Maniacbug's RF24 arduino library ported to mbed. Tested, it works for Nucleo F411

Dependents:   RF24Network_Send RF24Network_Receive WeatherStation maple_chotobot_rf_motores ... more

Files at this revision

API Documentation at this revision

Comitter:
akashvibhute
Date:
Thu Apr 21 04:10:58 2016 +0000
Parent:
5:ee34c2837c4c
Child:
7:32d6957f37ae
Child:
8:b70b1d82f1d7
Commit message:
Library re-ported with all the latest and greatest stuff from Manicbug; Synced with TMRh20's RF24 library on Apr/18/2015 from https://github.com/TMRh20

Changed in this revision

RF24.cpp Show annotated file Show diff for this revision Revisions of this file
RF24.h Show annotated file Show diff for this revision Revisions of this file
RF24_config.h Show annotated file Show diff for this revision Revisions of this file
nRF24L01.h Show annotated file Show diff for this revision Revisions of this file
--- a/RF24.cpp	Tue Feb 23 00:40:33 2016 +0000
+++ b/RF24.cpp	Thu Apr 21 04:10:58 2016 +0000
@@ -5,15 +5,16 @@
  modify it under the terms of the GNU General Public License
  version 2 as published by the Free Software Foundation.
  */
-
+ 
 /*
  * Mbed support added by Akash Vibhute <akash.roboticist@gmail.com>
  * Porting completed on Nov/05/2015
  *
- * Updated with TMRh20's RF24 library on Nov/04/2015 from https://github.com/TMRh20
+ * Updated 1: Synced with TMRh20's RF24 library on Nov/04/2015 from https://github.com/TMRh20
+ * Updated 2: Synced with TMRh20's RF24 library on Apr/18/2015 from https://github.com/TMRh20
  *
  */
-
+ 
 #include "nRF24L01.h"
 #include "RF24_config.h"
 #include "RF24.h"
@@ -22,182 +23,350 @@
 
 void RF24::csn(bool mode)
 {
-    csn_pin = mode;
-    wait_us(5);
+
+	csn_pin = mode;
+
+	
+	
+	
+	
+	
+	
+	
+	
+	
+	
+	
+	
+	
+	
+	
+	
+	
+	
+	
+	
+	
+	
+	
+	
+	
+	
+	
+	
+	
+	
+	
+	
+	
+	
+	
+	
 }
 
 /****************************************************************************/
 
 void RF24::ce(bool level)
 {
-    ce_pin = level;
+  ce_pin = level;
+  
 }
 
 /****************************************************************************/
 
-inline void RF24::beginTransaction()
-{
-    csn_pin=LOW;
-}
+  inline void RF24::beginTransaction() {
+
+  
+    csn(LOW);
+  }
 
 /****************************************************************************/
 
-inline void RF24::endTransaction()
-{
-    csn_pin=HIGH;
-}
+  inline void RF24::endTransaction() {
+    csn(HIGH);
+
+	
+	
+  }
 
 /****************************************************************************/
 
 uint8_t RF24::read_register(uint8_t reg, uint8_t* buf, uint8_t len)
 {
-    uint8_t status;
+  uint8_t status;
 
-    beginTransaction();
-    status = spi.write( R_REGISTER | ( REGISTER_MASK & reg ) );
-    while ( len-- )
-        *buf++ = spi.write(0xff);
-    endTransaction();
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
 
-    return status;
+  beginTransaction();
+  status = spi.write( R_REGISTER | ( REGISTER_MASK & reg ) );
+  while ( len-- ){
+    *buf++ = spi.write(0xff);
+  }
+  endTransaction();
+
+
+
+  return status;
 }
 
 /****************************************************************************/
 
 uint8_t RF24::read_register(uint8_t reg)
 {
-    uint8_t result;
+  uint8_t result;
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
 
-    beginTransaction();
-    spi.write( R_REGISTER | ( REGISTER_MASK & reg ) );
-    result = spi.write(0xff);
-    endTransaction();
+  beginTransaction();
+  spi.write( R_REGISTER | ( REGISTER_MASK & reg ) );
+  result = spi.write(0xff);
+  endTransaction();
 
-    return result;
+
+
+  return result;
 }
 
 /****************************************************************************/
 
 uint8_t RF24::write_register(uint8_t reg, const uint8_t* buf, uint8_t len)
 {
-    uint8_t status;
+  uint8_t status;
 
-    beginTransaction();
-    status = spi.write( W_REGISTER | ( REGISTER_MASK & reg ) );
-    while ( len-- )
-        spi.write(*buf++);
-    endTransaction();
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
 
-    return status;
+  beginTransaction();
+  status = spi.write( W_REGISTER | ( REGISTER_MASK & reg ) );
+  while ( len-- )
+    spi.write(*buf++);
+  endTransaction();
+
+  
+  
+  return status;
 }
 
 /****************************************************************************/
 
 uint8_t RF24::write_register(uint8_t reg, uint8_t value)
 {
-    uint8_t status;
+  uint8_t status;
 
-    IF_SERIAL_DEBUG(printf(PSTR("write_register(%02x,%02x)\r\n"),reg,value));
+  IF_SERIAL_DEBUG(printf_P(PSTR("write_register(%02x,%02x)\r\n"),reg,value));
 
-    beginTransaction();
-    status = spi.write( W_REGISTER | ( REGISTER_MASK & reg ) );
-    spi.write(value);
-    endTransaction();
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
 
-    return status;
+  beginTransaction();
+  status = spi.write( W_REGISTER | ( REGISTER_MASK & reg ) );
+  spi.write(value);
+  endTransaction();
+
+  
+
+  return status;
 }
 
 /****************************************************************************/
-uint8_t RF24::write_payload(const void* buf, uint8_t len, const uint8_t writeType)
+
+uint8_t RF24::write_payload(const void* buf, uint8_t data_len, const uint8_t writeType)
 {
-    uint8_t status;
-    const uint8_t* current = reinterpret_cast<const uint8_t*>(buf);
-
-    uint8_t data_len = rf24_min(len, payload_size);
-    uint8_t blank_len = dynamic_payloads_enabled ? 0 : payload_size - data_len;
-
-    IF_SERIAL_DEBUG( printf("[Writing %u bytes %u blanks]\n",data_len,blank_len); );
+  uint8_t status;
+  const uint8_t* current = reinterpret_cast<const uint8_t*>(buf);
 
-    beginTransaction();
-    status = spi.write( W_TX_PAYLOAD );
-    while ( data_len-- )
-        spi.write(*current++);
-    while ( blank_len-- )
-        spi.write(0);
+   data_len = rf24_min(data_len, payload_size);
+   uint8_t blank_len = dynamic_payloads_enabled ? 0 : payload_size - data_len;
+  
+  //printf("[Writing %u bytes %u blanks]",data_len,blank_len);
+  IF_SERIAL_DEBUG( printf("[Writing %u bytes %u blanks]\n",data_len,blank_len); );
+  
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
 
-    endTransaction();
+  beginTransaction();
+  status = spi.write( writeType );
+  while ( data_len-- ) {
+    spi.write(*current++);
+  }
+  while ( blank_len-- ) {
+    spi.write(0);
+  }  
+  endTransaction();
 
-    return status;
+  
+
+  return status;
 }
 
 /****************************************************************************/
 
 uint8_t RF24::read_payload(void* buf, uint8_t data_len)
 {
-    uint8_t status;
-    uint8_t* current = reinterpret_cast<uint8_t*>(buf);
+  uint8_t status;
+  uint8_t* current = reinterpret_cast<uint8_t*>(buf);
 
-    if(data_len > payload_size) data_len = payload_size;
-    uint8_t blank_len = dynamic_payloads_enabled ? 0 : payload_size - data_len;
-
-    IF_SERIAL_DEBUG( printf("[Reading %u bytes %u blanks]\n",data_len,blank_len); );
+  if(data_len > payload_size) data_len = payload_size;
+  uint8_t blank_len = dynamic_payloads_enabled ? 0 : payload_size - data_len;
+  
+  //printf("[Reading %u bytes %u blanks]",data_len,blank_len);
 
-    beginTransaction();
-    status = spi.write( R_RX_PAYLOAD );
-    while ( data_len-- )
-        *current++ = spi.write(0xff);
-    while ( blank_len-- )
-        spi.write(0xff);
-    endTransaction();
+  IF_SERIAL_DEBUG( printf("[Reading %u bytes %u blanks]\n",data_len,blank_len); );
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
 
-    return status;
+  beginTransaction();
+  status = spi.write( R_RX_PAYLOAD );
+  while ( data_len-- ) {
+    *current++ = spi.write(0xFF);
+  }
+  while ( blank_len-- ) {
+    spi.write(0xff);
+  }
+  endTransaction();
+
+  
+
+  return status;
 }
 
 /****************************************************************************/
 
 uint8_t RF24::flush_rx(void)
 {
-    return spiTrans( FLUSH_RX );
+  return spiTrans( FLUSH_RX );
 }
 
 /****************************************************************************/
 
 uint8_t RF24::flush_tx(void)
 {
-    return spiTrans( FLUSH_TX );
+  return spiTrans( FLUSH_TX );
 }
 
 /****************************************************************************/
 
-uint8_t RF24::spiTrans(uint8_t cmd)
-{
-
-    uint8_t status;
+uint8_t RF24::spiTrans(uint8_t cmd){
 
-    beginTransaction();
-    status = spi.write( cmd );
-    endTransaction();
-
-    return status;
+  uint8_t status;
+  
+  beginTransaction();
+  status = spi.write( cmd );
+  endTransaction();
+  
+  return status;
 }
 
 /****************************************************************************/
 
 uint8_t RF24::get_status(void)
 {
-    return spiTrans(NOP);
+  return spiTrans(NOP);
 }
 
 /****************************************************************************/
 #if !defined (MINIMAL)
 void RF24::print_status(uint8_t status)
 {
-    printf(("STATUS\t\t = 0x%02x RX_DR=%x TX_DS=%x MAX_RT=%x RX_P_NO=%x TX_FULL=%x\r\n"),
+  printf_P(PSTR("STATUS\t\t = 0x%02x RX_DR=%x TX_DS=%x MAX_RT=%x RX_P_NO=%x TX_FULL=%x\r\n"),
            status,
            (status & _BV(RX_DR))?1:0,
            (status & _BV(TX_DS))?1:0,
            (status & _BV(MAX_RT))?1:0,
-           ((status >> RX_P_NO) & 7),
+           ((status >> RX_P_NO) & 0b111),
            (status & _BV(TX_FULL))?1:0
           );
 }
@@ -206,10 +375,10 @@
 
 void RF24::print_observe_tx(uint8_t value)
 {
-    printf(("OBSERVE_TX=%02x: POLS_CNT=%x ARC_CNT=%x\r\n"),
+  printf_P(PSTR("OBSERVE_TX=%02x: POLS_CNT=%x ARC_CNT=%x\r\n"),
            value,
-           ((value >> PLOS_CNT) & 15),
-           ((value >> ARC_CNT) & 15)
+           (value >> PLOS_CNT) & 0b1111,
+           (value >> ARC_CNT) & 0b1111
           );
 }
 
@@ -217,48 +386,54 @@
 
 void RF24::print_byte_register(const char* name, uint8_t reg, uint8_t qty)
 {
-    printf("%s =",name);
-    while (qty--)
-        printf_P(PSTR(" 0x%02x"),read_register(reg++));
-    printf_P(PSTR("\r\n"));
-
+  //char extra_tab = strlen_P(name) < 8 ? '\t' : 0;
+  //printf_P(PSTR(PRIPSTR"\t%c ="),name,extra_tab);
+  
+  
+  
+    printf_P(PSTR(PRIPSTR"\t ="),name);
+  
+  while (qty--)
+    printf_P(PSTR(" 0x%02x"),read_register(reg++));
+  printf_P(PSTR("\r\n"));
 }
 
 /****************************************************************************/
 
 void RF24::print_address_register(const char* name, uint8_t reg, uint8_t qty)
 {
-    printf_P(PSTR(PRIPSTR"\t ="),name);
-
-    while (qty--) {
-        uint8_t buffer[addr_width];
-        read_register(reg++,buffer,sizeof buffer);
 
-        printf_P(PSTR(" 0x"));
-        uint8_t* bufptr = buffer + sizeof buffer;
-        while( --bufptr >= buffer )
-            printf_P(PSTR("%02x"),*bufptr);
-    }
+  
+  
+  
+    printf_P(PSTR(PRIPSTR"\t ="),name);
+  
+  while (qty--)
+  {
+    uint8_t buffer[addr_width];
+    read_register(reg++,buffer,sizeof buffer);
 
-    printf_P(PSTR("\r\n"));
+    printf_P(PSTR(" 0x"));
+    uint8_t* bufptr = buffer + sizeof buffer;
+    while( --bufptr >= buffer )
+      printf_P(PSTR("%02x"),*bufptr);
+  }
 
+  printf_P(PSTR("\r\n"));
 }
 #endif
 /****************************************************************************/
-
 RF24::RF24(PinName mosi, PinName miso, PinName sck, PinName _cepin, PinName _csnpin):
-    ce_pin(_cepin), csn_pin(_csnpin), p_variant(false),
-    payload_size(32), dynamic_payloads_enabled(false), addr_width(5), spi(mosi, miso, sck)
+  spi(mosi, miso, sck), ce_pin(_cepin), csn_pin(_csnpin), p_variant(true),
+  payload_size(32), dynamic_payloads_enabled(false), addr_width(5)
 {
-    pipe0_reading_address[0]=0;
-    spi.frequency(10000000/5);     // 2Mbit, 1/5th the maximum transfer rate for the spi bus
-    spi.format(8,0);                                   // 8-bit, ClockPhase = 0, ClockPolarity = 0
-
-    DigitalOut  ce_pin(_cepin); /**< "Chip Enable" pin, activates the RX or TX role */
-    DigitalOut  csn_pin(_csnpin); /**< SPI Chip select */
-
-    wait_ms(100);
-
+  pipe0_reading_address[0]=0;
+  
+  //spi.frequency(10000000/5);     // 2Mbit, 1/5th the maximum transfer rate for the spi bus
+  spi.frequency(10000000);
+  //spi.format(8,0);               // 8-bit, ClockPhase = 0, ClockPolarity = 0
+  spi.format(8,0);               
+  wait_ms(10);
 }
 
 
@@ -272,26 +447,27 @@
 
 void RF24::setChannel(uint8_t channel)
 {
-    const uint8_t max_channel = 127;
-    write_register(RF_CH,rf24_min(channel,max_channel));
+  const uint8_t max_channel = 125;
+  write_register(RF_CH,rf24_min(channel,max_channel));
 }
 
 uint8_t RF24::getChannel()
 {
-    return read_register(RF_CH);
+  
+  return read_register(RF_CH);
 }
 /****************************************************************************/
 
 void RF24::setPayloadSize(uint8_t size)
 {
-    payload_size = rf24_min(size,32);
+  payload_size = rf24_min(size,32);
 }
 
 /****************************************************************************/
 
 uint8_t RF24::getPayloadSize(void)
 {
-    return payload_size;
+  return payload_size;
 }
 
 /****************************************************************************/
@@ -302,55 +478,101 @@
 static const char rf24_datarate_e_str_1[] PROGMEM = "2MBPS";
 static const char rf24_datarate_e_str_2[] PROGMEM = "250KBPS";
 static const char * const rf24_datarate_e_str_P[] PROGMEM = {
-    rf24_datarate_e_str_0,
-    rf24_datarate_e_str_1,
-    rf24_datarate_e_str_2,
+  rf24_datarate_e_str_0,
+  rf24_datarate_e_str_1,
+  rf24_datarate_e_str_2,
 };
 static const char rf24_model_e_str_0[] PROGMEM = "nRF24L01";
 static const char rf24_model_e_str_1[] PROGMEM = "nRF24L01+";
 static const char * const rf24_model_e_str_P[] PROGMEM = {
-    rf24_model_e_str_0,
-    rf24_model_e_str_1,
+  rf24_model_e_str_0,
+  rf24_model_e_str_1,
 };
 static const char rf24_crclength_e_str_0[] PROGMEM = "Disabled";
 static const char rf24_crclength_e_str_1[] PROGMEM = "8 bits";
 static const char rf24_crclength_e_str_2[] PROGMEM = "16 bits" ;
 static const char * const rf24_crclength_e_str_P[] PROGMEM = {
-    rf24_crclength_e_str_0,
-    rf24_crclength_e_str_1,
-    rf24_crclength_e_str_2,
+  rf24_crclength_e_str_0,
+  rf24_crclength_e_str_1,
+  rf24_crclength_e_str_2,
 };
 static const char rf24_pa_dbm_e_str_0[] PROGMEM = "PA_MIN";
 static const char rf24_pa_dbm_e_str_1[] PROGMEM = "PA_LOW";
 static const char rf24_pa_dbm_e_str_2[] PROGMEM = "PA_HIGH";
 static const char rf24_pa_dbm_e_str_3[] PROGMEM = "PA_MAX";
 static const char * const rf24_pa_dbm_e_str_P[] PROGMEM = {
-    rf24_pa_dbm_e_str_0,
-    rf24_pa_dbm_e_str_1,
-    rf24_pa_dbm_e_str_2,
-    rf24_pa_dbm_e_str_3,
+  rf24_pa_dbm_e_str_0,
+  rf24_pa_dbm_e_str_1,
+  rf24_pa_dbm_e_str_2,
+  rf24_pa_dbm_e_str_3,
 };
 
+
+
+
+
+
+
+
+
+
+
+
+
+
 void RF24::printDetails(void)
 {
-    print_status(get_status());
+
+
+
+
+
+
+
+
+
+
+
+
 
-    print_address_register(PSTR("RX_ADDR_P0-1"),RX_ADDR_P0,2);
-    print_byte_register(PSTR("RX_ADDR_P2-5"),RX_ADDR_P2,4);
-    print_address_register(PSTR("TX_ADDR\t"),TX_ADDR);
+
+
+
+
+
+
+
+
+
+
+
+
 
-    print_byte_register(PSTR("RX_PW_P0-6"),RX_PW_P0,6);
-    print_byte_register(PSTR("EN_AA\t"),EN_AA);
-    print_byte_register(PSTR("EN_RXADDR"),EN_RXADDR);
-    print_byte_register(PSTR("RF_CH\t"),RF_CH);
-    print_byte_register(PSTR("RF_SETUP"),RF_SETUP);
-    print_byte_register(PSTR("CONFIG\t"),CONFIG);
-    print_byte_register(PSTR("DYNPD/FEATURE"),DYNPD,2);
+
+
+
+
+
+
+
+  print_status(get_status());
+
+  print_address_register(PSTR("RX_ADDR_P0-1"),RX_ADDR_P0,2);
+  print_byte_register(PSTR("RX_ADDR_P2-5"),RX_ADDR_P2,4);
+  print_address_register(PSTR("TX_ADDR\t"),TX_ADDR);
 
-    printf_P(PSTR("Data Rate\t = "PRIPSTR"\r\n"),pgm_read_word(&rf24_datarate_e_str_P[getDataRate()]));
-    printf_P(PSTR("Model\t\t = "PRIPSTR"\r\n"),pgm_read_word(&rf24_model_e_str_P[isPVariant()]));
-    printf_P(PSTR("CRC Length\t = "PRIPSTR"\r\n"),pgm_read_word(&rf24_crclength_e_str_P[getCRCLength()]));
-    printf_P(PSTR("PA Power\t = "PRIPSTR"\r\n"),  pgm_read_word(&rf24_pa_dbm_e_str_P[getPALevel()]));
+  print_byte_register(PSTR("RX_PW_P0-6"),RX_PW_P0,6);
+  print_byte_register(PSTR("EN_AA\t"),EN_AA);
+  print_byte_register(PSTR("EN_RXADDR"),EN_RXADDR);
+  print_byte_register(PSTR("RF_CH\t"),RF_CH);
+  print_byte_register(PSTR("RF_SETUP"),RF_SETUP);
+  print_byte_register(PSTR("CONFIG\t"),NRF_CONFIG);
+  print_byte_register(PSTR("DYNPD/FEATURE"),DYNPD,2);
+
+  printf_P(PSTR("Data Rate\t = " PRIPSTR "\r\n"),pgm_read_word(&rf24_datarate_e_str_P[getDataRate()]));
+  printf_P(PSTR("Model\t\t = " PRIPSTR "\r\n"),pgm_read_word(&rf24_model_e_str_P[isPVariant()]));
+  printf_P(PSTR("CRC Length\t = " PRIPSTR "\r\n"),pgm_read_word(&rf24_crclength_e_str_P[getCRCLength()]));
+  printf_P(PSTR("PA Power\t = " PRIPSTR "\r\n"),  pgm_read_word(&rf24_pa_dbm_e_str_P[getPALevel()]));
 
 }
 
@@ -359,130 +581,187 @@
 
 bool RF24::begin(void)
 {
-    uint8_t setup=0;
+
+  uint8_t setup=0;
+
+ 	mainTimer.start();
+  
+    ce(LOW);
+  	csn(HIGH);
+
+	wait_ms(100);
+
+
+
+
 
-    mainTimer.start();
+
+
+
+
+
+
 
-    ce_pin=LOW;
-    csn_pin=HIGH;
+
+
+
+
+
+
 
-    // Must allow the radio time to settle else configuration bits will not necessarily stick.
-    // This is actually only required following power up but some settling time also appears to
-    // be required after resets too. For full coverage, we'll always assume the worst.
-    // Enabling 16b CRC is by far the most obvious case if the wrong timing is used - or skipped.
-    // Technically we require 4.5ms + 14us as a worst case. We'll just call it 5ms for good measure.
-    // WARNING: Delay is based on P-variant whereby non-P *may* require different timing.
-    wait_ms( 5 ) ;
+
+
+
+
+
+
+
+
+
+
+
+
+
 
-    // Reset CONFIG and enable 16-bit CRC.
-    write_register( CONFIG, 12 ) ;
+
+
+
+
+	
+  
 
-    // Set 1500uS (minimum for 32B payload in ESB@250KBPS) timeouts, to make testing a little easier
-    // WARNING: If this is ever lowered, either 250KBS mode with AA is broken or maximum packet
-    // sizes must never be used. See documentation for a more complete explanation.
-    setRetries(5,15);
-
-    // Reset value is MAX
-    setPALevel( RF24_PA_MAX ) ;
+  // Must allow the radio time to settle else configuration bits will not necessarily stick.
+  // This is actually only required following power up but some settling time also appears to
+  // be required after resets too. For full coverage, we'll always assume the worst.
+  // Enabling 16b CRC is by far the most obvious case if the wrong timing is used - or skipped.
+  // Technically we require 4.5ms + 14us as a worst case. We'll just call it 5ms for good measure.
+  // WARNING: Delay is based on P-variant whereby non-P *may* require different timing.
+  wait_ms( 5 ) ;
 
