Library implementing Madgwick's IMU and AHRS algorithms

Dependents:   Hexi_GPSIMU_Hotshoe

Files at this revision

API Documentation at this revision

Comitter:
Anaesthetix
Date:
Sun Dec 18 21:50:15 2016 +0000
Child:
1:d7c70d593694
Commit message:
Library implementing Madgwick's IMU and AHRS algorithms

Changed in this revision

MadgwickAHRS.cpp Show annotated file Show diff for this revision Revisions of this file
MadgwickAHRS.h Show annotated file Show diff for this revision Revisions of this file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/MadgwickAHRS.cpp	Sun Dec 18 21:50:15 2016 +0000
@@ -0,0 +1,257 @@
+//=============================================================================================
+// MadgwickAHRS.c
+//=============================================================================================
+//
+// Implementation of Madgwick's IMU and AHRS algorithms.
+// See: http://www.x-io.co.uk/open-source-imu-and-ahrs-algorithms/
+//
+// From the x-io website "Open-source resources available on this website are
+// provided under the GNU General Public Licence unless an alternative licence
+// is provided in source."
+//
+// Date         Author          Notes
+// 29/09/2011   SOH Madgwick    Initial release
+// 02/10/2011   SOH Madgwick    Optimised for reduced CPU load
+// 19/02/2012   SOH Madgwick    Magnetometer measurement is normalised
+// 18/12/2016                   Added better fast inverse square root
+//
+//=============================================================================================
+
+//-------------------------------------------------------------------------------------------
+// Header files
+
+#include "MadgwickAHRS.h"
+#include <math.h>
+
+//-------------------------------------------------------------------------------------------
+// Definitions
+
+#define sampleFreqDef   500.0f          // sample frequency in Hz
+#define betaDef         0.75f            // 2 * proportional gain 0.1 - 0.5 - 5
+
+
+//============================================================================================
+// Functions
+
+//-------------------------------------------------------------------------------------------
+// AHRS algorithm update
+
+Madgwick::Madgwick() {
+    beta = betaDef;
+    q0 = 1.0f;
+    q1 = 0.0f;
+    q2 = 0.0f;
+    q3 = 0.0f;
+    invSampleFreq = 1.0f / sampleFreqDef;
+    anglesComputed = 0;
+}
+
+void Madgwick::update(float gx, float gy, float gz, float ax, float ay, float az, float mx, float my, float mz) {
+    float recipNorm;
+    float s0, s1, s2, s3;
+    float qDot1, qDot2, qDot3, qDot4;
+    float hx, hy;
+    float _2q0mx, _2q0my, _2q0mz, _2q1mx, _2bx, _2bz, _4bx, _4bz, _2q0, _2q1, _2q2, _2q3, _2q0q2, _2q2q3, q0q0, q0q1, q0q2, q0q3, q1q1, q1q2, q1q3, q2q2, q2q3, q3q3;
+
+    // Use IMU algorithm if magnetometer measurement invalid (avoids NaN in magnetometer normalisation)
+    if((mx == 0.0f) && (my == 0.0f) && (mz == 0.0f)) {
+        updateIMU(gx, gy, gz, ax, ay, az);
+        return;
+    }
+
+    // Convert gyroscope degrees/sec to radians/sec
+    gx *= 0.0174533f;
+    gy *= 0.0174533f;
+    gz *= 0.0174533f;
+
+    // Rate of change of quaternion from gyroscope
