI_TypeDef *)(obj->spi);
    SPI_InitTypeDef SPI_InitStructure;

    SPI_Cmd(spi, DISABLE);

    SPI_InitStructure.SPI_Mode              = obj->mode;
    SPI_InitStructure.SPI_NSS               = obj->nss;
    SPI_InitStructure.SPI_Direction         = SPI_Direction_2Lines_FullDuplex;
    SPI_InitStructure.SPI_DataSize          = obj->bits;
    SPI_InitStructure.SPI_CPOL              = obj->cpol;
    SPI_InitStructure.SPI_CPHA              = obj->cpha;
    SPI_InitStructure.SPI_BaudRatePrescaler = obj->br_presc;
    SPI_InitStructure.SPI_FirstBit          = SPI_FirstBit_MSB;
    SPI_InitStructure.SPI_CRCPolynomial     = 7;
    SPI_Init(spi, &SPI_InitStructure);

    SPI_Cmd(spi, ENABLE);
}

void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName sclk, PinName ssel) {
    // Determine the SPI to use
    SPIName spi_mosi = (SPIName)pinmap_peripheral(mosi, PinMap_SPI_MOSI);
    SPIName spi_miso = (SPIName)pinmap_peripheral(miso, PinMap_SPI_MISO);
    SPIName spi_sclk = (SPIName)pinmap_peripheral(sclk, PinMap_SPI_SCLK);
    SPIName spi_ssel = (SPIName)pinmap_peripheral(ssel, PinMap_SPI_SSEL);

    SPIName spi_data = (SPIName)pinmap_merge(spi_mosi, spi_miso);
    SPIName spi_cntl = (SPIName)pinmap_merge(spi_sclk, spi_ssel);

    obj->spi = (SPIName)pinmap_merge(spi_data, spi_cntl);

    if (obj->spi == (SPIName)NC) {
        error("SPI pinout mapping failed");
    }

    // Enable SPI clock
    if (obj->spi == SPI_1) {
        RCC_APB2PeriphClockCmd(RCC_APB2Periph_SPI1, ENABLE);
    }
    if (obj->spi == SPI_2) {
        RCC_APB1PeriphClockCmd(RCC_APB1Periph_SPI2, ENABLE);
    }
    if (obj->spi == SPI_3) {
        RCC_APB1PeriphClockCmd(RCC_APB1Periph_SPI3, ENABLE);
    }

    // Configure the SPI pins
    pinmap_pinout(mosi, PinMap_SPI_MOSI);
    pinmap_pinout(miso, PinMap_SPI_MISO);
    pinmap_pinout(sclk, PinMap_SPI_SCLK);

    // Save new values
    obj->bits = SPI_DataSize_8b;
    obj->cpol = SPI_CPOL_Low;
    obj->cpha = SPI_CPHA_1Edge;
    obj->br_presc = SPI_BaudRatePrescaler_256;

    if (ssel == NC) { // Master
        obj->mode = SPI_Mode_Master;
        obj->nss = SPI_NSS_Soft;
    } else { // Slave
        pinmap_pinout(ssel, PinMap_SPI_SSEL);
        obj->mode = SPI_Mode_Slave;
        obj->nss = SPI_NSS_Soft;
    }

    init_spi(obj);
}

void spi_free(spi_t *obj) {
    SPI_TypeDef *spi = (SPI_TypeDef *)(obj->spi);
    SPI_I2S_DeInit(spi);
}

void spi_format(spi_t *obj, int bits, int mode, int slave) {
    // Save new values
    if (bits == 8) {
        obj->bits = SPI_DataSize_8b;
    } else {
        obj->bits = SPI_DataSize_16b;
    }

    switch (mode) {
        case 0:
            obj->cpol = SPI_CPOL_Low;
            obj->cpha = SPI_CPHA_1Edge;
            break;
        case 1:
            obj->cpol = SPI_CPOL_Low;
            obj->cpha = SPI_CPHA_2Edge;
            break;
        case 2:
            obj->cpol = SPI_CPOL_High;
            obj->cpha = SPI_CPHA_1Edge;
            break;
        default:
            obj->cpol = SPI_CPOL_High;
            obj->cpha = SPI_CPHA_2Edge;
            break;
    }

    if (slave == 0) {
        obj->mode = SPI_Mode_Master;
        obj->nss = SPI_NSS_Soft;
    } else {
        obj->mode = SPI_Mode_Slave;
        obj->nss = SPI_NSS_Hard;
    }