-    // check for connected module and if this is a p nRF24l01 variant
-    //
-    if( setDataRate( RF24_250KBPS ) ) {
-        p_variant = true ;
-    }
-    /*setup = read_register(RF_SETUP);
-    if( setup == 0b00001110 )     // register default for nRF24L01P
-    {
-      p_variant = true ;
-    }*/
+  // Reset NRF_CONFIG and enable 16-bit CRC.
+  write_register( NRF_CONFIG, 0b00001100 ) ;
+
+  // Set 1500uS (minimum for 32B payload in ESB@250KBPS) timeouts, to make testing a little easier
+  // WARNING: If this is ever lowered, either 250KBS mode with AA is broken or maximum packet
+  // sizes must never be used. See documentation for a more complete explanation.
+  setRetries(5,15);
+
+  // Reset value is MAX
+  //setPALevel( RF24_PA_MAX ) ;
 
-    // Then set the data rate to the slowest (and most reliable) speed supported by all
-    // hardware.
-    setDataRate( RF24_1MBPS ) ;
-
-    // Initialize CRC and request 2-byte (16bit) CRC
-    setCRCLength( RF24_CRC_16 ) ;
+  // check for connected module and if this is a p nRF24l01 variant
+  //
+  if( setDataRate( RF24_250KBPS ) )
+  {
+    p_variant = true ;
+  }
+  setup = read_register(RF_SETUP);
+  /*if( setup == 0b00001110 )     // register default for nRF24L01P
+  {
+    p_variant = true ;
+  }*/
+  
+  // Then set the data rate to the slowest (and most reliable) speed supported by all
+  // hardware.
+  //setDataRate( RF24_1MBPS ) ;
+  setDataRate( RF24_2MBPS ) ;
 
-    // Disable dynamic payloads, to match dynamic_payloads_enabled setting - Reset value is 0
-    toggle_features();
-    write_register(FEATURE,0 );
-    write_register(DYNPD,0);
+  // Initialize CRC and request 2-byte (16bit) CRC
+  //setCRCLength( RF24_CRC_16 ) ;
 
-    // Reset current status
-    // Notice reset and flush is the last thing we do
-    write_register(NRF_STATUS,_BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT) );
+  // Disable dynamic payloads, to match dynamic_payloads_enabled setting - Reset value is 0
+  toggle_features();
+  write_register(FEATURE,0 );
+  write_register(DYNPD,0);
+
+  // Reset current status
+  // Notice reset and flush is the last thing we do
+  write_register(NRF_STATUS,_BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT) );
 
-    // Set up default configuration.  Callers can always change it later.
-    // This channel should be universally safe and not bleed over into adjacent
-    // spectrum.
-    setChannel(76);
+  // Set up default configuration.  Callers can always change it later.
+  // This channel should be universally safe and not bleed over into adjacent
+  // spectrum.
+  setChannel(76);
 
-    // Flush buffers
-    flush_rx();
-    flush_tx();
+  // Flush buffers
+  flush_rx();
+  flush_tx();
 
-    powerUp(); //Power up by default when begin() is called
+  powerUp(); //Power up by default when begin() is called
 
-    // Enable PTX, do not write CE high so radio will remain in standby I mode ( 130us max to transition to RX or TX instead of 1500us from powerUp )
-    // PTX should use only 22uA of power
-    write_register(CONFIG, ( read_register(CONFIG) ) & ~_BV(PRIM_RX) );
-
-    // if setup is 0 or ff then there was no response from module
-    return ( setup != 0 && setup != 0xff );
+  // Enable PTX, do not write CE high so radio will remain in standby I mode ( 130us max to transition to RX or TX instead of 1500us from powerUp )
+  // PTX should use only 22uA of power
+  write_register(NRF_CONFIG, ( read_register(NRF_CONFIG) ) & ~_BV(PRIM_RX) );
+	printDetails();
+  // if setup is 0 or ff then there was no response from module
+  return ( setup != 0 && setup != 0xff );
 }
 
 /****************************************************************************/
 
 void RF24::startListening(void)
 {
-    write_register(CONFIG, read_register(CONFIG) | _BV(PRIM_RX));
-    write_register(NRF_STATUS, _BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT) );
-    ce(true);
-    // Restore the pipe0 adddress, if exists
-    if (pipe0_reading_address[0] > 0) {
-        write_register(RX_ADDR_P0, pipe0_reading_address, addr_width);
-    } else {
-        closeReadingPipe(0);
-    }
+ 
+ 
+ 
+  write_register(NRF_CONFIG, read_register(NRF_CONFIG) | _BV(PRIM_RX));
+  write_register(NRF_STATUS, _BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT) );
+  ce(HIGH);
+  // Restore the pipe0 adddress, if exists
+  if (pipe0_reading_address[0] > 0){
+    write_register(RX_ADDR_P0, pipe0_reading_address, addr_width);	
+  }else{
+	closeReadingPipe(0);
+  }
 
-    // Flush buffers
-    //flush_rx();
-    if(read_register(FEATURE) & _BV(EN_ACK_PAY)) {
-        flush_tx();
-    }
+  // Flush buffers
+  //flush_rx();
+  if(read_register(FEATURE) & _BV(EN_ACK_PAY)){
+	flush_tx();
+  }
 
-    //wait_us(100);
+  // Go!
+  //delayMicroseconds(100);
 }
 
 /****************************************************************************/
-static const uint8_t child_pipe_enable[] PROGMEM = {
-    ERX_P0, ERX_P1, ERX_P2, ERX_P3, ERX_P4, ERX_P5
+static const uint8_t child_pipe_enable[] PROGMEM =
+{
+  ERX_P0, ERX_P1, ERX_P2, ERX_P3, ERX_P4, ERX_P5
 };
 
 void RF24::stopListening(void)
-{
-    ce_pin=LOW;
-
-    wait_us(txRxDelay);
+{  
+  ce(LOW);
 
-    if(read_register(FEATURE) & _BV(EN_ACK_PAY)) {
-        wait_us(txRxDelay); //200
-        flush_tx();
-    }
-    //flush_rx();
-    write_register(CONFIG, ( read_register(CONFIG) ) & ~_BV(PRIM_RX) );
+  wait_us(txRxDelay);
+  
+  if(read_register(FEATURE) & _BV(EN_ACK_PAY)){
+    wait_us(txRxDelay); //200
+	flush_tx();
+  }
+  //flush_rx();
+  write_register(NRF_CONFIG, ( read_register(NRF_CONFIG) ) & ~_BV(PRIM_RX) );
+ 
+  
+  
+  
+  
+  
+  
+  
+  write_register(EN_RXADDR,read_register(EN_RXADDR) | _BV(pgm_read_byte(&child_pipe_enable[0]))); // Enable RX on pipe0
+  
+  //delayMicroseconds(100);
 
-    write_register(EN_RXADDR,read_register(EN_RXADDR) | _BV(pgm_read_byte(&child_pipe_enable[0]))); // Enable RX on pipe0
-
-    //wait_us(100);
 }
 
 /****************************************************************************/
 
 void RF24::powerDown(void)
 {
-    ce(false); // Guarantee CE is low on powerDown
-    write_register(CONFIG,read_register(CONFIG) & ~_BV(PWR_UP));
+  ce(LOW); // Guarantee CE is low on powerDown
+  write_register(NRF_CONFIG,read_register(NRF_CONFIG) & ~_BV(PWR_UP));
 }
 
 /****************************************************************************/
@@ -490,31 +769,30 @@
 //Power up now. Radio will not power down unless instructed by MCU for config changes etc.
 void RF24::powerUp(void)
 {
-    uint8_t cfg = read_register(CONFIG);
+   uint8_t cfg = read_register(NRF_CONFIG);
 
-    // if not powered up then power up and wait for the radio to initialize
-    if (!(cfg & _BV(PWR_UP))) {
-        write_register(CONFIG,read_register(CONFIG) | _BV(PWR_UP));
+   // if not powered up then power up and wait for the radio to initialize
+   if (!(cfg & _BV(PWR_UP))){
+      write_register(NRF_CONFIG, cfg | _BV(PWR_UP));
 
-        // For nRF24L01+ to go from power down mode to TX or RX mode it must first pass through stand-by mode.
-        // There must be a delay of Tpd2stby (see Table 16.) after the nRF24L01+ leaves power down mode before
-        // the CEis set high. - Tpd2stby can be up to 5ms per the 1.0 datasheet
-        wait_ms(5);
-    }
+      // For nRF24L01+ to go from power down mode to TX or RX mode it must first pass through stand-by mode.
+	  // There must be a delay of Tpd2stby (see Table 16.) after the nRF24L01+ leaves power down mode before
+	  // the CEis set high. - Tpd2stby can be up to 5ms per the 1.0 datasheet
+      wait_ms(5);
+   }
 }
 
 /******************************************************************/
-#if defined (FAILURE_HANDLING)
-void RF24::errNotify()
-{
-#if defined (SERIAL_DEBUG)
-    printf_P(PSTR("RF24 HARDWARE FAIL: Radio not responding, verify pin connections, wiring, etc.\r\n"));
-#endif
-#if defined (FAILURE_HANDLING)
-    failureDetected = 1;
-#else
-    wait_ms(5000);
-#endif
+#if defined (FAILURE_HANDLING) || defined (RF24_LINUX)
+void RF24::errNotify(){
+	#if defined (SERIAL_DEBUG) || defined (RF24_LINUX)
+	  printf_P(PSTR("RF24 HARDWARE FAIL: Radio not responding, verify pin connections, wiring, etc.\r\n"));
+	#endif
+	#if defined (FAILURE_HANDLING)
+	failureDetected = 1;
+	#else
+	wait_ms(5000);
+	#endif
 }
 #endif
 /******************************************************************/
@@ -522,129 +800,125 @@
 //Similar to the previous write, clears the interrupt flags
 bool RF24::write( const void* buf, uint8_t len, const bool multicast )
 {
-    //Start Writing
-    startFastWrite(buf,len,multicast);
-
-    //Wait until complete or failed
-#if defined (FAILURE_HANDLING)
-    uint32_t timer = mainTimer.read_ms();
-#endif
+	//Start Writing
+	startFastWrite(buf,len,multicast);
 
-    while( ! ( get_status()  & ( _BV(TX_DS) | _BV(MAX_RT) ))) {
-#if defined (FAILURE_HANDLING)
-        if(mainTimer.read_ms() - timer > 85) {
-            errNotify();
-#if defined (FAILURE_HANDLING)
-            return 0;
-#else
-            wait_ms(100);
-#endif
-        }
-#endif
-    }
+	//Wait until complete or failed
+	#if defined (FAILURE_HANDLING) || defined (RF24_LINUX)
+		uint32_t timer = mainTimer.read_ms();
+	#endif 
+	
+	while( ! ( get_status()  & ( _BV(TX_DS) | _BV(MAX_RT) ))) { 
+		#if defined (FAILURE_HANDLING) || defined (RF24_LINUX)
+			if(mainTimer.read_ms() - timer > 95){			
+				errNotify();
+				#if defined (FAILURE_HANDLING)
+				  return 0;		
+				#else
+				  wait_ms(100);
+				#endif
+			}
+		#endif
+	}
+    
+	ce(LOW);
 
-    ce_pin=LOW;
-
-    uint8_t status = write_register(NRF_STATUS,_BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT) );
+	uint8_t status = write_register(NRF_STATUS,_BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT) );
 
-    //Max retries exceeded
-    if( status & _BV(MAX_RT)) {
-        flush_tx(); //Only going to be 1 packet int the FIFO at a time using this method, so just flush
-        return 0;
-    }
-    //TX OK 1 or 0
-    return 1;
+  //Max retries exceeded
+  if( status & _BV(MAX_RT)){
+  	flush_tx(); //Only going to be 1 packet int the FIFO at a time using this method, so just flush
+  	return 0;
+  }
+	//TX OK 1 or 0
+  return 1;
 }
 
-bool RF24::write( const void* buf, uint8_t len )
-{
-    return write(buf,len,0);
+bool RF24::write( const void* buf, uint8_t len ){
+	return write(buf,len,0);
 }
 /****************************************************************************/
 
 //For general use, the interrupt flags are not important to clear
 bool RF24::writeBlocking( const void* buf, uint8_t len, uint32_t timeout )
 {
-    //Block until the FIFO is NOT full.
-    //Keep track of the MAX retries and set auto-retry if seeing failures
-    //This way the FIFO will fill up and allow blocking until packets go through
-    //The radio will auto-clear everything in the FIFO as long as CE remains high
+	//Block until the FIFO is NOT full.
+	//Keep track of the MAX retries and set auto-retry if seeing failures
+	//This way the FIFO will fill up and allow blocking until packets go through
+	//The radio will auto-clear everything in the FIFO as long as CE remains high
 
-    uint32_t timer = mainTimer.read_ms();                             //Get the time that the payload transmission started
+	uint32_t timer = mainTimer.read_ms();							  //Get the time that the payload transmission started
 
-    while( ( get_status()  & ( _BV(TX_FULL) ))) {         //Blocking only if FIFO is full. This will loop and block until TX is successful or timeout
+	while( ( get_status()  & ( _BV(TX_FULL) ))) {		  //Blocking only if FIFO is full. This will loop and block until TX is successful or timeout
 
-        if( get_status() & _BV(MAX_RT)) {                     //If MAX Retries have been reached
-            reUseTX();                                        //Set re-transmit and clear the MAX_RT interrupt flag
-            if(mainTimer.read_ms() - timer > timeout) {
-                return 0;    //If this payload has exceeded the user-defined timeout, exit and return 0
-            }
-        }
-#if defined (FAILURE_HANDLING)
-        if(mainTimer.read_ms() - timer > (timeout+85) ) {
-            errNotify();
-#if defined (FAILURE_HANDLING)
-            return 0;
-#endif
-        }
-#endif
-    }
+		if( get_status() & _BV(MAX_RT)){					  //If MAX Retries have been reached
+			reUseTX();										  //Set re-transmit and clear the MAX_RT interrupt flag
+			if(mainTimer.read_ms() - timer > timeout){ return 0; }		  //If this payload has exceeded the user-defined timeout, exit and return 0
+		}
+		#if defined (FAILURE_HANDLING) || defined (RF24_LINUX)
+			if(mainTimer.read_ms() - timer > (timeout+95) ){			
+				errNotify();
+				#if defined (FAILURE_HANDLING)
+				return 0;			
+                #endif				
+			}
+		#endif
 
-    //Start Writing
-    startFastWrite(buf,len,0);                                //Write the payload if a buffer is clear
+  	}
 
-    return 1;                                                 //Return 1 to indicate successful transmission
+  	//Start Writing
+	startFastWrite(buf,len,0);								  //Write the payload if a buffer is clear
+
+	return 1;												  //Return 1 to indicate successful transmission
 }
 
 /****************************************************************************/
 
-void RF24::reUseTX()
-{
-    write_register(NRF_STATUS,_BV(MAX_RT) );              //Clear max retry flag
-    spiTrans( REUSE_TX_PL );
-    ce_pin=LOW;                                       //Re-Transfer packet
-    ce_pin=HIGH;
+void RF24::reUseTX(){
+		write_register(NRF_STATUS,_BV(MAX_RT) );			  //Clear max retry flag
+		spiTrans( REUSE_TX_PL );
+		ce(LOW);										  //Re-Transfer packet
+		ce(HIGH);
 }
 
 /****************************************************************************/
 
 bool RF24::writeFast( const void* buf, uint8_t len, const bool multicast )
 {
-    //Block until the FIFO is NOT full.
-    //Keep track of the MAX retries and set auto-retry if seeing failures
-    //Return 0 so the user can control the retrys and set a timer or failure counter if required
-    //The radio will auto-clear everything in the FIFO as long as CE remains high
+	//Block until the FIFO is NOT full.
+	//Keep track of the MAX retries and set auto-retry if seeing failures
+	//Return 0 so the user can control the retrys and set a timer or failure counter if required
+	//The radio will auto-clear everything in the FIFO as long as CE remains high
 
-#if defined (FAILURE_HANDLING)
-    uint32_t timer = mainTimer.read_ms();
-#endif
-
-    while( ( get_status()  & ( _BV(TX_FULL) ))) {             //Blocking only if FIFO is full. This will loop and block until TX is successful or fail
+	#if defined (FAILURE_HANDLING) || defined (RF24_LINUX)
+		uint32_t timer = mainTimer.read_ms();
+	#endif
+	
+	while( ( get_status()  & ( _BV(TX_FULL) ))) {			  //Blocking only if FIFO is full. This will loop and block until TX is successful or fail
 
-        if( get_status() & _BV(MAX_RT)) {
-            //reUseTX();                                          //Set re-transmit
-            write_register(NRF_STATUS,_BV(MAX_RT) );              //Clear max retry flag
-            return 0;                                         //Return 0. The previous payload has been retransmitted
-            //From the user perspective, if you get a 0, just keep trying to send the same payload
-        }
-#if defined (FAILURE_HANDLING)
-        if(mainTimer.read_ms() - timer > 85 ) {
-            errNotify();
-#if defined (FAILURE_HANDLING)
-            return 0;
-#endif
-        }
-#endif
-    }
-    //Start Writing
-    startFastWrite(buf,len,multicast);
+		if( get_status() & _BV(MAX_RT)){
+			//reUseTX();										  //Set re-transmit
+			write_register(NRF_STATUS,_BV(MAX_RT) );			  //Clear max retry flag
+			return 0;										  //Return 0. The previous payload has been retransmitted
+															  //From the user perspective, if you get a 0, just keep trying to send the same payload
+		}
+		#if defined (FAILURE_HANDLING) || defined (RF24_LINUX)
+			if(mainTimer.read_ms() - timer > 95 ){			
+				errNotify();
+				#if defined (FAILURE_HANDLING)
+				return 0;							
+				#endif
+			}
+		#endif
+  	}
+		     //Start Writing
+	startFastWrite(buf,len,multicast);
 
-    return 1;
+	return 1;
 }
 
-bool RF24::writeFast( const void* buf, uint8_t len )
-{
-    return writeFast(buf,len,0);
+bool RF24::writeFast( const void* buf, uint8_t len ){
+	return writeFast(buf,len,0);
 }
 
 /****************************************************************************/
@@ -654,288 +928,302 @@
 //Otherwise we enter Standby-II mode, which is still faster than standby mode
 //Also, we remove the need to keep writing the config register over and over and delaying for 150 us each time if sending a stream of data
 
-void RF24::startFastWrite( const void* buf, uint8_t len, const bool multicast, bool startTx)  //TMRh20
-{
+void RF24::startFastWrite( const void* buf, uint8_t len, const bool multicast, bool startTx){ //TMRh20
 
-    //write_payload( buf,len);
-    write_payload( buf, len,multicast ? W_TX_PAYLOAD_NO_ACK : W_TX_PAYLOAD ) ;
-    if(startTx) {
-        ce_pin=HIGH;
-    }
+	//write_payload( buf,len);
+	write_payload( buf, len,multicast ? W_TX_PAYLOAD_NO_ACK : W_TX_PAYLOAD ) ;
+	if(startTx){
+		ce(HIGH);
+	}
+
 }
 
 /****************************************************************************/
 
 //Added the original startWrite back in so users can still use interrupts, ack payloads, etc
 //Allows the library to pass all tests
-void RF24::startWrite( const void* buf, uint8_t len, const bool multicast )
-{
-
-    // Send the payload
-
-    //write_payload( buf, len );
-    write_payload( buf, len,multicast? W_TX_PAYLOAD_NO_ACK : W_TX_PAYLOAD ) ;
-    ce_pin=HIGH;
-
-    wait_us(10);
+void RF24::startWrite( const void* buf, uint8_t len, const bool multicast ){
 
-    ce_pin=LOW;
-}
-
-/****************************************************************************/
-
-bool RF24::rxFifoFull()
-{
-    return read_register(FIFO_STATUS) & _BV(RX_FULL);
-}
-/****************************************************************************/
-
-bool RF24::txStandBy()
-{
+  // Send the payload
 
-#if defined (FAILURE_HANDLING)
-    uint32_t timeout = mainTimer.read_ms();
-#endif
-    while( ! (read_register(FIFO_STATUS) & _BV(TX_EMPTY)) ) {
-        if( get_status() & _BV(MAX_RT)) {
-            write_register(NRF_STATUS,_BV(MAX_RT) );
-            ce_pin=LOW;
-            flush_tx();    //Non blocking, flush the data
-            return 0;
-        }
-#if defined (FAILURE_HANDLING)
-        if( mainTimer.read_ms() - timeout > 85) {
-            errNotify();
-#if defined (FAILURE_HANDLING)
-            return 0;
-#endif
-        }
-#endif
-    }
-
-    ce_pin=LOW;               //Set STANDBY-I mode
-    return 1;
-}
-
-/****************************************************************************/
-
-bool RF24::txStandBy(uint32_t timeout, bool startTx)
-{
+  //write_payload( buf, len );
+  write_payload( buf, len,multicast? W_TX_PAYLOAD_NO_ACK : W_TX_PAYLOAD ) ;
+  ce(HIGH);
+  
+  wait_us(10);
+  
+  ce(LOW);
 
-    if(startTx) {
-        stopListening();
-        ce_pin=HIGH;
-    }
-    uint32_t start = mainTimer.read_ms();
-
-    while( ! (read_register(FIFO_STATUS) & _BV(TX_EMPTY)) ) {
-        if( get_status() & _BV(MAX_RT)) {
-            write_register(NRF_STATUS,_BV(MAX_RT) );
-            ce_pin=LOW;                                          //Set re-transmit
-            ce_pin=HIGH;
-            if(mainTimer.read_ms() - start >= timeout) {
-                ce_pin=LOW;;
-                flush_tx();
-                return 0;
-            }
-        }
-#if defined (FAILURE_HANDLING)
-        if( mainTimer.read_ms() - start > (timeout+85)) {
-            errNotify();
-#if defined (FAILURE_HANDLING)
-            return 0;
-#endif
-        }
-#endif
-    }
-
-    ce_pin=LOW;                   //Set STANDBY-I mode
-    return 1;
 