+    qDot1 = 0.5f * (-q1 * gx - q2 * gy - q3 * gz);
+    qDot2 = 0.5f * (q0 * gx + q2 * gz - q3 * gy);
+    qDot3 = 0.5f * (q0 * gy - q1 * gz + q3 * gx);
+    qDot4 = 0.5f * (q0 * gz + q1 * gy - q2 * gx);
+
+    // Compute feedback only if accelerometer measurement valid (avoids NaN in accelerometer normalisation)
+    if(!((ax == 0.0f) && (ay == 0.0f) && (az == 0.0f))) {
+
+        // Normalise accelerometer measurement
+        recipNorm = invSqrt(ax * ax + ay * ay + az * az);
+        ax *= recipNorm;
+        ay *= recipNorm;
+        az *= recipNorm;
+
+        // Normalise magnetometer measurement
+        recipNorm = invSqrt(mx * mx + my * my + mz * mz);
+        mx *= recipNorm;
+        my *= recipNorm;
+        mz *= recipNorm;
+
+        // Auxiliary variables to avoid repeated arithmetic
+        _2q0mx = 2.0f * q0 * mx;
+        _2q0my = 2.0f * q0 * my;
+        _2q0mz = 2.0f * q0 * mz;
+        _2q1mx = 2.0f * q1 * mx;
+        _2q0 = 2.0f * q0;
+        _2q1 = 2.0f * q1;
+        _2q2 = 2.0f * q2;
+        _2q3 = 2.0f * q3;
+        _2q0q2 = 2.0f * q0 * q2;
+        _2q2q3 = 2.0f * q2 * q3;
+        q0q0 = q0 * q0;
+        q0q1 = q0 * q1;
+        q0q2 = q0 * q2;
+        q0q3 = q0 * q3;
+        q1q1 = q1 * q1;
+        q1q2 = q1 * q2;
+        q1q3 = q1 * q3;
+        q2q2 = q2 * q2;
+        q2q3 = q2 * q3;
+        q3q3 = q3 * q3;
+
+        // Reference direction of Earth's magnetic field
+        hx = mx * q0q0 - _2q0my * q3 + _2q0mz * q2 + mx * q1q1 + _2q1 * my * q2 + _2q1 * mz * q3 - mx * q2q2 - mx * q3q3;
+        hy = _2q0mx * q3 + my * q0q0 - _2q0mz * q1 + _2q1mx * q2 - my * q1q1 + my * q2q2 + _2q2 * mz * q3 - my * q3q3;
+        _2bx = sqrtf(hx * hx + hy * hy);
+        _2bz = -_2q0mx * q2 + _2q0my * q1 + mz * q0q0 + _2q1mx * q3 - mz * q1q1 + _2q2 * my * q3 - mz * q2q2 + mz * q3q3;
+        _4bx = 2.0f * _2bx;
+        _4bz = 2.0f * _2bz;
+
+        // Gradient decent algorithm corrective step
+        s0 = -_2q2 * (2.0f * q1q3 - _2q0q2 - ax) + _2q1 * (2.0f * q0q1 + _2q2q3 - ay) - _2bz * q2 * (_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) + (-_2bx * q3 + _2bz * q1) * (_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) + _2bx * q2 * (_2bx * (q0q2 + q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz);
+        s1 = _2q3 * (2.0f * q1q3 - _2q0q2 - ax) + _2q0 * (2.0f * q0q1 + _2q2q3 - ay) - 4.0f * q1 * (1 - 2.0f * q1q1 - 2.0f * q2q2 - az) + _2bz * q3 * (_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) + (_2bx * q2 + _2bz * q0) * (_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) + (_2bx * q3 - _4bz * q1) * (_2bx * (q0q2 + q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz);
+        s2 = -_2q0 * (2.0f * q1q3 - _2q0q2 - ax) + _2q3 * (2.0f * q0q1 + _2q2q3 - ay) - 4.0f * q2 * (1 - 2.0f * q1q1 - 2.0f * q2q2 - az) + (-_4bx * q2 - _2bz * q0) * (_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) + (_2bx * q1 + _2bz * q3) * (_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) + (_2bx * q0 - _4bz * q2) * (_2bx * (q0q2 + q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz);