    init_spi(obj);
}

void spi_frequency(spi_t *obj, int hz) {
    // Values depend of PCLK1 and PCLK2: 32 MHz if HSI is used, 24 MHz if HSE is used
    if (SystemCoreClock == 32000000) { // HSI
        if (hz < 250000) {
            obj->br_presc = SPI_BaudRatePrescaler_256; // 125 kHz
        } else if ((hz >= 250000) && (hz < 500000)) {
            obj->br_presc = SPI_BaudRatePrescaler_128; // 250 kHz
        } else if ((hz >= 500000) && (hz < 1000000)) {
            obj->br_presc = SPI_BaudRatePrescaler_64; // 500 kHz
        } else if ((hz >= 1000000) && (hz < 2000000)) {
            obj->br_presc = SPI_BaudRatePrescaler_32; // 1 MHz
        } else if ((hz >= 2000000) && (hz < 4000000)) {
            obj->br_presc = SPI_BaudRatePrescaler_16; // 2 MHz
        } else if ((hz >= 4000000) && (hz < 8000000)) {
            obj->br_presc = SPI_BaudRatePrescaler_8; // 4 MHz
        } else if ((hz >= 8000000) && (hz < 16000000)) {
            obj->br_presc = SPI_BaudRatePrescaler_4; // 8 MHz
        } else { // >= 16000000
            obj->br_presc = SPI_BaudRatePrescaler_2; // 16 MHz
        }
    } else { // 24 MHz - HSE
        if (hz < 180000) {
            obj->br_presc = SPI_BaudRatePrescaler_256; // 94 kHz
        } else if ((hz >= 180000) && (hz < 350000)) {
            obj->br_presc = SPI_BaudRatePrescaler_128; // 188 kHz
        } else if ((hz >= 350000) && (hz < 750000)) {
            obj->br_presc = SPI_BaudRatePrescaler_64; // 375 kHz
        } else if ((hz >= 750000) && (hz < 1000000)) {
            obj->br_presc = SPI_BaudRatePrescaler_32; // 750 kHz
        } else if ((hz >= 1000000) && (hz < 3000000)) {
            obj->br_presc = SPI_BaudRatePrescaler_16; // 1.5 MHz
        } else if ((hz >= 3000000) && (hz < 6000000)) {
            obj->br_presc = SPI_BaudRatePrescaler_8; // 3 MHz
        } else if ((hz >= 6000000) && (hz < 12000000)) {
            obj->br_presc = SPI_BaudRatePrescaler_4; // 6 MHz
        } else { // >= 12000000
            obj->br_presc = SPI_BaudRatePrescaler_2; // 12 MHz
        }
    }
    init_spi(obj);
}

static inline int ssp_readable(spi_t *obj) {
    int status;
    SPI_TypeDef *spi = (SPI_TypeDef *)(obj->spi);
    // Check if data is received
    status = ((SPI_I2S_GetFlagStatus(spi, SPI_I2S_FLAG_RXNE) != RESET) ? 1 : 0);
    return status;
}

static inline int ssp_writeable(spi_t *obj) {
    int status;
    SPI_TypeDef *spi = (SPI_TypeDef *)(obj->spi);
    // Check if data is transmitted
    status = ((SPI_I2S_GetFlagStatus(spi, SPI_I2S_FLAG_TXE) != RESET) ? 1 : 0);
    return status;
}

static inline void ssp_write(spi_t *obj, int value) {
    SPI_TypeDef *spi = (SPI_TypeDef *)(obj->spi);
    while (!ssp_writeable(obj));
    SPI_I2S_SendData(spi, (uint16_t)value);
}

static inline int ssp_read(spi_t *obj) {
    SPI_TypeDef *spi = (SPI_TypeDef *)(obj->spi);
    while (!ssp_readable(obj));
    return (int)SPI_I2S_ReceiveData(spi);
}

static inline int ssp_busy(spi_t *obj) {
    int status;
    SPI_TypeDef *spi = (SPI_TypeDef *)(obj->spi);
    status = ((SPI_I2S_GetFlagStatus(spi, SPI_I2S_FLAG_BSY) != RESET) ? 1 : 0);
    return status;
}

int spi_master_write(spi_t *obj, int value) {
    ssp_write(obj, value);
    return ssp_read(obj);
}

int spi_slave_receive(spi_t *obj) {
    return (ssp_readable(obj) && !ssp_busy(obj)) ? (1) : (0);
};

int spi_slave_read(spi_t *obj) {
    SPI_TypeDef *spi = (SPI_TypeDef *)(obj->spi);
    return (int)SPI_I2S_ReceiveData(spi);
}

void spi_slave_write(spi_t *obj, int value) {
    SPI_TypeDef *spi = (SPI_TypeDef *)(obj->spi);
    while (!ssp_writeable(obj));
    SPI_I2S_SendData(spi, (uint16_t)value);
}

int spi_busy(spi_t *obj) {
    return ssp_busy(obj);
}

#endif