 }
 
 /****************************************************************************/
 
-void RF24::maskIRQ(bool tx, bool fail, bool rx)
-{
+bool RF24::rxFifoFull(){
+	return read_register(FIFO_STATUS) & _BV(RX_FULL);
+}
+/****************************************************************************/
+
+bool RF24::txStandBy(){
+
+    #if defined (FAILURE_HANDLING) || defined (RF24_LINUX)
+		uint32_t timeout = mainTimer.read_ms();
+	#endif
+	while( ! (read_register(FIFO_STATUS) & _BV(TX_EMPTY)) ){
+		if( get_status() & _BV(MAX_RT)){
+			write_register(NRF_STATUS,_BV(MAX_RT) );
+			ce(LOW);
+			flush_tx();    //Non blocking, flush the data
+			return 0;
+		}
+		#if defined (FAILURE_HANDLING) || defined (RF24_LINUX)
+			if( mainTimer.read_ms() - timeout > 95){
+				errNotify();
+				#if defined (FAILURE_HANDLING)
+				return 0;	
+				#endif
+			}
+		#endif
+	}
+
+	ce(LOW);			   //Set STANDBY-I mode
+	return 1;
+}
+
+/****************************************************************************/
+
+bool RF24::txStandBy(uint32_t timeout, bool startTx){
 
-    write_register(CONFIG, ( read_register(CONFIG) ) | fail << MASK_MAX_RT | tx << MASK_TX_DS | rx << MASK_RX_DR  );
+    if(startTx){
+	  stopListening();
+	  ce(HIGH);
+	}
+	uint32_t start = mainTimer.read_ms();
+
+	while( ! (read_register(FIFO_STATUS) & _BV(TX_EMPTY)) ){
+		if( get_status() & _BV(MAX_RT)){
+			write_register(NRF_STATUS,_BV(MAX_RT) );
+				ce(LOW);										  //Set re-transmit
+				ce(HIGH);
+				if(mainTimer.read_ms() - start >= timeout){
+					ce(LOW); flush_tx(); return 0;
+				}
+		}
+		#if defined (FAILURE_HANDLING) || defined (RF24_LINUX)
+			if( mainTimer.read_ms() - start > (timeout+95)){
+				errNotify();
+				#if defined (FAILURE_HANDLING)
+				return 0;	
+				#endif
+			}
+		#endif
+	}
+
+	
+	ce(LOW);				   //Set STANDBY-I mode
+	return 1;
+
+}
+
+/****************************************************************************/
+
+void RF24::maskIRQ(bool tx, bool fail, bool rx){
+
+	uint8_t config = read_register(NRF_CONFIG);
+	/* clear the interrupt flags */
+	config &= ~(1 << MASK_MAX_RT | 1 << MASK_TX_DS | 1 << MASK_RX_DR);
+	/* set the specified interrupt flags */
+	config |= fail << MASK_MAX_RT | tx << MASK_TX_DS | rx << MASK_RX_DR;
+	write_register(NRF_CONFIG, config);
 }
 
 /****************************************************************************/
 
 uint8_t RF24::getDynamicPayloadSize(void)
 {
-    uint8_t result = 0;
-
-    beginTransaction();
-    spi.write( R_RX_PL_WID );
-    result = spi.write(0xff);
-    endTransaction();
+  uint8_t result = 0;
 
+  
+  
+  
+  
+  
+  
+  
+  
+  beginTransaction();
+  spi.write( R_RX_PL_WID );
+  result = spi.write(0xff);
+  endTransaction();
+  
 
-    if(result > 32) {
-        flush_rx();
-        wait_ms(2);
-        return 0;
-    }
-    return result;
+  if(result > 32) { flush_rx(); wait_ms(2); return 0; }
+  return result;
 }
 
 /****************************************************************************/
 
 bool RF24::available(void)
 {
-    return available(NULL);
+  return available(NULL);
 }
 
 /****************************************************************************/
 
 bool RF24::available(uint8_t* pipe_num)
 {
-    if (!( read_register(FIFO_STATUS) & _BV(RX_EMPTY) )) {
+  if (!( read_register(FIFO_STATUS) & _BV(RX_EMPTY) )){
 
-        // If the caller wants the pipe number, include that
-        if ( pipe_num ) {
-            uint8_t status = get_status();
-            *pipe_num = ( status >> RX_P_NO ) & 7;
-        }
-        return 1;
-    }
+    // If the caller wants the pipe number, include that
+    if ( pipe_num ){
+	  uint8_t status = get_status();
+      *pipe_num = ( status >> RX_P_NO ) & 0b111;
+  	}
+  	return 1;
+  }
 
-    return 0;
+
+  return 0;
+
+
 }
 
 /****************************************************************************/
 
-void RF24::read( void* buf, uint8_t len )
-{
+void RF24::read( void* buf, uint8_t len ){
 
-    // Fetch the payload
-    read_payload( buf, len );
+  // Fetch the payload
+  read_payload( buf, len );
 
-    //Clear the two possible interrupt flags with one command
-    write_register(NRF_STATUS,_BV(RX_DR) | _BV(MAX_RT) | _BV(TX_DS) );
+  //Clear the two possible interrupt flags with one command
+  write_register(NRF_STATUS,_BV(RX_DR) | _BV(MAX_RT) | _BV(TX_DS) );
+
 }
 
 /****************************************************************************/
 
 void RF24::whatHappened(bool& tx_ok,bool& tx_fail,bool& rx_ready)
 {
-    // Read the status & reset the status in one easy call
-    // Or is that such a good idea?
-    uint8_t status = write_register(NRF_STATUS,_BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT) );
+  // Read the status & reset the status in one easy call
+  // Or is that such a good idea?
+  uint8_t status = write_register(NRF_STATUS,_BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT) );
 
-    // Report to the user what happened
-    tx_ok = status & _BV(TX_DS);
-    tx_fail = status & _BV(MAX_RT);
-    rx_ready = status & _BV(RX_DR);
+  // Report to the user what happened
+  tx_ok = status & _BV(TX_DS);
+  tx_fail = status & _BV(MAX_RT);
+  rx_ready = status & _BV(RX_DR);
 }
 
 /****************************************************************************/
 
 void RF24::openWritingPipe(uint64_t value)
 {
-    // Note that AVR 8-bit uC's store this LSB first, and the NRF24L01(+)
-    // expects it LSB first too, so we're good.
+  // Note that AVR 8-bit uC's store this LSB first, and the NRF24L01(+)
+  // expects it LSB first too, so we're good.
 
-    write_register(RX_ADDR_P0, reinterpret_cast<uint8_t*>(&value), addr_width);
-    write_register(TX_ADDR, reinterpret_cast<uint8_t*>(&value), addr_width);
-
-    //const uint8_t max_payload_size = 32;
-    //write_register(RX_PW_P0,rf24_min(payload_size,max_payload_size));
-    write_register(RX_PW_P0,payload_size);
+  write_register(RX_ADDR_P0, reinterpret_cast<uint8_t*>(&value), addr_width);
+  write_register(TX_ADDR, reinterpret_cast<uint8_t*>(&value), addr_width);
+  
+  
+  //const uint8_t max_payload_size = 32;
+  //write_register(RX_PW_P0,rf24_min(payload_size,max_payload_size));
+  write_register(RX_PW_P0,payload_size);
 }
 
 /****************************************************************************/
 void RF24::openWritingPipe(const uint8_t *address)
 {
-    // Note that AVR 8-bit uC's store this LSB first, and the NRF24L01(+)
-    // expects it LSB first too, so we're good.
+  // Note that AVR 8-bit uC's store this LSB first, and the NRF24L01(+)
+  // expects it LSB first too, so we're good.
 
-    write_register(RX_ADDR_P0,address, addr_width);
-    write_register(TX_ADDR, address, addr_width);
+  write_register(RX_ADDR_P0,address, addr_width);
+  write_register(TX_ADDR, address, addr_width);
 
-    //const uint8_t max_payload_size = 32;
-    //write_register(RX_PW_P0,rf24_min(payload_size,max_payload_size));
-    write_register(RX_PW_P0,payload_size);
+  //const uint8_t max_payload_size = 32;
+  //write_register(RX_PW_P0,rf24_min(payload_size,max_payload_size));
+  write_register(RX_PW_P0,payload_size);
 }
 
 /****************************************************************************/
-static const uint8_t child_pipe[] PROGMEM = {
-    RX_ADDR_P0, RX_ADDR_P1, RX_ADDR_P2, RX_ADDR_P3, RX_ADDR_P4, RX_ADDR_P5
+static const uint8_t child_pipe[] PROGMEM =
+{
+  RX_ADDR_P0, RX_ADDR_P1, RX_ADDR_P2, RX_ADDR_P3, RX_ADDR_P4, RX_ADDR_P5
 };
-static const uint8_t child_payload_size[] PROGMEM = {
-    RX_PW_P0, RX_PW_P1, RX_PW_P2, RX_PW_P3, RX_PW_P4, RX_PW_P5
+static const uint8_t child_payload_size[] PROGMEM =
+{
+  RX_PW_P0, RX_PW_P1, RX_PW_P2, RX_PW_P3, RX_PW_P4, RX_PW_P5
 };
 
 
 void RF24::openReadingPipe(uint8_t child, uint64_t address)
 {
-    // If this is pipe 0, cache the address.  This is needed because
-    // openWritingPipe() will overwrite the pipe 0 address, so
-    // startListening() will have to restore it.
-    if (child == 0) {
-        memcpy(pipe0_reading_address,&address,addr_width);
-    }
+  // If this is pipe 0, cache the address.  This is needed because
+  // openWritingPipe() will overwrite the pipe 0 address, so
+  // startListening() will have to restore it.
+  if (child == 0){
+    memcpy(pipe0_reading_address,&address,addr_width);
+  }
 
-    if (child <= 6) {
-        // For pipes 2-5, only write the LSB
-        if ( child < 2 )
-            write_register(pgm_read_byte(&child_pipe[child]), reinterpret_cast<const uint8_t*>(&address), addr_width);
-        else
-            write_register(pgm_read_byte(&child_pipe[child]), reinterpret_cast<const uint8_t*>(&address), 1);
+  if (child <= 6)
+  {
+    // For pipes 2-5, only write the LSB
+    if ( child < 2 )
+      write_register(pgm_read_byte(&child_pipe[child]), reinterpret_cast<const uint8_t*>(&address), addr_width);
+    else
+      write_register(pgm_read_byte(&child_pipe[child]), reinterpret_cast<const uint8_t*>(&address), 1);
 
-        write_register(pgm_read_byte(&child_payload_size[child]),payload_size);
+    write_register(pgm_read_byte(&child_payload_size[child]),payload_size);
 
-        // Note it would be more efficient to set all of the bits for all open
-        // pipes at once.  However, I thought it would make the calling code
-        // more simple to do it this way.
-        write_register(EN_RXADDR,read_register(EN_RXADDR) | _BV(pgm_read_byte(&child_pipe_enable[child])));
-    }
+    // Note it would be more efficient to set all of the bits for all open
+    // pipes at once.  However, I thought it would make the calling code
+    // more simple to do it this way.
+    write_register(EN_RXADDR,read_register(EN_RXADDR) | _BV(pgm_read_byte(&child_pipe_enable[child])));
+  }
 }
 
 /****************************************************************************/
-void RF24::setAddressWidth(uint8_t a_width)
-{
+void RF24::setAddressWidth(uint8_t a_width){
 
-    if(a_width -= 2) {
-        write_register(SETUP_AW,a_width%4);
-        addr_width = (a_width%4) + 2;
-    }
+	if(a_width -= 2){
+		write_register(SETUP_AW,a_width%4);
+		addr_width = (a_width%4) + 2;
+	}
+
 }
 
 /****************************************************************************/
 
 void RF24::openReadingPipe(uint8_t child, const uint8_t *address)
 {
-    // If this is pipe 0, cache the address.  This is needed because
-    // openWritingPipe() will overwrite the pipe 0 address, so
-    // startListening() will have to restore it.
-    if (child == 0) {
-        memcpy(pipe0_reading_address,address,addr_width);
-    }
-    if (child <= 6) {
-        // For pipes 2-5, only write the LSB
-        if ( child < 2 ) {
-            write_register(pgm_read_byte(&child_pipe[child]), address, addr_width);
-        } else {
-            write_register(pgm_read_byte(&child_pipe[child]), address, 1);
-        }
-        write_register(pgm_read_byte(&child_payload_size[child]),payload_size);
+  // If this is pipe 0, cache the address.  This is needed because
+  // openWritingPipe() will overwrite the pipe 0 address, so
+  // startListening() will have to restore it.
+  if (child == 0){
+    memcpy(pipe0_reading_address,address,addr_width);
+  }
+  if (child <= 6)
+  {
+    // For pipes 2-5, only write the LSB
+    if ( child < 2 ){
+      write_register(pgm_read_byte(&child_pipe[child]), address, addr_width);
+    }else{
+      write_register(pgm_read_byte(&child_pipe[child]), address, 1);
+	}
+    write_register(pgm_read_byte(&child_payload_size[child]),payload_size);
 
-        // Note it would be more efficient to set all of the bits for all open
-        // pipes at once.  However, I thought it would make the calling code
-        // more simple to do it this way.
-        write_register(EN_RXADDR,read_register(EN_RXADDR) | _BV(pgm_read_byte(&child_pipe_enable[child])));
-    }
+    // Note it would be more efficient to set all of the bits for all open
+    // pipes at once.  However, I thought it would make the calling code
+    // more simple to do it this way.
+    write_register(EN_RXADDR,read_register(EN_RXADDR) | _BV(pgm_read_byte(&child_pipe_enable[child])));
+
+  }
 }
 
 /****************************************************************************/
 
 void RF24::closeReadingPipe( uint8_t pipe )
 {
-    write_register(EN_RXADDR,read_register(EN_RXADDR) & ~_BV(pgm_read_byte(&child_pipe_enable[pipe])));
+  write_register(EN_RXADDR,read_register(EN_RXADDR) & ~_BV(pgm_read_byte(&child_pipe_enable[pipe])));
 }
 
 /****************************************************************************/
@@ -943,63 +1231,63 @@
 void RF24::toggle_features(void)
 {
     beginTransaction();
-    spi.write( ACTIVATE );
+	spi.write( ACTIVATE );
     spi.write( 0x73 );
-    endTransaction();
+	endTransaction();
 }
 
 /****************************************************************************/
 
 void RF24::enableDynamicPayloads(void)
 {
-    // Enable dynamic payload throughout the system
+  // Enable dynamic payload throughout the system
 
     //toggle_features();
     write_register(FEATURE,read_register(FEATURE) | _BV(EN_DPL) );
 
-    IF_SERIAL_DEBUG(printf("FEATURE=%i\r\n",read_register(FEATURE)));
+
+  IF_SERIAL_DEBUG(printf("FEATURE=%i\r\n",read_register(FEATURE)));
 
-    // Enable dynamic payload on all pipes
-    //
-    // Not sure the use case of only having dynamic payload on certain
-    // pipes, so the library does not support it.
-    write_register(DYNPD,read_register(DYNPD) | _BV(DPL_P5) | _BV(DPL_P4) | _BV(DPL_P3) | _BV(DPL_P2) | _BV(DPL_P1) | _BV(DPL_P0));
+  // Enable dynamic payload on all pipes
+  //
+  // Not sure the use case of only having dynamic payload on certain
+  // pipes, so the library does not support it.
+  write_register(DYNPD,read_register(DYNPD) | _BV(DPL_P5) | _BV(DPL_P4) | _BV(DPL_P3) | _BV(DPL_P2) | _BV(DPL_P1) | _BV(DPL_P0));
 
-    dynamic_payloads_enabled = true;
+  dynamic_payloads_enabled = true;
 }
 
 /****************************************************************************/
 
 void RF24::enableAckPayload(void)
 {
-    //
-    // enable ack payload and dynamic payload features
-    //
+  //
+  // enable ack payload and dynamic payload features
+  //
 
     //toggle_features();
     write_register(FEATURE,read_register(FEATURE) | _BV(EN_ACK_PAY) | _BV(EN_DPL) );
 
-    IF_SERIAL_DEBUG(printf("FEATURE=%i\r\n",read_register(FEATURE)));
+  IF_SERIAL_DEBUG(printf("FEATURE=%i\r\n",read_register(FEATURE)));
 
-    //
-    // Enable dynamic payload on pipes 0 & 1
-    //
+  //
+  // Enable dynamic payload on pipes 0 & 1
+  //
 
-    write_register(DYNPD,read_register(DYNPD) | _BV(DPL_P1) | _BV(DPL_P0));
-    dynamic_payloads_enabled = true;
+  write_register(DYNPD,read_register(DYNPD) | _BV(DPL_P1) | _BV(DPL_P0));
+  dynamic_payloads_enabled = true;
 }
 
 /****************************************************************************/
 
-void RF24::enableDynamicAck(void)
-{
-    //
-    // enable dynamic ack features
-    //
+void RF24::enableDynamicAck(void){
+  //
+  // enable dynamic ack features
+  //
     //toggle_features();
     write_register(FEATURE,read_register(FEATURE) | _BV(EN_DYN_ACK) );
 
-    IF_SERIAL_DEBUG(printf("FEATURE=%i\r\n",read_register(FEATURE)));
+  IF_SERIAL_DEBUG(printf("FEATURE=%i\r\n",read_register(FEATURE)));
 
 
 }
@@ -1008,16 +1296,30 @@
 
 void RF24::writeAckPayload(uint8_t pipe, const void* buf, uint8_t len)
 {
-    const uint8_t* current = reinterpret_cast<const uint8_t*>(buf);
+  const uint8_t* current = reinterpret_cast<const uint8_t*>(buf);
 
-    uint8_t data_len = rf24_min(len,32);
+  uint8_t data_len = rf24_min(len,32);
 
-    beginTransaction();
-    spi.write(W_ACK_PAYLOAD | ( pipe & 7 ) );
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  
+  beginTransaction();
+  spi.write(W_ACK_PAYLOAD | ( pipe & 0b111 ) );
 
-    while ( data_len-- )
-        spi.write(*current++);
-    endTransaction();
+  while ( data_len-- )
+    spi.write(*current++);
+  endTransaction();
+  	
+   
 
 }
 
@@ -1025,53 +1327,57 @@
 
 bool RF24::isAckPayloadAvailable(void)
 {
-    return ! (read_register(FIFO_STATUS) & _BV(RX_EMPTY));
+  return ! (read_register(FIFO_STATUS) & _BV(RX_EMPTY));
 }
 
 /****************************************************************************/
 
 bool RF24::isPVariant(void)
 {
-    return p_variant ;
+  return p_variant ;
 }
 
 /****************************************************************************/
 
 void RF24::setAutoAck(bool enable)
 {
-    if ( enable )
-        write_register(EN_AA, 63);
-    else
-        write_register(EN_AA, 0);
+  if ( enable )
+    write_register(EN_AA, 0b111111);
+  else
+    write_register(EN_AA, 0);
 }
 
 /****************************************************************************/
 
 void RF24::setAutoAck( uint8_t pipe, bool enable )
 {
-    if ( pipe <= 6 ) {
-        uint8_t en_aa = read_register( EN_AA ) ;
-        if( enable ) {
-            en_aa |= _BV(pipe) ;
-        } else {
-            en_aa &= ~_BV(pipe) ;
-        }
-        write_register( EN_AA, en_aa ) ;
+  if ( pipe <= 6 )
+  {
+    uint8_t en_aa = read_register( EN_AA ) ;
+    if( enable )
+    {
+      en_aa |= _BV(pipe) ;
     }
+    else
+    {
+      en_aa &= ~_BV(pipe) ;
+    }
+    write_register( EN_AA, en_aa ) ;
+  }
 }
 
 /****************************************************************************/
 
 bool RF24::testCarrier(void)
 {
-    return ( read_register(CD) & 1 );
+  return ( read_register(CD) & 1 );
 }
 
 /****************************************************************************/
 
 bool RF24::testRPD(void)
 {
-    return ( read_register(RPD) & 1 ) ;
+  return ( read_register(RPD) & 1 ) ;
 }
 
 /****************************************************************************/
@@ -1079,16 +1385,16 @@
 void RF24::setPALevel(uint8_t level)
 {
 
-    uint8_t setup = read_register(RF_SETUP) & 248;
+  uint8_t setup = read_register(RF_SETUP) & 0b11111000;
 
-    if(level > 3) {                       // If invalid level, go to max PA
-        level = (RF24_PA_MAX << 1) + 1;       // +1 to support the SI24R1 chip extra bit
-    } else {
-        level = (level << 1) + 1;         // Else set level as requested
-    }
+  if(level > 3){  						// If invalid level, go to max PA
+	  level = (RF24_PA_MAX << 1) + 1;		// +1 to support the SI24R1 chip extra bit
+  }else{
+	  level = (level << 1) + 1;	 		// Else set level as requested
+  }
 
 
-    write_register( RF_SETUP, setup |= level ) ;  // Write it to the chip
+  write_register( RF_SETUP, setup |= level ) ;	// Write it to the chip
 }
 
 /****************************************************************************/
@@ -1096,112 +1402,140 @@
 uint8_t RF24::getPALevel(void)
 {
 
-    return (read_register(RF_SETUP) & (_BV(RF_PWR_LOW) | _BV(RF_PWR_HIGH))) >> 1 ;
+  return (read_register(RF_SETUP) & (_BV(RF_PWR_LOW) | _BV(RF_PWR_HIGH))) >> 1 ;
 }
 
 /****************************************************************************/
 
 bool RF24::setDataRate(rf24_datarate_e speed)
 {
-    bool result = false;
-    uint8_t setup = read_register(RF_SETUP) ;
+  bool result = false;
+  uint8_t setup = read_register(RF_SETUP) ;
 
-    // HIGH and LOW '00' is 1Mbs - our default
-    setup &= ~(_BV(RF_DR_LOW) | _BV(RF_DR_HIGH)) ;
-
+  // HIGH and LOW '00' is 1Mbs - our default
+  setup &= ~(_BV(RF_DR_LOW) | _BV(RF_DR_HIGH)) ;
+  
+  
+  
+  
     txRxDelay=85;
 
-    if( speed == RF24_250KBPS ) {
-        // Must set the RF_DR_LOW to 1; RF_DR_HIGH (used to be RF_DR) is already 0
-        // Making it '10'.
-        setup |= _BV( RF_DR_LOW ) ;
-        txRxDelay=155;
-    } else {
-        // Set 2Mbs, RF_DR (RF_DR_HIGH) is set 1
-        // Making it '01'
-        if ( speed == RF24_2MBPS ) {
-            setup |= _BV(RF_DR_HIGH);
-            txRxDelay=65;
-        }
+  if( speed == RF24_250KBPS )
+  {
+    // Must set the RF_DR_LOW to 1; RF_DR_HIGH (used to be RF_DR) is already 0
+    // Making it '10'.
+    setup |= _BV( RF_DR_LOW ) ;
+ 
+ 
+ 
+	txRxDelay=155;
+
+  }
+  else
+  {
+    // Set 2Mbs, RF_DR (RF_DR_HIGH) is set 1
+    // Making it '01'
+    if ( speed == RF24_2MBPS )
+    {
+      setup |= _BV(RF_DR_HIGH);
+      
+	  
+	  //txRxDelay=65;
+	  txRxDelay=15; //mbed works fine with this latency
+	  
     }
-    write_register(RF_SETUP,setup);
+  }
+  write_register(RF_SETUP,setup);
 