+        s3 = _2q1 * (2.0f * q1q3 - _2q0q2 - ax) + _2q2 * (2.0f * q0q1 + _2q2q3 - ay) + (-_4bx * q3 + _2bz * q1) * (_2bx * (0.5f - q2q2 - q3q3) + _2bz * (q1q3 - q0q2) - mx) + (-_2bx * q0 + _2bz * q2) * (_2bx * (q1q2 - q0q3) + _2bz * (q0q1 + q2q3) - my) + _2bx * q1 * (_2bx * (q0q2 + q1q3) + _2bz * (0.5f - q1q1 - q2q2) - mz);
+        recipNorm = invSqrt(s0 * s0 + s1 * s1 + s2 * s2 + s3 * s3); // normalise step magnitude
+        s0 *= recipNorm;
+        s1 *= recipNorm;
+        s2 *= recipNorm;
+        s3 *= recipNorm;
+
+        // Apply feedback step
+        qDot1 -= beta * s0;
+        qDot2 -= beta * s1;
+        qDot3 -= beta * s2;
+        qDot4 -= beta * s3;
+    }
+
+    // Integrate rate of change of quaternion to yield quaternion
+    q0 += qDot1 * invSampleFreq;
+    q1 += qDot2 * invSampleFreq;
+    q2 += qDot3 * invSampleFreq;
+    q3 += qDot4 * invSampleFreq;
+
+    // Normalise quaternion
+    recipNorm = invSqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3);
+    q0 *= recipNorm;
+    q1 *= recipNorm;
+    q2 *= recipNorm;
+    q3 *= recipNorm;
+    anglesComputed = 0;
+}
+
+//-------------------------------------------------------------------------------------------
+// IMU algorithm update
+
+void Madgwick::updateIMU(float gx, float gy, float gz, float ax, float ay, float az) {
+    float recipNorm;
+    float s0, s1, s2, s3;
+    float qDot1, qDot2, qDot3, qDot4;
+    float _2q0, _2q1, _2q2, _2q3, _4q0, _4q1, _4q2 ,_8q1, _8q2, q0q0, q1q1, q2q2, q3q3;
+
+    // Convert gyroscope degrees/sec to radians/sec
+    gx *= 0.0174533f;
+    gy *= 0.0174533f;
+    gz *= 0.0174533f;
+
+    // Rate of change of quaternion from gyroscope
+    qDot1 = 0.5f * (-q1 * gx - q2 * gy - q3 * gz);
+    qDot2 = 0.5f * (q0 * gx + q2 * gz - q3 * gy);
+    qDot3 = 0.5f * (q0 * gy - q1 * gz + q3 * gx);
+    qDot4 = 0.5f * (q0 * gz + q1 * gy - q2 * gx);
+
+    // Compute feedback only if accelerometer measurement valid (avoids NaN in accelerometer normalisation)
+    if(!((ax == 0.0f) && (ay == 0.0f) && (az == 0.0f))) {
+
+        // Normalise accelerometer measurement
+        recipNorm = invSqrt(ax * ax + ay * ay + az * az);
+        ax *= recipNorm;
+        ay *= recipNorm;
+        az *= recipNorm;
+
+        // Auxiliary variables to avoid repeated arithmetic
+        _2q0 = 2.0f * q0;
+        _2q1 = 2.0f * q1;
+        _2q2 = 2.0f * q2;
+        _2q3 = 2.0f * q3;
+        _4q0 = 4.0f * q0;
+        _4q1 = 4.0f * q1;
+        _4q2 = 4.0f * q2;
+        _8q1 = 8.0f * q1;
+        _8q2 = 8.0f * q2;
+        q0q0 = q0 * q0;
+        q1q1 = q1 * q1;
+        q2q2 = q2 * q2;
+        q3q3 = q3 * q3;
+
+        // Gradient decent algorithm corrective step
+        s0 = _4q0 * q2q2 + _2q2 * ax + _4q0 * q1q1 - _2q1 * ay;
+        s1 = _4q1 * q3q3 - _2q3 * ax + 4.0f * q0q0 * q1 - _2q0 * ay - _4q1 + _8q1 * q1q1 + _8q1 * q2q2 + _4q1 * az;
+        s2 = 4.0f * q0q0 * q2 + _2q0 * ax + _4q2 * q3q3 - _2q3 * ay - _4q2 + _8q2 * q1q1 + _8q2 * q2q2 + _4q2 * az;
+        s3 = 4.0f * q1q1 * q3 - _2q1 * ax + 4.0f * q2q2 * q3 - _2q2 * ay;
+        recipNorm = invSqrt(s0 * s0 + s1 * s1 + s2 * s2 + s3 * s3); // normalise step magnitude
+        s0 *= recipNorm;
+        s1 *= recipNorm;
+        s2 *= recipNorm;