-    // Verify our result
-    if ( read_register(RF_SETUP) == setup ) {
-        result = true;
-    }
-    return result;
+  // Verify our result
+  if ( read_register(RF_SETUP) == setup )
+  {
+    result = true;
+  }
+  return result;
 }
 
 /****************************************************************************/
 
 rf24_datarate_e RF24::getDataRate( void )
 {
-    rf24_datarate_e result ;
-    uint8_t dr = read_register(RF_SETUP) & (_BV(RF_DR_LOW) | _BV(RF_DR_HIGH));
+  rf24_datarate_e result ;
+  uint8_t dr = read_register(RF_SETUP) & (_BV(RF_DR_LOW) | _BV(RF_DR_HIGH));
 
-    // switch uses RAM (evil!)
-    // Order matters in our case below
-    if ( dr == _BV(RF_DR_LOW) ) {
-        // '10' = 250KBPS
-        result = RF24_250KBPS ;
-    } else if ( dr == _BV(RF_DR_HIGH) ) {
-        // '01' = 2MBPS
-        result = RF24_2MBPS ;
-    } else {
-        // '00' = 1MBPS
-        result = RF24_1MBPS ;
-    }
-    return result ;
+  // switch uses RAM (evil!)
+  // Order matters in our case below
+  if ( dr == _BV(RF_DR_LOW) )
+  {
+    // '10' = 250KBPS
+    result = RF24_250KBPS ;
+  }
+  else if ( dr == _BV(RF_DR_HIGH) )
+  {
+    // '01' = 2MBPS
+    result = RF24_2MBPS ;
+  }
+  else
+  {
+    // '00' = 1MBPS
+    result = RF24_1MBPS ;
+  }
+  return result ;
 }
 
 /****************************************************************************/
 
 void RF24::setCRCLength(rf24_crclength_e length)
 {
-    uint8_t config = read_register(CONFIG) & ~( _BV(CRCO) | _BV(EN_CRC)) ;
+  uint8_t config = read_register(NRF_CONFIG) & ~( _BV(CRCO) | _BV(EN_CRC)) ;
 
-    // switch uses RAM (evil!)
-    if ( length == RF24_CRC_DISABLED ) {
-        // Do nothing, we turned it off above.
-    } else if ( length == RF24_CRC_8 ) {
-        config |= _BV(EN_CRC);
-    } else {
-        config |= _BV(EN_CRC);
-        config |= _BV( CRCO );
-    }
-    write_register( CONFIG, config ) ;
+  // switch uses RAM (evil!)
+  if ( length == RF24_CRC_DISABLED )
+  {
+    // Do nothing, we turned it off above.
+  }
+  else if ( length == RF24_CRC_8 )
+  {
+    config |= _BV(EN_CRC);
+  }
+  else
+  {
+    config |= _BV(EN_CRC);
+    config |= _BV( CRCO );
+  }
+  write_register( NRF_CONFIG, config ) ;
 }
 
 /****************************************************************************/
 
 rf24_crclength_e RF24::getCRCLength(void)
 {
-    rf24_crclength_e result = RF24_CRC_DISABLED;
-
-    uint8_t config = read_register(CONFIG) & ( _BV(CRCO) | _BV(EN_CRC)) ;
-    uint8_t AA = read_register(EN_AA);
+  rf24_crclength_e result = RF24_CRC_DISABLED;
+  
+  uint8_t config = read_register(NRF_CONFIG) & ( _BV(CRCO) | _BV(EN_CRC)) ;
+  uint8_t AA = read_register(EN_AA);
+  
+  if ( config & _BV(EN_CRC ) || AA)
+  {
+    if ( config & _BV(CRCO) )
+      result = RF24_CRC_16;
+    else
+      result = RF24_CRC_8;
+  }
 
-    if ( config & _BV(EN_CRC ) || AA) {
-        if ( config & _BV(CRCO) )
-            result = RF24_CRC_16;
-        else
-            result = RF24_CRC_8;
-    }
-
-    return result;
+  return result;
 }
 
 /****************************************************************************/
 
 void RF24::disableCRC( void )
 {
-    uint8_t disable = read_register(CONFIG) & ~_BV(EN_CRC) ;
-    write_register( CONFIG, disable ) ;
+  uint8_t disable = read_register(NRF_CONFIG) & ~_BV(EN_CRC) ;
+  write_register( NRF_CONFIG, disable ) ;
 }
 
 /****************************************************************************/
 void RF24::setRetries(uint8_t delay, uint8_t count)
 {
-    write_register(SETUP_RETR,(delay&0xf)<<ARD | (count&0xf)<<ARC);
+ write_register(SETUP_RETR,(delay&0xf)<<ARD | (count&0xf)<<ARC);
 }
+
--- a/RF24.h	Tue Feb 23 00:40:33 2016 +0000
+++ b/RF24.h	Thu Apr 21 04:10:58 2016 +0000
@@ -6,30 +6,31 @@
  version 2 as published by the Free Software Foundation.
  */
 
-/*
- * Mbed support added by Akash Vibhute <akash.roboticist@gmail.com>
- * Porting completed on Nov/05/2015
- *
- * Updated with TMRh20's RF24 library on Nov/04/2015 from https://github.com/TMRh20
- *
- */
-
 /**
  * @file RF24.h
  *
  * Class declaration for RF24 and helper enums
  */
-
-
+ 
+/*
+ * Mbed support added by Akash Vibhute <akash.roboticist@gmail.com>
+ * Porting completed on Nov/05/2015
+ *
+ * Updated 1: Synced with TMRh20's RF24 library on Nov/04/2015 from https://github.com/TMRh20
+ * Updated 2: Synced with TMRh20's RF24 library on Apr/18/2015 from https://github.com/TMRh20
+ *
+ */
+ 
 #ifndef __RF24_H__
 #define __RF24_H__
 
 #include "RF24_config.h"
+#include <mbed.h>
 
-#define HIGH        1
-#define LOW         0
+
 
-#include <mbed.h>
+
+
 
 /**
  * Power Amplifier level.
@@ -60,1032 +61,1071 @@
 {
 private:
 
-    SPI spi;
-    Timer mainTimer;
-    DigitalOut  ce_pin; /**< "Chip Enable" pin, activates the RX or TX role */
-    DigitalOut  csn_pin; /**< SPI Chip select */
+
+
+
+
 
-    bool p_variant; /* False for RF24L01 and true for RF24L01P */
-    uint8_t payload_size; /**< Fixed size of payloads */
-    bool dynamic_payloads_enabled; /**< Whether dynamic payloads are enabled. */
-    uint8_t pipe0_reading_address[5]; /**< Last address set on pipe 0 for reading. */
-    uint8_t addr_width; /**< The address width to use - 3,4 or 5 bytes. */
-    uint32_t txRxDelay; /**< Var for adjusting delays depending on datarate */
+
+
+
+
+
 
 
+  DigitalOut ce_pin; /**< "Chip Enable" pin, activates the RX or TX role */
+  DigitalOut csn_pin; /**< SPI Chip select */
+  uint16_t spi_speed; /**< SPI Bus Speed */
+	
+  SPI spi;
+  Timer mainTimer;
+  
+  bool p_variant; /* False for RF24L01 and true for RF24L01P */
+  uint8_t payload_size; /**< Fixed size of payloads */
+  bool dynamic_payloads_enabled; /**< Whether dynamic payloads are enabled. */
+  uint8_t pipe0_reading_address[5]; /**< Last address set on pipe 0 for reading. */
+  uint8_t addr_width; /**< The address width to use - 3,4 or 5 bytes. */
+  uint32_t txRxDelay; /**< Var for adjusting delays depending on datarate */
+  
+
 protected:
-    /**
-     * SPI transactions
-     *
-     * Common code for SPI transactions including CSN toggle
-     *
-     */
-    inline void beginTransaction();
+  /**
+   * SPI transactions
+   *
+   * Common code for SPI transactions including CSN toggle
+   *
+   */
+  inline void beginTransaction();
 
-    inline void endTransaction();
+  inline void endTransaction();
 
 public:
 
+  /**
+   * @name Primary public interface
+   *
+   *  These are the main methods you need to operate the chip
+   */
+  /**@{*/
+
+  /**
+   * Arduino Constructor
+   *
+   * Creates a new instance of this driver.  Before using, you create an instance
+   * and send in the unique pins that this chip is connected to.
+   *
+   * @param _cepin The pin attached to Chip Enable on the RF module
+   * @param _cspin The pin attached to Chip Select
+   */
+  RF24(PinName mosi, PinName miso, PinName sck, PinName _cepin, PinName _csnpin);
+
+  
+    
+	
+	
+	
+	
+	
+	
+	
+	
+	
+	
+	
+	
+	
+	
+	
+	
+
+  /**
+   * Begin operation of the chip
+   * 
+   * Call this in setup(), before calling any other methods.
+   * @code radio.begin() @endcode
+   */
+  bool begin(void);
+
+  /**
+   * Start listening on the pipes opened for reading.
+   *
+   * 1. Be sure to call openReadingPipe() first.  
+   * 2. Do not call write() while in this mode, without first calling stopListening().
+   * 3. Call available() to check for incoming traffic, and read() to get it. 
+   *  
+   * @code
+   * Open reading pipe 1 using address CCCECCCECC
+   *  
+   * byte address[] = { 0xCC,0xCE,0xCC,0xCE,0xCC };
+   * radio.openReadingPipe(1,address);
+   * radio.startListening();
+   * @endcode
+   */
+  void startListening(void);
+
+  /**
+   * Stop listening for incoming messages, and switch to transmit mode.
+   *
+   * Do this before calling write().
+   * @code
+   * radio.stopListening();
+   * radio.write(&data,sizeof(data));
+   * @endcode
+   */
+  void stopListening(void);
+
+  /**
+   * Check whether there are bytes available to be read
+   * @code
+   * if(radio.available()){
+   *   radio.read(&data,sizeof(data));
+   * }
+   * @endcode
+   * @return True if there is a payload available, false if none is
+   */
+  bool available(void);
+
+  /**
+   * Read the available payload
+   *
+   * The size of data read is the fixed payload size, see getPayloadSize()
+   *
+   * @note I specifically chose 'void*' as a data type to make it easier
+   * for beginners to use.  No casting needed.
+   *
+   * @note No longer boolean. Use available to determine if packets are
+   * available. Interrupt flags are now cleared during reads instead of
+   * when calling available().
+   *
+   * @param buf Pointer to a buffer where the data should be written
+   * @param len Maximum number of bytes to read into the buffer
+   *
+   * @code
+   * if(radio.available()){
+   *   radio.read(&data,sizeof(data));
+   * }
+   * @endcode
+   * @return No return value. Use available().
+   */
+  void read( void* buf, uint8_t len );
+
+  /**
+   * Be sure to call openWritingPipe() first to set the destination
+   * of where to write to.
+   *
+   * This blocks until the message is successfully acknowledged by
+   * the receiver or the timeout/retransmit maxima are reached.  In
+   * the current configuration, the max delay here is 60-70ms.
+   *
+   * The maximum size of data written is the fixed payload size, see
+   * getPayloadSize().  However, you can write less, and the remainder
+   * will just be filled with zeroes.
+   *
+   * TX/RX/RT interrupt flags will be cleared every time write is called
+   *
+   * @param buf Pointer to the data to be sent
+   * @param len Number of bytes to be sent
+   *
+   * @code
+   * radio.stopListening();
+   * radio.write(&data,sizeof(data));
+   * @endcode
+   * @return True if the payload was delivered successfully false if not
+   */
+  bool write( const void* buf, uint8_t len );
+
+  /**
+   * New: Open a pipe for writing via byte array. Old addressing format retained
+   * for compatibility.
+   *
+   * Only one writing pipe can be open at once, but you can change the address
+   * you'll write to. Call stopListening() first.
+   *
+   * Addresses are assigned via a byte array, default is 5 byte address length
+s   *
+   * @code
+   *   uint8_t addresses[][6] = {"1Node","2Node"};
+   *   radio.openWritingPipe(addresses[0]);
+   * @endcode
+   * @code
+   *  uint8_t address[] = { 0xCC,0xCE,0xCC,0xCE,0xCC };
+   *  radio.openWritingPipe(address);
+   *  address[0] = 0x33;
+   *  radio.openReadingPipe(1,address);
+   * @endcode
+   * @see setAddressWidth
+   *
+   * @param address The address of the pipe to open. Coordinate these pipe
+   * addresses amongst nodes on the network.
+   */
+
+  void openWritingPipe(const uint8_t *address);
+
+  /**
+   * Open a pipe for reading
+   *
+   * Up to 6 pipes can be open for reading at once.  Open all the required
+   * reading pipes, and then call startListening().
+   *
+   * @see openWritingPipe
+   * @see setAddressWidth
+   *
+   * @note Pipes 0 and 1 will store a full 5-byte address. Pipes 2-5 will technically 
+   * only store a single byte, borrowing up to 4 additional bytes from pipe #1 per the
+   * assigned address width.
+   * @warning Pipes 1-5 should share the same address, except the first byte.
+   * Only the first byte in the array should be unique, e.g.
+   * @code
+   *   uint8_t addresses[][6] = {"1Node","2Node"};
+   *   openReadingPipe(1,addresses[0]);
+   *   openReadingPipe(2,addresses[1]);
+   * @endcode
+   *
+   * @warning Pipe 0 is also used by the writing pipe.  So if you open
+   * pipe 0 for reading, and then startListening(), it will overwrite the
+   * writing pipe.  Ergo, do an openWritingPipe() again before write().
+   *
+   * @param number Which pipe# to open, 0-5.
+   * @param address The 24, 32 or 40 bit address of the pipe to open.
+   */
+
+  void openReadingPipe(uint8_t number, const uint8_t *address);
+
+   /**@}*/
+  /**
+   * @name Advanced Operation
+   *
+   *  Methods you can use to drive the chip in more advanced ways
+   */
+  /**@{*/
+
+  /**
+   * Print a giant block of debugging information to stdout
+   *
+   * @warning Does nothing if stdout is not defined.  See fdevopen in stdio.h
+   * The printf.h file is included with the library for Arduino.
+   * @code
+   * #include <printf.h>
+   * setup(){
+   *  Serial.begin(115200);
+   *  printf_begin();
+   *  ...
+   * }
+   * @endcode
+   */
+  void printDetails(void);
+
+  /**
+   * Test whether there are bytes available to be read in the
+   * FIFO buffers. 
+   *
+   * @param[out] pipe_num Which pipe has the payload available
+   *  
+   * @code
+   * uint8_t pipeNum;
+   * if(radio.available(&pipeNum)){
+   *   radio.read(&data,sizeof(data));
+   *   Serial.print("Got data on pipe");
+   *   Serial.println(pipeNum);
+   * }
+   * @endcode
+   * @return True if there is a payload available, false if none is
+   */
+  bool available(uint8_t* pipe_num);
+
+  /**
+   * Check if the radio needs to be read. Can be used to prevent data loss
+   * @return True if all three 32-byte radio buffers are full
+   */
+  bool rxFifoFull();
+
+  /**
+   * Enter low-power mode
+   *
+   * To return to normal power mode, call powerUp().
+   *
+   * @note After calling startListening(), a basic radio will consume about 13.5mA
+   * at max PA level.
+   * During active transmission, the radio will consume about 11.5mA, but this will
+   * be reduced to 26uA (.026mA) between sending.
+   * In full powerDown mode, the radio will consume approximately 900nA (.0009mA)   
+   *
+   * @code
+   * radio.powerDown();
+   * avr_enter_sleep_mode(); // Custom function to sleep the device
+   * radio.powerUp();
+   * @endcode
+   */
+  void powerDown(void);
+
+  /**
+   * Leave low-power mode - required for normal radio operation after calling powerDown()
+   * 
+   * To return to low power mode, call powerDown().
+   * @note This will take up to 5ms for maximum compatibility 
+   */
+  void powerUp(void) ;
+
+  /**
+  * Write for single NOACK writes. Optionally disables acknowledgements/autoretries for a single write.
+  *
+  * @note enableDynamicAck() must be called to enable this feature
+  *
+  * Can be used with enableAckPayload() to request a response
+  * @see enableDynamicAck()
+  * @see setAutoAck()
+  * @see write()
+  *
+  * @param buf Pointer to the data to be sent
+  * @param len Number of bytes to be sent
+  * @param multicast Request ACK (0), NOACK (1)
+  */
+  bool write( const void* buf, uint8_t len, const bool multicast );
+
+  /**
+   * This will not block until the 3 FIFO buffers are filled with data.
+   * Once the FIFOs are full, writeFast will simply wait for success or
+   * timeout, and return 1 or 0 respectively. From a user perspective, just
+   * keep trying to send the same data. The library will keep auto retrying
+   * the current payload using the built in functionality.
+   * @warning It is important to never keep the nRF24L01 in TX mode and FIFO full for more than 4ms at a time. If the auto
+   * retransmit is enabled, the nRF24L01 is never in TX mode long enough to disobey this rule. Allow the FIFO
+   * to clear by issuing txStandBy() or ensure appropriate time between transmissions.
+   *
+   * @code
+   * Example (Partial blocking):
+   *
+   *			radio.writeFast(&buf,32);  // Writes 1 payload to the buffers
+   *			txStandBy();     		   // Returns 0 if failed. 1 if success. Blocks only until MAX_RT timeout or success. Data flushed on fail.
+   *
+   *			radio.writeFast(&buf,32);  // Writes 1 payload to the buffers
+   *			txStandBy(1000);		   // Using extended timeouts, returns 1 if success. Retries failed payloads for 1 seconds before returning 0.
+   * @endcode
+   *
+   * @see txStandBy()
+   * @see write()
+   * @see writeBlocking()
+   *
+   * @param buf Pointer to the data to be sent
+   * @param len Number of bytes to be sent
+   * @return True if the payload was delivered successfully false if not
+   */
+  bool writeFast( const void* buf, uint8_t len );
+
+  /**
+  * WriteFast for single NOACK writes. Disables acknowledgements/autoretries for a single write.
+  *
+  * @note enableDynamicAck() must be called to enable this feature
+  * @see enableDynamicAck()
+  * @see setAutoAck()
+  *
+  * @param buf Pointer to the data to be sent
+  * @param len Number of bytes to be sent
+  * @param multicast Request ACK (0) or NOACK (1)
+  */
+  bool writeFast( const void* buf, uint8_t len, const bool multicast );
+
+  /**
+   * This function extends the auto-retry mechanism to any specified duration.
+   * It will not block until the 3 FIFO buffers are filled with data.
+   * If so the library will auto retry until a new payload is written
+   * or the user specified timeout period is reached.
+   * @warning It is important to never keep the nRF24L01 in TX mode and FIFO full for more than 4ms at a time. If the auto
+   * retransmit is enabled, the nRF24L01 is never in TX mode long enough to disobey this rule. Allow the FIFO
+   * to clear by issuing txStandBy() or ensure appropriate time between transmissions.
+   *
+   * @code
+   * Example (Full blocking):
+   *
+   *			radio.writeBlocking(&buf,32,1000); //Wait up to 1 second to write 1 payload to the buffers
+   *			txStandBy(1000);     			   //Wait up to 1 second for the payload to send. Return 1 if ok, 0 if failed.
+   *					  				   		   //Blocks only until user timeout or success. Data flushed on fail.
+   * @endcode
+   * @note If used from within an interrupt, the interrupt should be disabled until completion, and sei(); called to enable millis().
+   * @see txStandBy()
+   * @see write()
+   * @see writeFast()
+   *
+   * @param buf Pointer to the data to be sent
+   * @param len Number of bytes to be sent
+   * @param timeout User defined timeout in milliseconds.
+   * @return True if the payload was loaded into the buffer successfully false if not
+   */
+  bool writeBlocking( const void* buf, uint8_t len, uint32_t timeout );
+
+  /**
+   * This function should be called as soon as transmission is finished to
+   * drop the radio back to STANDBY-I mode. If not issued, the radio will
+   * remain in STANDBY-II mode which, per the data sheet, is not a recommended
+   * operating mode.
+   *
+   * @note When transmitting data in rapid succession, it is still recommended by
+   * the manufacturer to drop the radio out of TX or STANDBY-II mode if there is
+   * time enough between sends for the FIFOs to empty. This is not required if auto-ack
+   * is enabled.
+   *
+   * Relies on built-in auto retry functionality.
+   *
+   * @code
+   * Example (Partial blocking):
+   *
+   *			radio.writeFast(&buf,32);
+   *			radio.writeFast(&buf,32);
+   *			radio.writeFast(&buf,32);  //Fills the FIFO buffers up
+   *			bool ok = txStandBy();     //Returns 0 if failed. 1 if success.
+   *					  				   //Blocks only until MAX_RT timeout or success. Data flushed on fail.
+   * @endcode
+   * @see txStandBy(unsigned long timeout)
+   * @return True if transmission is successful
+   *
+   */
+   bool txStandBy();
+
+  /**
+   * This function allows extended blocking and auto-retries per a user defined timeout
+   * @code
+   *	Fully Blocking Example:
+   *
+   *			radio.writeFast(&buf,32);
+   *			radio.writeFast(&buf,32);
+   *			radio.writeFast(&buf,32);   //Fills the FIFO buffers up
+   *			bool ok = txStandBy(1000);  //Returns 0 if failed after 1 second of retries. 1 if success.
+   *					  				    //Blocks only until user defined timeout or success. Data flushed on fail.
+   * @endcode
+   * @note If used from within an interrupt, the interrupt should be disabled until completion, and sei(); called to enable millis().
+   * @param timeout Number of milliseconds to retry failed payloads
+   * @return True if transmission is successful
+   *
+   */
+   bool txStandBy(uint32_t timeout, bool startTx = 0);
+
+  /**
+   * Write an ack payload for the specified pipe
+   *
+   * The next time a message is received on @p pipe, the data in @p buf will
+   * be sent back in the acknowledgement.
+   * @see enableAckPayload()
+   * @see enableDynamicPayloads()
+   * @warning Only three of these can be pending at any time as there are only 3 FIFO buffers.<br> Dynamic payloads must be enabled.
+   * @note Ack payloads are handled automatically by the radio chip when a payload is received. Users should generally
+   * write an ack payload as soon as startListening() is called, so one is available when a regular payload is received.
+   * @note Ack payloads are dynamic payloads. This only works on pipes 0&1 by default. Call 
+   * enableDynamicPayloads() to enable on all pipes.
+   *
+   * @param pipe Which pipe# (typically 1-5) will get this response.
+   * @param buf Pointer to data that is sent
+   * @param len Length of the data to send, up to 32 bytes max.  Not affected
+   * by the static payload set by setPayloadSize().
+   */
+  void writeAckPayload(uint8_t pipe, const void* buf, uint8_t len);
+
+  /**
+   * Determine if an ack payload was received in the most recent call to
+   * write(). The regular available() can also be used.
+   *
+   * Call read() to retrieve the ack payload.
+   *
+   * @return True if an ack payload is available.
+   */
+  bool isAckPayloadAvailable(void);
+
+  /**
+   * Call this when you get an interrupt to find out why
+   *
+   * Tells you what caused the interrupt, and clears the state of
+   * interrupts.
+   *
+   * @param[out] tx_ok The send was successful (TX_DS)
+   * @param[out] tx_fail The send failed, too many retries (MAX_RT)
+   * @param[out] rx_ready There is a message waiting to be read (RX_DS)
+   */
+  void whatHappened(bool& tx_ok,bool& tx_fail,bool& rx_ready);
+
+  /**
+   * Non-blocking write to the open writing pipe used for buffered writes
+   *
+   * @note Optimization: This function now leaves the CE pin high, so the radio
+   * will remain in TX or STANDBY-II Mode until a txStandBy() command is issued. Can be used as an alternative to startWrite()
+   * if writing multiple payloads at once.
+   * @warning It is important to never keep the nRF24L01 in TX mode with FIFO full for more than 4ms at a time. If the auto
+   * retransmit/autoAck is enabled, the nRF24L01 is never in TX mode long enough to disobey this rule. Allow the FIFO
+   * to clear by issuing txStandBy() or ensure appropriate time between transmissions.
+   *
+   * @see write()
+   * @see writeFast()
+   * @see startWrite()
+   * @see writeBlocking()
+   *
+   * For single noAck writes see:
+   * @see enableDynamicAck()
+   * @see setAutoAck()
+   *
+   * @param buf Pointer to the data to be sent
+   * @param len Number of bytes to be sent
+   * @param multicast Request ACK (0) or NOACK (1)
+   * @return True if the payload was delivered successfully false if not
+   */
+  void startFastWrite( const void* buf, uint8_t len, const bool multicast, bool startTx = 1 );
+
+  /**
+   * Non-blocking write to the open writing pipe
+   *
+   * Just like write(), but it returns immediately. To find out what happened
+   * to the send, catch the IRQ and then call whatHappened().
+   *
+   * @see write()
+   * @see writeFast()
+   * @see startFastWrite()
+   * @see whatHappened()
+   *
+   * For single noAck writes see:
+   * @see enableDynamicAck()
+   * @see setAutoAck()
+   *
+   * @param buf Pointer to the data to be sent
+   * @param len Number of bytes to be sent
+   * @param multicast Request ACK (0) or NOACK (1)
+   *
+   */
+  void startWrite( const void* buf, uint8_t len, const bool multicast );
+  
+  /**
+   * This function is mainly used internally to take advantage of the auto payload
+   * re-use functionality of the chip, but can be beneficial to users as well.
+   *
+   * The function will instruct the radio to re-use the data in the FIFO buffers,
+   * and instructs the radio to re-send once the timeout limit has been reached.
+   * Used by writeFast and writeBlocking to initiate retries when a TX failure
+   * occurs. Retries are automatically initiated except with the standard write().
+   * This way, data is not flushed from the buffer until switching between modes.
+   *
+   * @note This is to be used AFTER auto-retry fails if wanting to resend
+   * using the built-in payload reuse features.
+   * After issuing reUseTX(), it will keep reending the same payload forever or until
+   * a payload is written to the FIFO, or a flush_tx command is given.
+   */
+   void reUseTX();
+
+  /**
+   * Empty the transmit buffer. This is generally not required in standard operation.
+   * May be required in specific cases after stopListening() , if operating at 250KBPS data rate.
+   *
+   * @return Current value of status register
+   */
+  uint8_t flush_tx(void);
+
+  /**
+   * Test whether there was a carrier on the line for the
+   * previous listening period.
+   *
+   * Useful to check for interference on the current channel.
+   *
+   * @return true if was carrier, false if not
+   */
+  bool testCarrier(void);
+
+  /**
+   * Test whether a signal (carrier or otherwise) greater than
+   * or equal to -64dBm is present on the channel. Valid only
+   * on nRF24L01P (+) hardware. On nRF24L01, use testCarrier().
+   *
+   * Useful to check for interference on the current channel and
+   * channel hopping strategies.
+   *
+   * @code
+   * bool goodSignal = radio.testRPD();
+   * if(radio.available()){
+   *    Serial.println(goodSignal ? "Strong signal > 64dBm" : "Weak signal < 64dBm" );
+   *    radio.read(0,0);
+   * }
+   * @endcode
+   * @return true if signal => -64dBm, false if not
+   */
+  bool testRPD(void) ;
+
+  /**
+   * Test whether this is a real radio, or a mock shim for
+   * debugging.  Setting either pin to 0xff is the way to
+   * indicate that this is not a real radio.
+   *
+   * @return true if this is a legitimate radio
+   */
+  bool isValid() { return ce_pin != 0xff && csn_pin != 0xff; }
+  
+   /**
+   * Close a pipe after it has been previously opened.
+   * Can be safely called without having previously opened a pipe.
+   * @param pipe Which pipe # to close, 0-5.
+   */
+  void closeReadingPipe( uint8_t pipe ) ;
+
+   /**
+   * Enable error detection by un-commenting #define FAILURE_HANDLING in RF24_config.h
+   * If a failure has been detected, it usually indicates a hardware issue. By default the library
+   * will cease operation when a failure is detected.  
+   * This should allow advanced users to detect and resolve intermittent hardware issues.  
+   *   
+   * In most cases, the radio must be re-enabled via radio.begin(); and the appropriate settings
+   * applied after a failure occurs, if wanting to re-enable the device immediately.
+   * 
+   * Usage: (Failure handling must be enabled per above)
+   *  @code
+   *  if(radio.failureDetected){ 
+   *    radio.begin();                       // Attempt to re-configure the radio with defaults
+   *    radio.failureDetected = 0;           // Reset the detection value
+   *	radio.openWritingPipe(addresses[1]); // Re-configure pipe addresses
+   *    radio.openReadingPipe(1,addresses[0]);
+   *    report_failure();                    // Blink leds, send a message, etc. to indicate failure
+   *  }
+   * @endcode
+  */
+  //#if defined (FAILURE_HANDLING)
+    bool failureDetected; 
+  //#endif
+    
+  /**@}*/
+
+  /**@}*/
+  /**
+   * @name Optional Configurators
+   *
+   *  Methods you can use to get or set the configuration of the chip.
+   *  None are required.  Calling begin() sets up a reasonable set of
+   *  defaults.
+   */
+  /**@{*/
+
+  /**
+  * Set the address width from 3 to 5 bytes (24, 32 or 40 bit)
+  *
+  * @param a_width The address width to use: 3,4 or 5
+  */
+
+  void setAddressWidth(uint8_t a_width);
+  
+  /**
+   * Set the number and delay of retries upon failed submit
+   *
+   * @param delay How long to wait between each retry, in multiples of 250us,
+   * max is 15.  0 means 250us, 15 means 4000us.
+   * @param count How many retries before giving up, max 15
+   */
+  void setRetries(uint8_t delay, uint8_t count);
+
+  /**
+   * Set RF communication channel
+   *
+   * @param channel Which RF channel to communicate on, 0-125
+   */
+  void setChannel(uint8_t channel);
+  
     /**
-     * @name Primary public interface
-     *
-     *  These are the main methods you need to operate the chip
-     */
-    /**@{*/
+   * Get RF communication channel
+   *
+   * @return The currently configured RF Channel
+   */
+  uint8_t getChannel(void);
+
+  /**
+   * Set Static Payload Size
+   *
+   * This implementation uses a pre-stablished fixed payload size for all
+   * transmissions.  If this method is never called, the driver will always
+   * transmit the maximum payload size (32 bytes), no matter how much
+   * was sent to write().
+   *
+   * @todo Implement variable-sized payloads feature
+   *
+   * @param size The number of bytes in the payload
+   */
+  void setPayloadSize(uint8_t size);
+
+  /**
+   * Get Static Payload Size
+   *
+   * @see setPayloadSize()
+   *
+   * @return The number of bytes in the payload
+   */
+  uint8_t getPayloadSize(void);
+
+  /**
+   * Get Dynamic Payload Size
+   *
+   * For dynamic payloads, this pulls the size of the payload off
+   * the chip
+   *
+   * @note Corrupt packets are now detected and flushed per the
+   * manufacturer.
+   * @code
+   * if(radio.available()){
+   *   if(radio.getDynamicPayloadSize() < 1){
+   *     // Corrupt payload has been flushed
+   *     return; 
+   *   }
+   *   radio.read(&data,sizeof(data));
+   * }
+   * @endcode
+   *
+   * @return Payload length of last-received dynamic payload
+   */
+  uint8_t getDynamicPayloadSize(void);
+
+  /**
+   * Enable custom payloads on the acknowledge packets
+   *
+   * Ack payloads are a handy way to return data back to senders without
+   * manually changing the radio modes on both units.
+   *
+   * @note Ack payloads are dynamic payloads. This only works on pipes 0&1 by default. Call 
+   * enableDynamicPayloads() to enable on all pipes.
+   */
+  void enableAckPayload(void);
+
+  /**
+   * Enable dynamically-sized payloads
+   *
+   * This way you don't always have to send large packets just to send them
+   * once in a while.  This enables dynamic payloads on ALL pipes.
+   *
+   */
+  void enableDynamicPayloads(void);
+  
+  /**
+   * Enable dynamic ACKs (single write multicast or unicast) for chosen messages
+   *
+   * @note To enable full multicast or per-pipe multicast, use setAutoAck()
+   *
+   * @warning This MUST be called prior to attempting single write NOACK calls
+   * @code
+   * radio.enableDynamicAck();
+   * radio.write(&data,32,1);  // Sends a payload with no acknowledgement requested
+   * radio.write(&data,32,0);  // Sends a payload using auto-retry/autoACK
+   * @endcode
+   */
+  void enableDynamicAck();
+  
+  /**
+   * Determine whether the hardware is an nRF24L01+ or not.
+   *
+   * @return true if the hardware is nRF24L01+ (or compatible) and false
+   * if its not.
+   */
+  bool isPVariant(void) ;
 
-    RF24(PinName mosi, PinName miso, PinName sck, PinName _cepin, PinName _csnpin);
+  /**
+   * Enable or disable auto-acknowlede packets
+   *
+   * This is enabled by default, so it's only needed if you want to turn
+   * it off for some reason.
+   *
+   * @param enable Whether to enable (true) or disable (false) auto-acks
+   */
+  void setAutoAck(bool enable);
+
+  /**
+   * Enable or disable auto-acknowlede packets on a per pipeline basis.
+   *
+   * AA is enabled by default, so it's only needed if you want to turn
+   * it off/on for some reason on a per pipeline basis.
+   *
+   * @param pipe Which pipeline to modify
+   * @param enable Whether to enable (true) or disable (false) auto-acks
+   */
+  void setAutoAck( uint8_t pipe, bool enable ) ;
+
+  /**
+   * Set Power Amplifier (PA) level to one of four levels:
+   * RF24_PA_MIN, RF24_PA_LOW, RF24_PA_HIGH and RF24_PA_MAX
+   *
+   * The power levels correspond to the following output levels respectively:
+   * NRF24L01: -18dBm, -12dBm,-6dBM, and 0dBm
+   *
+   * SI24R1: -6dBm, 0dBm, 3dBM, and 7dBm.
+   *
+   * @param level Desired PA level.
+   */
+  void setPALevel ( uint8_t level );
+
+  /**
+   * Fetches the current PA level.
+   *
+   * NRF24L01: -18dBm, -12dBm, -6dBm and 0dBm
+   * SI24R1:   -6dBm, 0dBm, 3dBm, 7dBm
+   *
+   * @return Returns values 0 to 3 representing the PA Level.
+   */
+   uint8_t getPALevel( void );
+
+  /**
+   * Set the transmission data rate
+   *
+   * @warning setting RF24_250KBPS will fail for non-plus units
+   *
+   * @param speed RF24_250KBPS for 250kbs, RF24_1MBPS for 1Mbps, or RF24_2MBPS for 2Mbps
+   * @return true if the change was successful
+   */
+  bool setDataRate(rf24_datarate_e speed);
+
+  /**
+   * Fetches the transmission data rate
+   *
+   * @return Returns the hardware's currently configured datarate. The value
+   * is one of 250kbs, RF24_1MBPS for 1Mbps, or RF24_2MBPS, as defined in the
+   * rf24_datarate_e enum.
+   */
+  rf24_datarate_e getDataRate( void ) ;
+
+  /**
+   * Set the CRC length
+   * <br>CRC checking cannot be disabled if auto-ack is enabled
+   * @param length RF24_CRC_8 for 8-bit or RF24_CRC_16 for 16-bit
+   */
+  void setCRCLength(rf24_crclength_e length);
+
+  /**
+   * Get the CRC length
+   * <br>CRC checking cannot be disabled if auto-ack is enabled
+   * @return RF24_DISABLED if disabled or RF24_CRC_8 for 8-bit or RF24_CRC_16 for 16-bit
+   */
+  rf24_crclength_e getCRCLength(void);
+
+  /**
+   * Disable CRC validation
+   * 
+   * @warning CRC cannot be disabled if auto-ack/ESB is enabled.
+   */
+  void disableCRC( void ) ;
+
+  /**
+  * The radio will generate interrupt signals when a transmission is complete,
+  * a transmission fails, or a payload is received. This allows users to mask
+  * those interrupts to prevent them from generating a signal on the interrupt
+  * pin. Interrupts are enabled on the radio chip by default.
+  *
+  * @code
+  * 	Mask all interrupts except the receive interrupt:
+  *
+  *		radio.maskIRQ(1,1,0);
+  * @endcode
+  *
+  * @param tx_ok  Mask transmission complete interrupts
+  * @param tx_fail  Mask transmit failure interrupts
+  * @param rx_ready Mask payload received interrupts
+  */
+  void maskIRQ(bool tx_ok,bool tx_fail,bool rx_ready);
+  
+  /**@}*/
+  /**
+   * @name Deprecated
+   *
+   *  Methods provided for backwards compabibility.
+   */
+  /**@{*/
 
 
-    /**
-     * Begin operation of the chip
-     *
-     * Call this in setup(), before calling any other methods.
-     * @code radio.begin() @endcode
-     */
-    bool begin(void);
-
-    /**
-     * Start listening on the pipes opened for reading.
-     *
-     * 1. Be sure to call openReadingPipe() first.
-     * 2. Do not call write() while in this mode, without first calling stopListening().
-     * 3. Call available() to check for incoming traffic, and read() to get it.
-     *
-     * @code
-     * Open reading pipe 1 using address CCCECCCECC
-     *
-     * byte address[] = { 0xCC,0xCE,0xCC,0xCE,0xCC };
-     * radio.openReadingPipe(1,address);
-     * radio.startListening();
-     * @endcode
-     */
-    void startListening(void);
-
-    /**
-     * Stop listening for incoming messages, and switch to transmit mode.
-     *
-     * Do this before calling write().
-     * @code
-     * radio.stopListening();
-     * radio.write(&data,sizeof(data));
-     * @endcode
-     */
-    void stopListening(void);
-
-    /**
-     * Check whether there are bytes available to be read
-     * @code
-     * if(radio.available()){
-     *   radio.read(&data,sizeof(data));
-     * }
-     * @endcode
-     * @return True if there is a payload available, false if none is
-     */
-    bool available(void);
-
-    /**
-     * Read the available payload
-     *
-     * The size of data read is the fixed payload size, see getPayloadSize()
-     *
-     * @note I specifically chose 'void*' as a data type to make it easier
-     * for beginners to use.  No casting needed.
-     *
-     * @note No longer boolean. Use available to determine if packets are
-     * available. Interrupt flags are now cleared during reads instead of
-     * when calling available().
-     *
-     * @param buf Pointer to a buffer where the data should be written
-     * @param len Maximum number of bytes to read into the buffer
-     *
-     * @code
-     * if(radio.available()){
-     *   radio.read(&data,sizeof(data));
-     * }
-     * @endcode
-     * @return No return value. Use available().
-     */
-    void read( void* buf, uint8_t len );
-
-    /**
-     * Be sure to call openWritingPipe() first to set the destination
-     * of where to write to.
-     *
-     * This blocks until the message is successfully acknowledged by
-     * the receiver or the timeout/retransmit maxima are reached.  In
-     * the current configuration, the max delay here is 60-70ms.
-     *
-     * The maximum size of data written is the fixed payload size, see
-     * getPayloadSize().  However, you can write less, and the remainder
-     * will just be filled with zeroes.
-     *
-     * TX/RX/RT interrupt flags will be cleared every time write is called
-     *
-     * @param buf Pointer to the data to be sent
-     * @param len Number of bytes to be sent
-     *
-     * @code
-     * radio.stopListening();
-     * radio.write(&data,sizeof(data));
-     * @endcode
-     * @return True if the payload was delivered successfully false if not
-     */
-    bool write( const void* buf, uint8_t len );
-
-    /**
-     * New: Open a pipe for writing via byte array. Old addressing format retained
-     * for compatibility.
-     *
-     * Only one writing pipe can be open at once, but you can change the address
-     * you'll write to. Call stopListening() first.
-     *
-     * Addresses are assigned via a byte array, default is 5 byte address length
-    s   *
-     * @code
-     *   uint8_t addresses[][6] = {"1Node","2Node"};
-     *   radio.openWritingPipe(addresses[0]);
-     * @endcode
-     * @code
-     *  uint8_t address[] = { 0xCC,0xCE,0xCC,0xCE,0xCC };
-     *  radio.openWritingPipe(address);
-     *  address[0] = 0x33;
-     *  radio.openReadingPipe(1,address);
-     * @endcode
-     * @see setAddressWidth
-     *
-     * @param address The address of the pipe to open. Coordinate these pipe
-     * addresses amongst nodes on the network.
-     */
-
-    void openWritingPipe(const uint8_t *address);
-
-    /**
-     * Open a pipe for reading
-     *
-     * Up to 6 pipes can be open for reading at once.  Open all the required
-     * reading pipes, and then call startListening().
-     *
-     * @see openWritingPipe
-     * @see setAddressWidth
-     *
-     * @note Pipes 0 and 1 will store a full 5-byte address. Pipes 2-5 will technically
-     * only store a single byte, borrowing up to 4 additional bytes from pipe #1 per the
-     * assigned address width.
-     * @warning Pipes 1-5 should share the same address, except the first byte.
-     * Only the first byte in the array should be unique, e.g.
-     * @code
-     *   uint8_t addresses[][6] = {"1Node","2Node"};
-     *   openReadingPipe(1,addresses[0]);
-     *   openReadingPipe(2,addresses[1]);
-     * @endcode
-     *
-     * @warning Pipe 0 is also used by the writing pipe.  So if you open
-     * pipe 0 for reading, and then startListening(), it will overwrite the
-     * writing pipe.  Ergo, do an openWritingPipe() again before write().
-     *
-     * @param number Which pipe# to open, 0-5.
-     * @param address The 24, 32 or 40 bit address of the pipe to open.
-     */
-
-    void openReadingPipe(uint8_t number, const uint8_t *address);
-
-    /**@}*/
-    /**
-     * @name Advanced Operation
-     *
-     *  Methods you can use to drive the chip in more advanced ways
-     */
-    /**@{*/
-
-    /**
-     * Print a giant block of debugging information to stdout
-     *
-     * @warning Does nothing if stdout is not defined.  See fdevopen in stdio.h
-     * The printf.h file is included with the library for Arduino.
-     * @code
-     * #include <printf.h>
-     * setup(){
-     *  Serial.begin(115200);
-     *  printf_begin();
-     *  ...
-     * }
-     * @endcode
-     */
-    void printDetails(void);
-
-    /**
-     * Test whether there are bytes available to be read in the
-     * FIFO buffers.
-     *
-     * @param[out] pipe_num Which pipe has the payload available
-     *
-     * @code
-     * uint8_t pipeNum;
-     * if(radio.available(&pipeNum)){
-     *   radio.read(&data,sizeof(data));
-     *   Serial.print("Got data on pipe");
-     *   Serial.println(pipeNum);
-     * }
-     * @endcode
-     * @return True if there is a payload available, false if none is
-     */
-    bool available(uint8_t* pipe_num);
-
-    /**
-     * Check if the radio needs to be read. Can be used to prevent data loss
-     * @return True if all three 32-byte radio buffers are full
-     */
-    bool rxFifoFull();
-
-    /**
-     * Enter low-power mode
-     *
-     * To return to normal power mode, call powerUp().
-     *
-     * @note After calling startListening(), a basic radio will consume about 13.5mA
-     * at max PA level.
-     * During active transmission, the radio will consume about 11.5mA, but this will
-     * be reduced to 26uA (.026mA) between sending.
-     * In full powerDown mode, the radio will consume approximately 900nA (.0009mA)
-     *
-     * @code
-     * radio.powerDown();
-     * avr_enter_sleep_mode(); // Custom function to sleep the device
-     * radio.powerUp();
-     * @endcode
-     */
-    void powerDown(void);
-
-    /**
-     * Leave low-power mode - required for normal radio operation after calling powerDown()
-     *
-     * To return to low power mode, call powerDown().
-     * @note This will take up to 5ms for maximum compatibility
-     */
-    void powerUp(void) ;
-
-    /**
-    * Write for single NOACK writes. Optionally disables acknowledgements/autoretries for a single write.
-    *
-    * @note enableDynamicAck() must be called to enable this feature
-    *
-    * Can be used with enableAckPayload() to request a response
-    * @see enableDynamicAck()
-    * @see setAutoAck()
-    * @see write()
-    *
-    * @param buf Pointer to the data to be sent
-    * @param len Number of bytes to be sent
-    * @param multicast Request ACK (0), NOACK (1)
-    */
-    bool write( const void* buf, uint8_t len, const bool multicast );
-
-    /**
-     * This will not block until the 3 FIFO buffers are filled with data.
-     * Once the FIFOs are full, writeFast will simply wait for success or
-     * timeout, and return 1 or 0 respectively. From a user perspective, just
-     * keep trying to send the same data. The library will keep auto retrying
-     * the current payload using the built in functionality.
-     * @warning It is important to never keep the nRF24L01 in TX mode and FIFO full for more than 4ms at a time. If the auto
-     * retransmit is enabled, the nRF24L01 is never in TX mode long enough to disobey this rule. Allow the FIFO
-     * to clear by issuing txStandBy() or ensure appropriate time between transmissions.
-     *
-     * @code
-     * Example (Partial blocking):
-     *
-     *            radio.writeFast(&buf,32);  // Writes 1 payload to the buffers
-     *            txStandBy();               // Returns 0 if failed. 1 if success. Blocks only until MAX_RT timeout or success. Data flushed on fail.
-     *
-     *            radio.writeFast(&buf,32);  // Writes 1 payload to the buffers
-     *            txStandBy(1000);           // Using extended timeouts, returns 1 if success. Retries failed payloads for 1 seconds before returning 0.
-     * @endcode
-     *
-     * @see txStandBy()
-     * @see write()
-     * @see writeBlocking()
-     *
-     * @param buf Pointer to the data to be sent
-     * @param len Number of bytes to be sent
-     * @return True if the payload was delivered successfully false if not
-     */
-    bool writeFast( const void* buf, uint8_t len );
-
-    /**
-    * WriteFast for single NOACK writes. Disables acknowledgements/autoretries for a single write.
-    *
-    * @note enableDynamicAck() must be called to enable this feature
-    * @see enableDynamicAck()
-    * @see setAutoAck()
-    *
-    * @param buf Pointer to the data to be sent
-    * @param len Number of bytes to be sent
-    * @param multicast Request ACK (0) or NOACK (1)
-    */
-    bool writeFast( const void* buf, uint8_t len, const bool multicast );
-
-    /**
-     * This function extends the auto-retry mechanism to any specified duration.
-     * It will not block until the 3 FIFO buffers are filled with data.
-     * If so the library will auto retry until a new payload is written
-     * or the user specified timeout period is reached.
-     * @warning It is important to never keep the nRF24L01 in TX mode and FIFO full for more than 4ms at a time. If the auto
-     * retransmit is enabled, the nRF24L01 is never in TX mode long enough to disobey this rule. Allow the FIFO
-     * to clear by issuing txStandBy() or ensure appropriate time between transmissions.
-     *
-     * @code
-     * Example (Full blocking):
-     *
-     *            radio.writeBlocking(&buf,32,1000); //Wait up to 1 second to write 1 payload to the buffers
-     *            txStandBy(1000);                   //Wait up to 1 second for the payload to send. Return 1 if ok, 0 if failed.
-     *                                               //Blocks only until user timeout or success. Data flushed on fail.
-     * @endcode
-     * @note If used from within an interrupt, the interrupt should be disabled until completion, and sei(); called to enable millis().
-     * @see txStandBy()
-     * @see write()
-     * @see writeFast()
-     *
-     * @param buf Pointer to the data to be sent
-     * @param len Number of bytes to be sent
-     * @param timeout User defined timeout in milliseconds.
-     * @return True if the payload was loaded into the buffer successfully false if not
-     */
-    bool writeBlocking( const void* buf, uint8_t len, uint32_t timeout );
-
-    /**
-     * This function should be called as soon as transmission is finished to
-     * drop the radio back to STANDBY-I mode. If not issued, the radio will
-     * remain in STANDBY-II mode which, per the data sheet, is not a recommended
-     * operating mode.
-     *
-     * @note When transmitting data in rapid succession, it is still recommended by
-     * the manufacturer to drop the radio out of TX or STANDBY-II mode if there is
-     * time enough between sends for the FIFOs to empty. This is not required if auto-ack
-     * is enabled.
-     *
-     * Relies on built-in auto retry functionality.
-     *
-     * @code
-     * Example (Partial blocking):
-     *
-     *            radio.writeFast(&buf,32);
-     *            radio.writeFast(&buf,32);
-     *            radio.writeFast(&buf,32);  //Fills the FIFO buffers up
-     *            bool ok = txStandBy();     //Returns 0 if failed. 1 if success.
-     *                                       //Blocks only until MAX_RT timeout or success. Data flushed on fail.
-     * @endcode
-     * @see txStandBy(unsigned long timeout)
-     * @return True if transmission is successful
-     *
-     */
-    bool txStandBy();
-
-    /**
-     * This function allows extended blocking and auto-retries per a user defined timeout
-     * @code
-     *    Fully Blocking Example:
-     *
-     *            radio.writeFast(&buf,32);
-     *            radio.writeFast(&buf,32);
-     *            radio.writeFast(&buf,32);   //Fills the FIFO buffers up
-     *            bool ok = txStandBy(1000);  //Returns 0 if failed after 1 second of retries. 1 if success.
-     *                                        //Blocks only until user defined timeout or success. Data flushed on fail.
-     * @endcode
-     * @note If used from within an interrupt, the interrupt should be disabled until completion, and sei(); called to enable millis().
-     * @param timeout Number of milliseconds to retry failed payloads
-     * @return True if transmission is successful
-     *
-     */
-    bool txStandBy(uint32_t timeout, bool startTx = 0);
-
-    /**
-     * Write an ack payload for the specified pipe
-     *
-     * The next time a message is received on @p pipe, the data in @p buf will
-     * be sent back in the acknowledgement.
-     * @see enableAckPayload()
-     * @see enableDynamicPayloads()
-     * @warning Only three of these can be pending at any time as there are only 3 FIFO buffers.<br> Dynamic payloads must be enabled.
-     * @note Ack payloads are handled automatically by the radio chip when a payload is received. Users should generally
-     * write an ack payload as soon as startListening() is called, so one is available when a regular payload is received.
-     * @note Ack payloads are dynamic payloads. This only works on pipes 0&1 by default. Call
-     * enableDynamicPayloads() to enable on all pipes.
-     *
-     * @param pipe Which pipe# (typically 1-5) will get this response.
-     * @param buf Pointer to data that is sent
-     * @param len Length of the data to send, up to 32 bytes max.  Not affected
-     * by the static payload set by setPayloadSize().
-     */
-    void writeAckPayload(uint8_t pipe, const void* buf, uint8_t len);
-
-    /**
-     * Determine if an ack payload was received in the most recent call to
-     * write(). The regular available() can also be used.
-     *
-     * Call read() to retrieve the ack payload.
-     *
-     * @return True if an ack payload is available.
-     */
-    bool isAckPayloadAvailable(void);
-
-    /**
-     * Call this when you get an interrupt to find out why
-     *
-     * Tells you what caused the interrupt, and clears the state of
-     * interrupts.
-     *
-     * @param[out] tx_ok The send was successful (TX_DS)
-     * @param[out] tx_fail The send failed, too many retries (MAX_RT)
-     * @param[out] rx_ready There is a message waiting to be read (RX_DS)
-     */
-    void whatHappened(bool& tx_ok,bool& tx_fail,bool& rx_ready);
+  /**
+   * Open a pipe for reading
+   * @note For compatibility with old code only, see new function
+   *
+   * @warning Pipes 1-5 should share the first 32 bits.
+   * Only the least significant byte should be unique, e.g.
+   * @code
+   *   openReadingPipe(1,0xF0F0F0F0AA);
+   *   openReadingPipe(2,0xF0F0F0F066);
+   * @endcode
+   *
+   * @warning Pipe 0 is also used by the writing pipe.  So if you open
+   * pipe 0 for reading, and then startListening(), it will overwrite the
+   * writing pipe.  Ergo, do an openWritingPipe() again before write().
+   *
+   * @param number Which pipe# to open, 0-5.
+   * @param address The 40-bit address of the pipe to open.
+   */
+  void openReadingPipe(uint8_t number, uint64_t address);
 
-    /**
-     * Non-blocking write to the open writing pipe used for buffered writes
-     *
-     * @note Optimization: This function now leaves the CE pin high, so the radio
-     * will remain in TX or STANDBY-II Mode until a txStandBy() command is issued. Can be used as an alternative to startWrite()
-     * if writing multiple payloads at once.
-     * @warning It is important to never keep the nRF24L01 in TX mode with FIFO full for more than 4ms at a time. If the auto
-     * retransmit/autoAck is enabled, the nRF24L01 is never in TX mode long enough to disobey this rule. Allow the FIFO
-     * to clear by issuing txStandBy() or ensure appropriate time between transmissions.
-     *
-     * @see write()
-     * @see writeFast()
-     * @see startWrite()
-     * @see writeBlocking()
-     *
-     * For single noAck writes see:
-     * @see enableDynamicAck()
-     * @see setAutoAck()
-     *
-     * @param buf Pointer to the data to be sent
-     * @param len Number of bytes to be sent
-     * @param multicast Request ACK (0) or NOACK (1)
-     * @return True if the payload was delivered successfully false if not
-     */
-    void startFastWrite( const void* buf, uint8_t len, const bool multicast, bool startTx = 1 );
-
-    /**
-     * Non-blocking write to the open writing pipe
-     *
-     * Just like write(), but it returns immediately. To find out what happened
-     * to the send, catch the IRQ and then call whatHappened().
-     *
-     * @see write()
-     * @see writeFast()
-     * @see startFastWrite()
-     * @see whatHappened()
-     *
-     * For single noAck writes see:
-     * @see enableDynamicAck()
-     * @see setAutoAck()
-     *
-     * @param buf Pointer to the data to be sent
-     * @param len Number of bytes to be sent
-     * @param multicast Request ACK (0) or NOACK (1)
-     *
-     */
-    void startWrite( const void* buf, uint8_t len, const bool multicast );
-
-    /**
-     * This function is mainly used internally to take advantage of the auto payload
-     * re-use functionality of the chip, but can be beneficial to users as well.
-     *
-     * The function will instruct the radio to re-use the data in the FIFO buffers,
-     * and instructs the radio to re-send once the timeout limit has been reached.
-     * Used by writeFast and writeBlocking to initiate retries when a TX failure
-     * occurs. Retries are automatically initiated except with the standard write().
-     * This way, data is not flushed from the buffer until switching between modes.
-     *
-     * @note This is to be used AFTER auto-retry fails if wanting to resend
-     * using the built-in payload reuse features.
-     * After issuing reUseTX(), it will keep reending the same payload forever or until
-     * a payload is written to the FIFO, or a flush_tx command is given.
-     */
-    void reUseTX();
-
-    /**
-     * Empty the transmit buffer. This is generally not required in standard operation.
-     * May be required in specific cases after stopListening() , if operating at 250KBPS data rate.
-     *
-     * @return Current value of status register
-     */
-    uint8_t flush_tx(void);
-
-    /**
-     * Test whether there was a carrier on the line for the
-     * previous listening period.
-     *
-     * Useful to check for interference on the current channel.
-     *
-     * @return true if was carrier, false if not
-     */
-    bool testCarrier(void);
-
-    /**
-     * Test whether a signal (carrier or otherwise) greater than
-     * or equal to -64dBm is present on the channel. Valid only
-     * on nRF24L01P (+) hardware. On nRF24L01, use testCarrier().
-     *
-     * Useful to check for interference on the current channel and
-     * channel hopping strategies.
-     *
-     * @code
-     * bool goodSignal = radio.testRPD();
-     * if(radio.available()){
-     *    Serial.println(goodSignal ? "Strong signal > 64dBm" : "Weak signal < 64dBm" );
-     *    radio.read(0,0);
-     * }
-     * @endcode
-     * @return true if signal => -64dBm, false if not
-     */
-    bool testRPD(void) ;
-
-    /**
-     * Test whether this is a real radio, or a mock shim for
-     * debugging.  Setting either pin to 0xff is the way to
-     * indicate that this is not a real radio.
-     *
-     * @return true if this is a legitimate radio
-     */
-    bool isValid() {
-        return ce_pin != 0xff && csn_pin != 0xff;
-    }
-
-    /**
-    * Close a pipe after it has been previously opened.
-    * Can be safely called without having previously opened a pipe.
-    * @param pipe Which pipe # to close, 0-5.
-    */
-    void closeReadingPipe( uint8_t pipe ) ;
-
-    /**
-    * Enable error detection by un-commenting #define FAILURE_HANDLING in RF24_config.h
-    * If a failure has been detected, it usually indicates a hardware issue. By default the library
-    * will cease operation when a failure is detected.
-    * This should allow advanced users to detect and resolve intermittent hardware issues.
-    *
-    * In most cases, the radio must be re-enabled via radio.begin(); and the appropriate settings
-    * applied after a failure occurs, if wanting to re-enable the device immediately.
-    *
-    * Usage: (Failure handling must be enabled per above)
-    *  @code
-    *  if(radio.failureDetected){
-    *    radio.begin();                       // Attempt to re-configure the radio with defaults
-    *    radio.failureDetected = 0;           // Reset the detection value
-    *    radio.openWritingPipe(addresses[1]); // Re-configure pipe addresses
-    *    radio.openReadingPipe(1,addresses[0]);
-    *    report_failure();                    // Blink leds, send a message, etc. to indicate failure
-    *  }
-    * @endcode
-    */
-    //#if defined (FAILURE_HANDLING)
-    bool failureDetected;
-    //#endif
-
-    /**@}*/
-
-    /**@}*/
-    /**
-     * @name Optional Configurators
-     *
-     *  Methods you can use to get or set the configuration of the chip.
-     *  None are required.  Calling begin() sets up a reasonable set of
-     *  defaults.
-     */
-    /**@{*/
-
-    /**
-    * Set the address width from 3 to 5 bytes (24, 32 or 40 bit)
-    *
-    * @param a_width The address width to use: 3,4 or 5
-    */
-
-    void setAddressWidth(uint8_t a_width);
-
-    /**
-     * Set the number and delay of retries upon failed submit
-     *
-     * @param delay How long to wait between each retry, in multiples of 250us,
-     * max is 15.  0 means 250us, 15 means 4000us.
-     * @param count How many retries before giving up, max 15
-     */
-    void setRetries(uint8_t delay, uint8_t count);
-
-    /**
-     * Set RF communication channel
-     *
-     * @param channel Which RF channel to communicate on, 0-127
-     */
-    void setChannel(uint8_t channel);
-
-    /**
-    * Get RF communication channel
-    *
-    * @return The currently configured RF Channel
-    */
-    uint8_t getChannel(void);
-
-    /**
-     * Set Static Payload Size
-     *
-     * This implementation uses a pre-stablished fixed payload size for all
-     * transmissions.  If this method is never called, the driver will always
-     * transmit the maximum payload size (32 bytes), no matter how much
-     * was sent to write().
-     *
-     * @todo Implement variable-sized payloads feature
-     *
-     * @param size The number of bytes in the payload
-     */
-    void setPayloadSize(uint8_t size);
-
-    /**
-     * Get Static Payload Size
-     *
-     * @see setPayloadSize()
-     *
-     * @return The number of bytes in the payload
-     */
-    uint8_t getPayloadSize(void);
-
-    /**
-     * Get Dynamic Payload Size
-     *
-     * For dynamic payloads, this pulls the size of the payload off
-     * the chip
-     *
-     * @note Corrupt packets are now detected and flushed per the
-     * manufacturer.
-     * @code
-     * if(radio.available()){
-     *   if(radio.getDynamicPayloadSize() < 1){
-     *     // Corrupt payload has been flushed
-     *     return;
-     *   }
-     *   radio.read(&data,sizeof(data));
-     * }
-     * @endcode
-     *
-     * @return Payload length of last-received dynamic payload
-     */
-    uint8_t getDynamicPayloadSize(void);
-
-    /**
-     * Enable custom payloads on the acknowledge packets
-     *
-     * Ack payloads are a handy way to return data back to senders without
-     * manually changing the radio modes on both units.
-     *
-     * @note Ack payloads are dynamic payloads. This only works on pipes 0&1 by default. Call
-     * enableDynamicPayloads() to enable on all pipes.
-     */
-    void enableAckPayload(void);
-
-    /**
-     * Enable dynamically-sized payloads
-     *
-     * This way you don't always have to send large packets just to send them
-     * once in a while.  This enables dynamic payloads on ALL pipes.
-     *
-     */
-    void enableDynamicPayloads(void);
-
-    /**
-     * Enable dynamic ACKs (single write multicast or unicast) for chosen messages
-     *
-     * @note To enable full multicast or per-pipe multicast, use setAutoAck()
-     *
-     * @warning This MUST be called prior to attempting single write NOACK calls
-     * @code
-     * radio.enableDynamicAck();
-     * radio.write(&data,32,1);  // Sends a payload with no acknowledgement requested
-     * radio.write(&data,32,0);  // Sends a payload using auto-retry/autoACK
-     * @endcode
-     */
-    void enableDynamicAck();
-
-    /**
-     * Determine whether the hardware is an nRF24L01+ or not.
-     *
-     * @return true if the hardware is nRF24L01+ (or compatible) and false
-     * if its not.
-     */
-    bool isPVariant(void) ;
-
-    /**
-     * Enable or disable auto-acknowlede packets
-     *
-     * This is enabled by default, so it's only needed if you want to turn
-     * it off for some reason.
-     *
-     * @param enable Whether to enable (true) or disable (false) auto-acks
-     */
-    void setAutoAck(bool enable);
-
-    /**
-     * Enable or disable auto-acknowlede packets on a per pipeline basis.
-     *
-     * AA is enabled by default, so it's only needed if you want to turn
-     * it off/on for some reason on a per pipeline basis.
-     *
-     * @param pipe Which pipeline to modify
-     * @param enable Whether to enable (true) or disable (false) auto-acks
-     */
-    void setAutoAck( uint8_t pipe, bool enable ) ;
-
-    /**
-     * Set Power Amplifier (PA) level to one of four levels:
-     * RF24_PA_MIN, RF24_PA_LOW, RF24_PA_HIGH and RF24_PA_MAX
-     *
-     * The power levels correspond to the following output levels respectively:
-     * NRF24L01: -18dBm, -12dBm,-6dBM, and 0dBm
-     *
-     * SI24R1: -6dBm, 0dBm, 3dBM, and 7dBm.
-     *
-     * @param level Desired PA level.
-     */
-    void setPALevel ( uint8_t level );
-
-    /**
-     * Fetches the current PA level.
-     *
-     * NRF24L01: -18dBm, -12dBm, -6dBm and 0dBm
-     * SI24R1:   -6dBm, 0dBm, 3dBm, 7dBm
-     *
-     * @return Returns values 0 to 3 representing the PA Level.
-     */
-    uint8_t getPALevel( void );
-
-    /**
-     * Set the transmission data rate
-     *
-     * @warning setting RF24_250KBPS will fail for non-plus units
-     *
-     * @param speed RF24_250KBPS for 250kbs, RF24_1MBPS for 1Mbps, or RF24_2MBPS for 2Mbps
-     * @return true if the change was successful
-     */
-    bool setDataRate(rf24_datarate_e speed);
-
-    /**
-     * Fetches the transmission data rate
-     *
-     * @return Returns the hardware's currently configured datarate. The value
-     * is one of 250kbs, RF24_1MBPS for 1Mbps, or RF24_2MBPS, as defined in the
-     * rf24_datarate_e enum.
-     */
-    rf24_datarate_e getDataRate( void ) ;
-
-    /**
-     * Set the CRC length
-     *
-     * @param length RF24_CRC_8 for 8-bit or RF24_CRC_16 for 16-bit
-     */
-    void setCRCLength(rf24_crclength_e length);
-
-    /**
-     * Get the CRC length
-     *
-     * @return RF24_DISABLED if disabled or RF24_CRC_8 for 8-bit or RF24_CRC_16 for 16-bit
-     */
-    rf24_crclength_e getCRCLength(void);
-
-    /**
-     * Disable CRC validation
-     *
-     * @warning CRC cannot be disabled if auto-ack/ESB is enabled.
-     */
-    void disableCRC( void ) ;
-
-    /**
-    * The radio will generate interrupt signals when a transmission is complete,
-    * a transmission fails, or a payload is received. This allows users to mask
-    * those interrupts to prevent them from generating a signal on the interrupt
-    * pin. Interrupts are enabled on the radio chip by default.
-    *
-    * @code
-    *     Mask all interrupts except the receive interrupt:
-    *
-    *     radio.maskIRQ(1,1,0);
-    * @endcode
-    *
-    * @param tx_ok  Mask transmission complete interrupts
-    * @param tx_fail  Mask transmit failure interrupts
-    * @param rx_ready Mask payload received interrupts
-    */
-    void maskIRQ(bool tx_ok,bool tx_fail,bool rx_ready);
-
-    /**@}*/
-    /**
-     * @name Deprecated
-     *
-     *  Methods provided for backwards compabibility.
-     */
-    /**@{*/
-
-
-    /**
-     * Open a pipe for reading
-     * @note For compatibility with old code only, see new function
-     *
-     * @warning Pipes 1-5 should share the first 32 bits.
-     * Only the least significant byte should be unique, e.g.
-     * @code
-     *   openReadingPipe(1,0xF0F0F0F0AA);
-     *   openReadingPipe(2,0xF0F0F0F066);
-     * @endcode
-     *
-     * @warning Pipe 0 is also used by the writing pipe.  So if you open
-     * pipe 0 for reading, and then startListening(), it will overwrite the
-     * writing pipe.  Ergo, do an openWritingPipe() again before write().
-     *
-     * @param number Which pipe# to open, 0-5.
-     * @param address The 40-bit address of the pipe to open.
-     */
-    void openReadingPipe(uint8_t number, uint64_t address);
-
-    /**
-     * Open a pipe for writing
-     * @note For compatibility with old code only, see new function
-     *
-     * Addresses are 40-bit hex values, e.g.:
-     *
-     * @code
-     *   openWritingPipe(0xF0F0F0F0F0);
-     * @endcode
-     *
-     * @param address The 40-bit address of the pipe to open.
-     */
-    void openWritingPipe(uint64_t address);
+  /**
+   * Open a pipe for writing
+   * @note For compatibility with old code only, see new function
+   *
+   * Addresses are 40-bit hex values, e.g.:
+   *
+   * @code
+   *   openWritingPipe(0xF0F0F0F0F0);
+   * @endcode
+   *
+   * @param address The 40-bit address of the pipe to open.
+   */
+  void openWritingPipe(uint64_t address);
 
 private:
 
-    /**
-     * @name Low-level internal interface.
-     *
-     *  Protected methods that address the chip directly.  Regular users cannot
-     *  ever call these.  They are documented for completeness and for developers who
-     *  may want to extend this class.
-     */
-    /**@{*/
+  /**
+   * @name Low-level internal interface.
+   *
+   *  Protected methods that address the chip directly.  Regular users cannot
+   *  ever call these.  They are documented for completeness and for developers who
+   *  may want to extend this class.
+   */
+  /**@{*/
 
-    /**
-     * Set chip select pin
-     *
-     * Running SPI bus at PI_CLOCK_DIV2 so we don't waste time transferring data
-     * and best of all, we make use of the radio's FIFO buffers. A lower speed
-     * means we're less likely to effectively leverage our FIFOs and pay a higher
-     * AVR runtime cost as toll.
-     *
-     * @param mode HIGH to take this unit off the SPI bus, LOW to put it on
-     */
-    void csn(bool mode);
+  /**
+   * Set chip select pin
+   *
+   * Running SPI bus at PI_CLOCK_DIV2 so we don't waste time transferring data
+   * and best of all, we make use of the radio's FIFO buffers. A lower speed
+   * means we're less likely to effectively leverage our FIFOs and pay a higher
+   * AVR runtime cost as toll.
+   *
+   * @param mode HIGH to take this unit off the SPI bus, LOW to put it on
+   */
+  void csn(bool mode);
 
-    /**
-     * Set chip enable
-     *
-     * @param level HIGH to actively begin transmission or LOW to put in standby.  Please see data sheet
-     * for a much more detailed description of this pin.
-     */
-    void ce(bool level);
+  /**
+   * Set chip enable
+   *
+   * @param level HIGH to actively begin transmission or LOW to put in standby.  Please see data sheet
+   * for a much more detailed description of this pin.
+   */
+  void ce(bool level);
 
-    /**
-     * Read a chunk of data in from a register
-     *
-     * @param reg Which register. Use constants from nRF24L01.h
-     * @param buf Where to put the data
-     * @param len How many bytes of data to transfer
-     * @return Current value of status register
-     */
-    uint8_t read_register(uint8_t reg, uint8_t* buf, uint8_t len);
+  /**
+   * Read a chunk of data in from a register
+   *
+   * @param reg Which register. Use constants from nRF24L01.h
+   * @param buf Where to put the data
+   * @param len How many bytes of data to transfer
+   * @return Current value of status register
+   */
+  uint8_t read_register(uint8_t reg, uint8_t* buf, uint8_t len);
 
-    /**
-     * Read single byte from a register
-     *
-     * @param reg Which register. Use constants from nRF24L01.h
-     * @return Current value of register @p reg
-     */
-    uint8_t read_register(uint8_t reg);
+  /**
+   * Read single byte from a register
+   *
+   * @param reg Which register. Use constants from nRF24L01.h
+   * @return Current value of register @p reg
+   */
+  uint8_t read_register(uint8_t reg);
 
-    /**
-     * Write a chunk of data to a register
-     *
-     * @param reg Which register. Use constants from nRF24L01.h
-     * @param buf Where to get the data
-     * @param len How many bytes of data to transfer
-     * @return Current value of status register
-     */
-    uint8_t write_register(uint8_t reg, const uint8_t* buf, uint8_t len);
+  /**
+   * Write a chunk of data to a register
+   *
+   * @param reg Which register. Use constants from nRF24L01.h
+   * @param buf Where to get the data
+   * @param len How many bytes of data to transfer
+   * @return Current value of status register
+   */
+  uint8_t write_register(uint8_t reg, const uint8_t* buf, uint8_t len);
 
-    /**
-     * Write a single byte to a register
-     *
-     * @param reg Which register. Use constants from nRF24L01.h
-     * @param value The new value to write
-     * @return Current value of status register
-     */
-    uint8_t write_register(uint8_t reg, uint8_t value);
+  /**
+   * Write a single byte to a register
+   *
+   * @param reg Which register. Use constants from nRF24L01.h
+   * @param value The new value to write
+   * @return Current value of status register
+   */
+  uint8_t write_register(uint8_t reg, uint8_t value);
 
-    /**
-     * Write the transmit payload
-     *
-     * The size of data written is the fixed payload size, see getPayloadSize()
-     *
-     * @param buf Where to get the data
-     * @param len Number of bytes to be sent
-     * @return Current value of status register
-     */
-    uint8_t write_payload(const void* buf, uint8_t len, const uint8_t writeType);
+  /**
+   * Write the transmit payload
+   *
+   * The size of data written is the fixed payload size, see getPayloadSize()
+   *
+   * @param buf Where to get the data
+   * @param len Number of bytes to be sent
+   * @return Current value of status register
+   */
+  uint8_t write_payload(const void* buf, uint8_t len, const uint8_t writeType);
 
-    /**
-     * Read the receive payload
-     *
-     * The size of data read is the fixed payload size, see getPayloadSize()
-     *
-     * @param buf Where to put the data
-     * @param len Maximum number of bytes to read
-     * @return Current value of status register
-     */
-    uint8_t read_payload(void* buf, uint8_t len);
+  /**
+   * Read the receive payload
+   *
+   * The size of data read is the fixed payload size, see getPayloadSize()
+   *
+   * @param buf Where to put the data
+   * @param len Maximum number of bytes to read
+   * @return Current value of status register
+   */
+  uint8_t read_payload(void* buf, uint8_t len);
 
-    /**
-     * Empty the receive buffer
-     *
-     * @return Current value of status register
-     */
-    uint8_t flush_rx(void);
+  /**
+   * Empty the receive buffer
+   *
+   * @return Current value of status register
+   */
+  uint8_t flush_rx(void);
 
-    /**
-     * Retrieve the current status of the chip
-     *
-     * @return Current value of status register
-     */
-    uint8_t get_status(void);
+  /**
+   * Retrieve the current status of the chip
+   *
+   * @return Current value of status register
+   */
+  uint8_t get_status(void);
 
-#if !defined (MINIMAL)
-    /**
-     * Decode and print the given status to stdout
-     *
-     * @param status Status value to print
-     *
-     * @warning Does nothing if stdout is not defined.  See fdevopen in stdio.h
-     */
-    void print_status(uint8_t status);
+  #if !defined (MINIMAL)
+  /**
+   * Decode and print the given status to stdout
+   *
+   * @param status Status value to print
+   *
+   * @warning Does nothing if stdout is not defined.  See fdevopen in stdio.h
+   */
+  void print_status(uint8_t status);
 
-    /**
-     * Decode and print the given 'observe_tx' value to stdout
-     *
-     * @param value The observe_tx value to print
-     *
-     * @warning Does nothing if stdout is not defined.  See fdevopen in stdio.h
-     */
-    void print_observe_tx(uint8_t value);
+  /**
+   * Decode and print the given 'observe_tx' value to stdout
+   *
+   * @param value The observe_tx value to print
+   *
+   * @warning Does nothing if stdout is not defined.  See fdevopen in stdio.h
+   */
+  void print_observe_tx(uint8_t value);
 
-    /**
-     * Print the name and value of an 8-bit register to stdout
-     *
-     * Optionally it can print some quantity of successive
-     * registers on the same line.  This is useful for printing a group
-     * of related registers on one line.
-     *
-     * @param name Name of the register
-     * @param reg Which register. Use constants from nRF24L01.h
-     * @param qty How many successive registers to print
-     */
-    void print_byte_register(const char* name, uint8_t reg, uint8_t qty = 1);
+  /**
+   * Print the name and value of an 8-bit register to stdout
+   *
+   * Optionally it can print some quantity of successive
+   * registers on the same line.  This is useful for printing a group
+   * of related registers on one line.
+   *
+   * @param name Name of the register
+   * @param reg Which register. Use constants from nRF24L01.h
+   * @param qty How many successive registers to print
+   */
+  void print_byte_register(const char* name, uint8_t reg, uint8_t qty = 1);
 
-    /**
-     * Print the name and value of a 40-bit address register to stdout
-     *
-     * Optionally it can print some quantity of successive
-     * registers on the same line.  This is useful for printing a group
-     * of related registers on one line.
-     *
-     * @param name Name of the register
-     * @param reg Which register. Use constants from nRF24L01.h
-     * @param qty How many successive registers to print
-     */
-    void print_address_register(const char* name, uint8_t reg, uint8_t qty = 1);
+  /**
+   * Print the name and value of a 40-bit address register to stdout
+   *
+   * Optionally it can print some quantity of successive
+   * registers on the same line.  This is useful for printing a group
+   * of related registers on one line.
+   *
+   * @param name Name of the register
+   * @param reg Which register. Use constants from nRF24L01.h
+   * @param qty How many successive registers to print
+   */
+  void print_address_register(const char* name, uint8_t reg, uint8_t qty = 1);
 #endif
-    /**
-     * Turn on or off the special features of the chip
-     *
-     * The chip has certain 'features' which are only available when the 'features'
-     * are enabled.  See the datasheet for details.
-     */
-    void toggle_features(void);
+  /**
+   * Turn on or off the special features of the chip
+   *
+   * The chip has certain 'features' which are only available when the 'features'
+   * are enabled.  See the datasheet for details.
+   */
+  void toggle_features(void);
 
-    /**
-     * Built in spi transfer function to simplify repeating code repeating code
-     */
-
-    uint8_t spiTrans(uint8_t cmd);
+  /**
+   * Built in spi transfer function to simplify repeating code repeating code
+   */
 
-#if defined (FAILURE_HANDLING) || defined (RF24_LINUX)
-    void errNotify(void);
-#endif
-
-    /**@}*/
+  uint8_t spiTrans(uint8_t cmd);
+  
+  #if defined (FAILURE_HANDLING) || defined (RF24_LINUX)
+	void errNotify(void);
+  #endif
+  
+  /**@}*/
 
 };
 
@@ -1103,18 +1143,18 @@
  * @note When switching between sketches, the radio may need to be powered down to clear settings that are not "un-set" otherwise
  */
 
-/**
-* @example GettingStarted.cpp
-* <b>For Raspberry Pi</b><br>
-* <b>Updated: TMRh20 2014 </b><br>
-*
-* This is an example of how to use the RF24 class to communicate on a basic level. Configure and write this sketch to two
-* different nodes. Put one of the nodes into 'transmit' mode by connecting with the serial monitor and <br>
-* sending a 'T'. The ping node sends the current time to the pong node, which responds by sending the value
-* back. The ping node can then see how long the whole cycle took. <br>
-* @note For a more efficient call-response scenario see the GettingStarted_CallResponse.ino example.
-*/
-
+ /**
+ * @example GettingStarted.cpp
+ * <b>For Raspberry Pi</b><br>
+ * <b>Updated: TMRh20 2014 </b><br>
+ *
+ * This is an example of how to use the RF24 class to communicate on a basic level. Configure and write this sketch to two
+ * different nodes. Put one of the nodes into 'transmit' mode by connecting with the serial monitor and <br>
+ * sending a 'T'. The ping node sends the current time to the pong node, which responds by sending the value
+ * back. The ping node can then see how long the whole cycle took. <br>
+ * @note For a more efficient call-response scenario see the GettingStarted_CallResponse.ino example.
+ */
+ 
 /**
  * @example GettingStarted_CallResponse.ino
  * <b>For Arduino</b><br>
@@ -1126,27 +1166,27 @@
  * switch out of Primary Receiver mode to send back a payload, but having the option to switch to <br>
  * primary transmitter if wanting to initiate communication instead of respond to a commmunication.
  */
+ 
+ /**
+ * @example GettingStarted_Call_Response.cpp
+ * <b>For Raspberry Pi</b><br>
+ * <b>New: TMRh20 2014</b><br>
+ *
+ * This example continues to make use of all the normal functionality of the radios including
+ * the auto-ack and auto-retry features, but allows ack-payloads to be written optionlly as well. <br>
+ * This allows very fast call-response communication, with the responding radio never having to
+ * switch out of Primary Receiver mode to send back a payload, but having the option to switch to <br>
+ * primary transmitter if wanting to initiate communication instead of respond to a commmunication.
+ */
 
-/**
-* @example GettingStarted_Call_Response.cpp
-* <b>For Raspberry Pi</b><br>
-* <b>New: TMRh20 2014</b><br>
-*
-* This example continues to make use of all the normal functionality of the radios including
-* the auto-ack and auto-retry features, but allows ack-payloads to be written optionlly as well. <br>
-* This allows very fast call-response communication, with the responding radio never having to
-* switch out of Primary Receiver mode to send back a payload, but having the option to switch to <br>
-* primary transmitter if wanting to initiate communication instead of respond to a commmunication.
-*/
-
-/**
-* @example GettingStarted_HandlingData.ino
-* <b>Dec 2014 - TMRh20</b><br>
-*
-* This example demonstrates how to send multiple variables in a single payload and work with data. As usual, it is
-* generally important to include an incrementing value like millis() in the payloads to prevent errors.
-*/
-
+ /**
+ * @example GettingStarted_HandlingData.ino
+ * <b>Dec 2014 - TMRh20</b><br>
+ *
+ * This example demonstrates how to send multiple variables in a single payload and work with data. As usual, it is
+ * generally important to include an incrementing value like millis() in the payloads to prevent errors.
+ */
+ 
 /**
  * @example Transfer.ino
  * <b>For Arduino</b><br>
@@ -1157,17 +1197,17 @@
  * with the serial monitor and sending a 'T'.  The data transfer will begin,
  * with the receiver displaying the payload count. (32Byte Payloads) <br>
  */
-
-/**
-* @example Transfer.cpp
-* <b>For Raspberry Pi</b><br>
-* This example demonstrates half-rate transfer using the FIFO buffers<br>
-*
-* It is an example of how to use the RF24 class.  Write this sketch to two
-* different nodes.  Put one of the nodes into 'transmit' mode by connecting <br>
-* with the serial monitor and sending a 'T'.  The data transfer will begin,
-* with the receiver displaying the payload count. (32Byte Payloads) <br>
-*/
+ 
+ /**
+ * @example Transfer.cpp
+ * <b>For Raspberry Pi</b><br>
+ * This example demonstrates half-rate transfer using the FIFO buffers<br>
+ *
+ * It is an example of how to use the RF24 class.  Write this sketch to two
+ * different nodes.  Put one of the nodes into 'transmit' mode by connecting <br>
+ * with the serial monitor and sending a 'T'.  The data transfer will begin,
+ * with the receiver displaying the payload count. (32Byte Payloads) <br>
+ */
 
 /**
  * @example TransferTimeouts.ino
@@ -1215,12 +1255,12 @@
  * Sleep functionality is built directly into my fork of the RF24Network library<br>
  */
 
-/**
-* @example pingpair_irq_simple.ino
-* <b>Dec 2014 - TMRh20</b><br>
-* This is an example of how to user interrupts to interact with the radio, with bidirectional communication.
-*/
-
+ /**
+ * @example pingpair_irq_simple.ino
+ * <b>Dec 2014 - TMRh20</b><br>
+ * This is an example of how to user interrupts to interact with the radio, with bidirectional communication.
+ */
+ 
 /**
  * @example pingpair_sleepy.ino
  * <b>Update: TMRh20</b><br>
@@ -1230,47 +1270,47 @@
  * ping/pong cycle, and the receiver sleeps between payloads. <br>
  */
 
-/**
-* @example rf24ping85.ino
-* <b>New: Contributed by https://github.com/tong67</b><br>
-* This is an example of how to use the RF24 class to communicate with ATtiny85 and other node. <br>
-*/
-
-/**
-* @example timingSearch3pin.ino
-* <b>New: Contributed by https://github.com/tong67</b><br>
-* This is an example of how to determine the correct timing for ATtiny when using only 3-pins
-*/
-
+ /**
+ * @example rf24ping85.ino
+ * <b>New: Contributed by https://github.com/tong67</b><br>
+ * This is an example of how to use the RF24 class to communicate with ATtiny85 and other node. <br>
+ */
+ 
+ /**
+ * @example timingSearch3pin.ino
+ * <b>New: Contributed by https://github.com/tong67</b><br>
+ * This is an example of how to determine the correct timing for ATtiny when using only 3-pins
+ */
+  
 /**
  * @example pingpair_dyn.ino
  *
  * This is an example of how to use payloads of a varying (dynamic) size on Arduino.
  */
-
-/**
-* @example pingpair_dyn.cpp
-*
-* This is an example of how to use payloads of a varying (dynamic) size on Raspberry Pi.
-*/
+ 
+ /**
+ * @example pingpair_dyn.cpp
+ *
+ * This is an example of how to use payloads of a varying (dynamic) size on Raspberry Pi.
+ */
 
 /**
  * @example pingpair_dyn.py
  *
  * This is a python example for RPi of how to use payloads of a varying (dynamic) size.
- */
-
+ */ 
+ 
 /**
  * @example pingpair_dyn.ino
  *
  * This is an example of how to use payloads of a varying (dynamic) size.
  */
-
-/**
-* @example pingpair_dyn.ino
-*
-* This is an example of how to use payloads of a varying (dynamic) size.
-*/
+ 
+ /**
+ * @example pingpair_dyn.ino
+ *
+ * This is an example of how to use payloads of a varying (dynamic) size.
+ */
 
 /**
  * @example scanner.ino
@@ -1298,6 +1338,14 @@
  *
  * @section News News
  *
+ * **Dec 2015**<br>
+ * - ESP8266 support via Arduino IDE
+ * - <a href="https://github.com/stewarthou/Particle-RF24">Particle Photon/Core</a> fork available
+ * - ATTiny2313/4313 support added
+ * - Python 3 support added
+ * - RF24 added to Arduino library manager
+ * - RF24 added to PlatformIO library manager
+ *
  * **March 2015**<br>
  * - Uses SPI transactions on Arduino
  * - New layout for <a href="Portability.html">easier portability:</a> Break out defines & includes for individual platforms to RF24/utility
@@ -1306,12 +1354,6 @@
  * - Support for RPi 2 added
  * - Major Documentation cleanup & update (Move all docs to github.io)
  *
- * <b>Dec 2014 </b><br>
- * - New: Intel Galileo now supported
- * - New: Python wrapper for RPi included
- * - Documentation updated
- * - Example files have been updated
- * - See the links below and class documentation for more info.
  *
  * If issues are discovered with the documentation, please report them <a href="https://github.com/TMRh20/tmrh20.github.io/issues"> here</a>
  *
@@ -1322,7 +1364,7 @@
  * @li <a href="http://tmrh20.github.io/RF24/classRF24.html"><b>RF24</b> Class Documentation</a>
  * @li <a href="https://github.com/TMRh20/RF24/archive/master.zip"><b>Download</b></a>
  * @li <a href="https://github.com/tmrh20/RF24/"><b>Source Code</b></a>
- * @li <a href="http://tmrh20.blogspot.com/2014/03/high-speed-data-transfers-and-wireless.html"><b>My Blog:</b> RF24 Optimization Overview</a>
+ * @li <a href="http://tmrh20.blogspot.com/2014/03/high-speed-data-transfers-and-wireless.html"><b>My Blog:</b> RF24 Optimization Overview</a> 
  * @li <a href="http://www.nordicsemi.com/files/Product/data_sheet/nRF24L01_Product_Specification_v2_0.pdf">Chip Datasheet</a>
  *
  * **Additional Information and Add-ons**
@@ -1343,7 +1385,7 @@
  * @li <a href="http://www.homeautomationforgeeks.com/rf24software.shtml">Home Automation for Geeks</a>
  * @li <a href="https://maniacbug.wordpress.com/2012/03/30/rf24network/"> Original Maniacbug RF24Network Blog Post</a>
  * @li <a href="https://github.com/maniacbug/RF24"> ManiacBug on GitHub (Original Library Author)</a>
- *
+ * 
  *
  * <br>
  *
@@ -1373,25 +1415,25 @@
  *
  * @li [0] https://learn.sparkfun.com/tutorials/tiny-avr-programmer-hookup-guide/attiny85-use-hints
  * @li [1] http://highlowtech.org/?p=1695
- * @li [2] http://littlewire.cc/
+ * @li [2] http://littlewire.cc/   
  * <br><br><br>
  *
  *
  *
  *
  * @page Arduino Arduino
- *
+ * 
  * RF24 is fully compatible with Arduino boards <br>
  * See <b> http://www.arduino.cc/en/Reference/Board </b> and <b> http://arduino.cc/en/Reference/SPI </b> for more information
- *
+ * 
  * RF24 makes use of the standard hardware SPI pins (MISO,MOSI,SCK) and requires two additional pins, to control
  * the chip-select and chip-enable functions.<br>
- * These pins must be chosen and designated by the user, in RF24 radio(ce_pin,cs_pin); and can use any
+ * These pins must be chosen and designated by the user, in RF24 radio(ce_pin,cs_pin); and can use any 
  * available pins.
- *
+ * 
  * <br>
  * @section ARD_DUE Arduino Due
- *
+ * 
  * RF24 makes use of the extended SPI functionality available on the Arduino Due, and requires one of the
  * defined hardware SS/CS pins to be designated in RF24 radio(ce_pin,cs_pin);<br>
  * See http://arduino.cc/en/Reference/DueExtendedSPI for more information
@@ -1402,7 +1444,7 @@
  * @section Alternate_SPI Alternate SPI Support
  *
  * RF24 supports alternate SPI methods, in case the standard hardware SPI pins are otherwise unavailable.
- *
+ * 
  * <br>
  * **Software Driven SPI**
  *
@@ -1422,11 +1464,11 @@
  * <br>
  * **Alternate Hardware (UART) Driven  SPI**
  *
- * The Serial Port (UART) on Arduino can also function in SPI mode, and can double-buffer data, while the
+ * The Serial Port (UART) on Arduino can also function in SPI mode, and can double-buffer data, while the 
  * default SPI hardware cannot.
  *
  * The SPI_UART library is available at https://github.com/TMRh20/Sketches/tree/master/SPI_UART
- *
+ * 
  * Enabling:
  * 1. Install the SPI_UART library
  * 2. Edit RF24_config.h and uncomment #define SPI_UART
@@ -1444,12 +1486,12 @@
  *
  * @note SPI_UART on Mega boards requires soldering to an unused pin on the chip. <br>See
  * https://github.com/TMRh20/RF24/issues/24 for more information on SPI_UART.
- *
+ * 
  * @page ATTiny ATTiny
  *
  * ATTiny support is built into the library, so users are not required to include SPI.h in their sketches<br>
  * See the included rf24ping85 example for pin info and usage
- *
+ * 
  * Some versions of Arduino IDE may require a patch to allow use of the full program space on ATTiny<br>
  * See https://github.com/TCWORLD/ATTinyCore/tree/master/PCREL%20Patch%20for%20GCC for ATTiny patch
  *
@@ -1457,56 +1499,73 @@
  *
  * @section Hardware Hardware Configuration
  * By tong67 ( https://github.com/tong67 )
- *
+ * 
  *    **ATtiny25/45/85 Pin map with CE_PIN 3 and CSN_PIN 4**
  * @code
  *                                 +-\/-+
  *                   NC      PB5  1|o   |8  Vcc --- nRF24L01  VCC, pin2 --- LED --- 5V
  *    nRF24L01  CE, pin3 --- PB3  2|    |7  PB2 --- nRF24L01  SCK, pin5
- *    nRF24L01 CSN, pin4 --- PB4  3|    |6  PB1 --- nRF24L01 MOSI, pin7
- *    nRF24L01 GND, pin1 --- GND  4|    |5  PB0 --- nRF24L01 MISO, pin6
- *                                 +----+
+ *    nRF24L01 CSN, pin4 --- PB4  3|    |6  PB1 --- nRF24L01 MOSI, pin6
+ *    nRF24L01 GND, pin1 --- GND  4|    |5  PB0 --- nRF24L01 MISO, pin7
+ *                                 +----+ 
  * @endcode
  *
  * <br>
  *    **ATtiny25/45/85 Pin map with CE_PIN 3 and CSN_PIN 3** => PB3 and PB4 are free to use for application <br>
  *    Circuit idea from http://nerdralph.blogspot.ca/2014/01/nrf24l01-control-with-3-attiny85-pins.html <br>
  *   Original RC combination was 1K/100nF. 22K/10nF combination worked better.                          <br>
- *  For best settletime delay value in RF24::csn() the timingSearch3pin.ino sketch can be used.         <br>
+ *	For best settletime delay value in RF24::csn() the timingSearch3pin.ino sketch can be used.         <br>
  *    This configuration is enabled when CE_PIN and CSN_PIN are equal, e.g. both 3                      <br>
  *    Because CE is always high the power consumption is higher than for 5 pins solution                <br>
  * @code
- *                                                                                           ^^
- *                                 +-\/-+           nRF24L01   CE, pin3 ------|              //
- *                           PB5  1|o   |8  Vcc --- nRF24L01  VCC, pin2 ------x----------x--|<|-- 5V
- *                   NC      PB3  2|    |7  PB2 --- nRF24L01  SCK, pin5 --|<|---x-[22k]--|  LED
- *                   NC      PB4  3|    |6  PB1 --- nRF24L01 MOSI, pin6  1n4148 |
- *    nRF24L01 GND, pin1 -x- GND  4|    |5  PB0 --- nRF24L01 MISO, pin7         |
- *                        |        +----+                                       |
- *                        |-----------------------------------------------||----x-- nRF24L01 CSN, pin4
- *                                                                      10nF
+ *                                                                                           ^^         
+ *                                 +-\/-+           nRF24L01   CE, pin3 ------|              //         
+ *                           PB5  1|o   |8  Vcc --- nRF24L01  VCC, pin2 ------x----------x--|<|-- 5V    
+ *                   NC      PB3  2|    |7  PB2 --- nRF24L01  SCK, pin5 --|<|---x-[22k]--|  LED         
+ *                   NC      PB4  3|    |6  PB1 --- nRF24L01 MOSI, pin6  1n4148 |                       
+ *    nRF24L01 GND, pin1 -x- GND  4|    |5  PB0 --- nRF24L01 MISO, pin7         |                       
+ *                        |        +----+                                       |                       
+ *                        |-----------------------------------------------||----x-- nRF24L01 CSN, pin4  
+ *                                                                      10nF                            
  * @endcode
  *
  * <br>
  *    **ATtiny24/44/84 Pin map with CE_PIN 8 and CSN_PIN 7** <br>
- *  Schematic provided and successfully tested by Carmine Pastore (https://github.com/Carminepz) <br>
+ *	Schematic provided and successfully tested by Carmine Pastore (https://github.com/Carminepz) <br>
  * @code
- *                                  +-\/-+
+ *                                  +-\/-+                                                              
  *    nRF24L01  VCC, pin2 --- VCC  1|o   |14 GND --- nRF24L01  GND, pin1
  *                            PB0  2|    |13 AREF
  *                            PB1  3|    |12 PA1
  *                            PB3  4|    |11 PA2 --- nRF24L01   CE, pin3
  *                            PB2  5|    |10 PA3 --- nRF24L01  CSN, pin4
  *                            PA7  6|    |9  PA4 --- nRF24L01  SCK, pin5
- *    nRF24L01 MOSI, pin7 --- PA6  7|    |8  PA5 --- nRF24L01 MISO, pin6
+ *    nRF24L01 MISO, pin7 --- PA6  7|    |8  PA5 --- nRF24L01 MOSI, pin6
  *                                  +----+
- *  @endcode
+ *	@endcode					 
+ *	
+ * <br>
+ *    **ATtiny2313/4313 Pin map with CE_PIN 12 and CSN_PIN 13** <br>
+ * @code
+ *                                  +-\/-+                                                              
+ *                            PA2  1|o   |20 VCC --- nRF24L01  VCC, pin2
+ *                            PD0  2|    |19 PB7 --- nRF24L01  SCK, pin5
+ *                            PD1  3|    |18 PB6 --- nRF24L01 MOSI, pin6
+ *                            PA1  4|    |17 PB5 --- nRF24L01 MISO, pin7
+ *                            PA0  5|    |16 PB4 --- nRF24L01  CSN, pin4
+ *                            PD2  6|    |15 PB3 --- nRF24L01   CE, pin3
+ *                            PD3  7|    |14 PB2
+ *                            PD4  8|    |13 PB1
+ *                            PD5  9|    |12 PB0
+ *    nRF24L01  GND, pin1 --- GND 10|    |11 PD6
+ *                                  +----+
+ *	@endcode					 
  *
  * <br><br><br>
  *
  *
- *
- *
+ * 
+ * 
  *
  *
  * @page BBB BeagleBone Black
@@ -1517,10 +1576,10 @@
  *  Users may need to edit the RF24/utility/BBB/spi.cpp file to configure the spi device. (Defaults: "/dev/spidev1.0";  or  "/dev/spidev1.1"; )
  *
  * <br>
- * @section AutoInstall Automated Install
+ * @section AutoInstall Automated Install 
  *(**Designed & Tested on RPi** - Defaults to SPIDEV on BBB)
  *
- *
+ * 
  * 1. Download the install.sh file from http://tmrh20.github.io/RF24Installer/RPi/install.sh
  * @code wget http://tmrh20.github.io/RF24Installer/RPi/install.sh @endcode
  * 2. Make it executable:
@@ -1528,42 +1587,42 @@
  * 3. Run it and choose your options
  * @code ./install.sh @endcode
  * 4. Run an example from one of the libraries
- * @code
- * cd rf24libs/RF24/examples_RPi
+ * @code 
+ * cd rf24libs/RF24/examples_RPi  
  * @endcode
  * Edit the gettingstarted example, to set your pin configuration
  * @code nano gettingstarted.cpp
- * make
- * sudo ./gettingstarted
+ * make  
+ * sudo ./gettingstarted  
  * @endcode
  *
  * <br>
  * @section ManInstall Manual Install
- * 1. Make a directory to contain the RF24 and possibly RF24Network lib and enter it:
+ * 1. Make a directory to contain the RF24 and possibly RF24Network lib and enter it: 
  * @code
- *  mkdir ~/rf24libs
+ *  mkdir ~/rf24libs 
  *  cd ~/rf24libs
 *  @endcode
  * 2. Clone the RF24 repo:
  *    @code git clone https://github.com/tmrh20/RF24.git RF24 @endcode
  * 3. Change to the new RF24 directory
  *    @code cd RF24 @endcode
- * 4. Build the library, and run an example file:
+ * 4. Build the library, and run an example file: 
  * **Note:** See the <a href="http://iotdk.intel.com/docs/master/mraa/index.html">MRAA </a> documentation for more info on installing MRAA
  *    @code sudo make install  OR  sudo make install RF24_MRAA=1 @endcode
  * @code
- * cd examples_RPi
+ * cd examples_RPi  
  * @endcode
  * Edit the gettingstarted example, to set your pin configuration
- * @code nano gettingstarted.cpp
- * make
+ * @code nano gettingstarted.cpp 
+ * make 
  * sudo ./gettingstarted
  * @endcode
  *
  * <br><br>
- *
+ *   
  * @page MRAA MRAA
- *
+ *  
  * MRAA is a Low Level Skeleton Library for Communication on GNU/Linux platforms <br>
  * See http://iotdk.intel.com/docs/master/mraa/index.html for more information
  *
@@ -1573,34 +1632,34 @@
  * @section Setup Setup
  * 1. Install the MRAA lib
  * 2. As per your device, SPI may need to be enabled
- *
- * @section MRAA_Install Install
+ * 
+ * @section MRAA_Install Install 
  *
- * 1. Make a directory to contain the RF24 and possibly RF24Network lib and enter it:
+ * 1. Make a directory to contain the RF24 and possibly RF24Network lib and enter it: 
  * @code
- *  mkdir ~/rf24libs
+ *  mkdir ~/rf24libs 
  *  cd ~/rf24libs
 *  @endcode
  * 2. Clone the RF24 repo:
  *    @code git clone https://github.com/tmrh20/RF24.git RF24 @endcode
  * 3. Change to the new RF24 directory
  *    @code cd RF24 @endcode
- * 4. Build the library:
+ * 4. Build the library: 
  *    @code sudo make install -B RF24_MRAA=1 @endcode
  * 5. Configure the correct pins in gettingstarted.cpp (See http://iotdk.intel.com/docs/master/mraa/index.html )
  *    @code
- *    cd examples_RPi
- *    nano gettingstarted.cpp
+ *    cd examples_RPi  
+ *    nano gettingstarted.cpp 
  *    @endcode
  * 6. Build an example
  *    @code
- *    make
+ *    make  
  *    sudo ./gettingstarted
  *    @endcode
  *
  * <br><br><br>
  *
- *
+ * 
  *
  *
  * @page RPi Raspberry Pi
@@ -1617,7 +1676,7 @@
  * B. Select **Advanced** and **enable the SPI kernel module** <br>
  * C. Update other software and libraries:
  * @code sudo apt-get update @endcode
- * @code sudo apt-get upgrade @endcode
+ * @code sudo apt-get upgrade @endcode 
  * <br>
  * @section AutoInstall Automated Install
  *
@@ -1628,26 +1687,26 @@
  * 3. Run it and choose your options
  * @code ./install.sh @endcode
  * 4. Run an example from one of the libraries
- * @code
- * cd rf24libs/RF24/examples_RPi
- * make
- * sudo ./gettingstarted
+ * @code 
+ * cd rf24libs/RF24/examples_RPi  
+ * make  
+ * sudo ./gettingstarted  
  * @endcode
  * <br><br>
  * @section ManInstall Manual Install
- * 1. Make a directory to contain the RF24 and possibly RF24Network lib and enter it:
+ * 1. Make a directory to contain the RF24 and possibly RF24Network lib and enter it: 
  * @code
- *  mkdir ~/rf24libs
+ *  mkdir ~/rf24libs 
  *  cd ~/rf24libs
 *  @endcode
  * 2. Clone the RF24 repo:
  *    @code git clone https://github.com/tmrh20/RF24.git RF24 @endcode
  * 3. Change to the new RF24 directory
  *    @code cd RF24 @endcode
- * 4. Build the library, and run an example file:
+ * 4. Build the library, and run an example file: 
  * @code sudo make install
- * cd examples_RPi
- * make
+ * cd examples_RPi  
+ * make  
  * sudo ./gettingstarted
  * @endcode
  *
@@ -1699,7 +1758,7 @@
  *  RF24 radio(RPI_V2_GPIO_P1_15,BCM2835_SPI_CS0, BCM2835_SPI_SPEED_8MHZ);
  *   or
  *  RF24 radio(RPI_V2_GPIO_P1_15,BCM2835_SPI_CS1, BCM2835_SPI_SPEED_8MHZ);
- *
+ *	
  *  RPi B+:
  *  RF24 radio(RPI_BPLUS_GPIO_J8_15,RPI_BPLUS_GPIO_J8_24, BCM2835_SPI_SPEED_8MHZ);
  *  or
@@ -1727,7 +1786,7 @@
  *
  * See http://pi.gadgetoid.com/pinout
  *
- * **Pins:**
+ * **Pins:**  
  *
  * | PIN | NRF24L01 |    RPI     | RPi -P1 Connector |
  * |-----|----------|------------|-------------------|
@@ -1739,54 +1798,54 @@
  * |  6  |   MOSI   | rpi-mosi   |     (19)          |
  * |  7  |   MISO   | rpi-miso   |     (21)          |
  * |  8  |   IRQ    |    -       |       -           |
- *
- *
- *
- *
+ *   
+ *   
+ *  
+ *  
  * <br><br>
  ****************
- *
+ *   
  * Based on the arduino lib from J. Coliz <maniacbug@ymail.com>  <br>
- * the library was berryfied by Purinda Gunasekara <purinda@gmail.com> <br>
+ * the library was berryfied by Purinda Gunasekara <purinda@gmail.com> <br>  
  * then forked from github stanleyseow/RF24 to https://github.com/jscrane/RF24-rpi  <br>
  * Network lib also based on https://github.com/farconada/RF24Network
  *
- *
- *
+ * 
  *
+ * 
  * <br><br><br>
- *
+ * 
  *
- *
+ *  
  * @page Python Python Wrapper (by https://github.com/mz-fuzzy)
- *
- * @section Install Installation:
- *
+ * 
+ * @section Install Installation:  
+ * 
  * Install the boost libraries:  (Note: Only the python libraries should be needed, this is just for simplicity)
  *
  * @code sudo apt-get install libboost1.50-all @endcode
  *
- * Build the library:
+ * Build the library:  
  *
  * @code ./setup.py build   @endcode
  *
- * Install the library
+ * Install the library 
  *
  * @code sudo ./setup.py install  @endcode
  *
- *
+ * 
  * See the additional <a href="pages.html">Platform Support</a> pages for information on connecting your hardware  <br>
- * See the included <a href="pingpair_dyn_8py-example.html">example </a> for usage information.
- *
- * Running the Example:
- *
- * Edit the pingpair_dyn.py example to configure the appropriate pins per the above documentation:
+ * See the included <a href="pingpair_dyn_8py-example.html">example </a> for usage information.   
+ * 
+ * Running the Example:  
+ * 
+ * Edit the pingpair_dyn.py example to configure the appropriate pins per the above documentation:  
  *
  * @code nano pingpair_dyn.py   @endcode
  *
- * Configure another device, Arduino or RPi with the <a href="pingpair_dyn_8py-example.html">pingpair_dyn</a> example
+ * Configure another device, Arduino or RPi with the <a href="pingpair_dyn_8py-example.html">pingpair_dyn</a> example  
  *
- * Run the example
+ * Run the example  
  *
  * @code sudo ./pingpair_dyn.py  @endcode
  *
@@ -1796,9 +1855,9 @@
  * @page Portability RF24 Portability
  *
  * The RF24 radio driver mainly utilizes the <a href="http://arduino.cc/en/reference/homePage">Arduino API</a> for GPIO, SPI, and timing functions, which are easily replicated
- * on various platforms. <br>Support files for these platforms are stored under RF24/utility, and can be modified to provide
+ * on various platforms. <br>Support files for these platforms are stored under RF24/utility, and can be modified to provide 
  * the required functionality.
- *
+ * 
  * <br>
  * @section Hardware_Templates Basic Hardware Template
  *
@@ -1807,18 +1866,18 @@
  * The RF24 library now includes a basic hardware template to assist in porting to various platforms. <br> The following files can be included
  * to replicate standard Arduino functions as needed, allowing devices from ATTiny to Raspberry Pi to utilize the same core RF24 driver.
  *
- * | File               |                   Purpose                                                    |
- * |--------------------|------------------------------------------------------------------------------|
- * | RF24_arch_config.h | Basic Arduino/AVR compatibility, includes for remaining support files, etc   |
- * | includes.h         | Linux only. Defines specific platform, include correct RF24_arch_config file |
- * | spi.h              | Provides standardized SPI ( transfer() ) methods                         |
- * | gpio.h             | Provides standardized GPIO ( digitalWrite() ) methods                        |
- * | compatibility.h    | Provides standardized timing (millis(), delay()) methods                     |
- * | your_custom_file.h | Provides access to custom drivers for spi,gpio, etc                          |
+ * | File               |                   Purpose                                                    | 
+ * |--------------------|------------------------------------------------------------------------------| 
+ * | RF24_arch_config.h | Basic Arduino/AVR compatibility, includes for remaining support files, etc   | 
+ * | includes.h         | Linux only. Defines specific platform, include correct RF24_arch_config file | 
+ * | spi.h              | Provides standardized SPI ( transfer() ) methods                         | 
+ * | gpio.h             | Provides standardized GPIO ( digitalWrite() ) methods                        | 
+ * | compatibility.h    | Provides standardized timing (millis(), delay()) methods                     | 
+ * | your_custom_file.h | Provides access to custom drivers for spi,gpio, etc                          | 
  *
  * <br>
  * Examples are provided via the included hardware support templates in **RF24/utility** <br>
- * See the <a href="modules.html">modules</a> page for examples of class declarations
+ * See the <a href="modules.html">modules</a> page for examples of class declarations 
  *
  *<br>
  * @section Device_Detection Device Detection
@@ -1830,11 +1889,10 @@
  * <br>
  * @section Ported_Code Code
  * To have your ported code included in this library, or for assistance in porting, create a pull request or open an issue at https://github.com/TMRh20/RF24
- *
+ * 
  *
  *<br><br><br>
  */
 
 #endif // __RF24_H__
 
-
--- a/RF24_config.h	Tue Feb 23 00:40:33 2016 +0000
+++ b/RF24_config.h	Thu Apr 21 04:10:58 2016 +0000
@@ -5,15 +5,16 @@
  modify it under the terms of the GNU General Public License
  version 2 as published by the Free Software Foundation.
  */
-
+ 
 /*
  * Mbed support added by Akash Vibhute <akash.roboticist@gmail.com>
  * Porting completed on Nov/05/2015
  *
- * Updated with TMRh20's RF24 library on Nov/04/2015 from https://github.com/TMRh20
+ * Updated 1: Synced with TMRh20's RF24 library on Nov/04/2015 from https://github.com/TMRh20
+ * Updated 2: Synced with TMRh20's RF24 library on Apr/18/2015 from https://github.com/TMRh20
  *
  */
-
+ 
 
 #ifndef __RF24_CONFIG_H__
 #define __RF24_CONFIG_H__
@@ -26,18 +27,18 @@
 #define rf24_max(a,b) (a>b?a:b)
 #define rf24_min(a,b) (a<b?a:b)
 
-#if defined SPI_HAS_TRANSACTION && !defined SPI_UART && !defined SOFTSPI
-#define RF24_SPI_TRANSACTIONS
-#endif
 
 #include <mbed.h>
 
 // RF modules support 10 Mhz SPI bus speed
 const uint32_t RF_SPI_SPEED = 10000000;
 
-#include <stdint.h>
-#include <stdio.h>
-#include <string.h>
+#define HIGH 1
+#define LOW 0
+
+//#include <stdint.h>
+//#include <stdio.h>
+//#include <string.h>
 
 #define _BV(x) (1<<(x))
 #define _SPI SPI
@@ -49,15 +50,18 @@
 #endif
 
 #define printf_P printf
-#define _BV(bit) (1<<(bit))
+//#define _BV(bit) (1<<(bit))
 #define pgm_read_byte(addr) (*(const unsigned char *)(addr))
 
 typedef uint16_t prog_uint16_t;
 #define PSTR(x) (x)
-#define printf_P printf
-#define strlen_P strlen
-#define PROGMEM
-#define pgm_read_word(p) (*(p))
-#define PRIPSTR "%s"
+  #define sprintf(...) os_sprintf( __VA_ARGS__ )
+  #define printf_P printf
+  #define strlen_P strlen  
+  #define PROGMEM
+  #define pgm_read_byte(addr) (*(const unsigned char *)(addr))
+  #define pgm_read_word(p) (*(p))
+  #define PRIPSTR "%s"
 
 #endif // __RF24_CONFIG_H__
+
--- a/nRF24L01.h	Tue Feb 23 00:40:33 2016 +0000
+++ b/nRF24L01.h	Thu Apr 21 04:10:58 2016 +0000
@@ -1,6 +1,6 @@
 /*
     Copyright (c) 2007 Stefan Engelke <mbox@stefanengelke.de>
-    Portions Copyright (C) 2011 Greg Copeland
+	Portions Copyright (C) 2011 Greg Copeland
 
     Permission is hereby granted, free of charge, to any person
     obtaining a copy of this software and associated documentation
@@ -23,8 +23,17 @@
     DEALINGS IN THE SOFTWARE.
 */
 
+/*
+ * Mbed support added by Akash Vibhute <akash.roboticist@gmail.com>
+ * Porting completed on Nov/05/2015
+ *
+ * Updated 1: Synced with TMRh20's RF24 library on Nov/04/2015 from https://github.com/TMRh20
+ * Updated 2: Synced with TMRh20's RF24 library on Apr/18/2015 from https://github.com/TMRh20
+ *
+ */
+
 /* Memory Map */
-#define CONFIG      0x00
+#define NRF_CONFIG      0x00
 #define EN_AA       0x01
 #define EN_RXADDR   0x02
 #define SETUP_AW    0x03
@@ -48,8 +57,8 @@
 #define RX_PW_P4    0x15
 #define RX_PW_P5    0x16
 #define FIFO_STATUS 0x17
-#define DYNPD       0x1C
-#define FEATURE     0x1D
+#define DYNPD	    0x1C
+#define FEATURE	    0x1D
 
 /* Bit Mnemonics */
 #define MASK_RX_DR  6
@@ -89,13 +98,13 @@
 #define TX_EMPTY    4
 #define RX_FULL     1
 #define RX_EMPTY    0
-#define DPL_P5      5
-#define DPL_P4      4
-#define DPL_P3      3
-#define DPL_P2      2
-#define DPL_P1      1
-#define DPL_P0      0
-#define EN_DPL      2
+#define DPL_P5	    5
+#define DPL_P4	    4
+#define DPL_P3	    3
+#define DPL_P2	    2
+#define DPL_P1	    1
+#define DPL_P0	    0
+#define EN_DPL	    2
 #define EN_ACK_PAY  1
 #define EN_DYN_ACK  0
 
@@ -125,3 +134,5 @@
 #define RF_DR_HIGH  3
 #define RF_PWR_LOW  1
 #define RF_PWR_HIGH 2
+
+