+        s3 *= recipNorm;
+
+        // Apply feedback step
+        qDot1 -= beta * s0;
+        qDot2 -= beta * s1;
+        qDot3 -= beta * s2;
+        qDot4 -= beta * s3;
+    }
+
+    // Integrate rate of change of quaternion to yield quaternion
+    q0 += qDot1 * invSampleFreq;
+    q1 += qDot2 * invSampleFreq;
+    q2 += qDot3 * invSampleFreq;
+    q3 += qDot4 * invSampleFreq;
+
+    // Normalise quaternion
+    recipNorm = invSqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3);
+    q0 *= recipNorm;
+    q1 *= recipNorm;
+    q2 *= recipNorm;
+    q3 *= recipNorm;
+    anglesComputed = 0;
+}
+
+//-------------------------------------------------------------------------------------------
+// Fast inverse square-root
+// See: http://en.wikipedia.org/wiki/Fast_inverse_square_root
+
+/*float Madgwick::invSqrt(float x) {
+    float halfx = 0.5f * x;
+    float y = x;
+    long i = *(long*)&y;
+    i = 0x5f3759df - (i>>1);
+    y = *(float*)&i;
+    y = y * (1.5f - (halfx * y * y));
+    y = y * (1.5f - (halfx * y * y));
+    return y;
+} */
+
+float Madgwick::invSqrt(float x){
+   unsigned int i = 0x5F1F1412 - (*(unsigned int*)&x >> 1);
+   float tmp = *(float*)&i;
+   return tmp * (1.69000231f - 0.714158168f * x * tmp * tmp);
+}
+
+//-------------------------------------------------------------------------------------------
+
+void Madgwick::computeAngles()
+{
+    roll = atan2f(q0*q1 + q2*q3, 0.5f - q1*q1 - q2*q2);
+    pitch = asinf(-2.0f * (q1*q3 - q0*q2));
+    yaw = atan2f(q1*q2 + q0*q3, 0.5f - q2*q2 - q3*q3);
+    anglesComputed = 1;
+}
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/MadgwickAHRS.h	Sun Dec 18 21:50:15 2016 +0000
@@ -0,0 +1,74 @@
+//=============================================================================================
+// MadgwickAHRS.h
+//=============================================================================================
+//
+// Implementation of Madgwick's IMU and AHRS algorithms.
+// See: http://www.x-io.co.uk/open-source-imu-and-ahrs-algorithms/
+//
+// From the x-io website "Open-source resources available on this website are
+// provided under the GNU General Public Licence unless an alternative licence
+// is provided in source."
+//
+// Date         Author          Notes
+// 29/09/2011   SOH Madgwick    Initial release
+// 02/10/2011   SOH Madgwick    Optimised for reduced CPU load
+//
+//=============================================================================================
+#ifndef MadgwickAHRS_h
+#define MadgwickAHRS_h
+#include <math.h>
+
+//--------------------------------------------------------------------------------------------
+// Variable declaration
+class Madgwick{
+private:
+    static float invSqrt(float x);
+    float beta;             // algorithm gain
+    float q0;
+    float q1;
+    float q2;
+    float q3;   // quaternion of sensor frame relative to auxiliary frame
+    //float invSampleFreq;
+    float roll;
+    float pitch;
+    float yaw;
+    char anglesComputed;
+    void computeAngles();
+
+//-------------------------------------------------------------------------------------------
+// Function declarations
+public:
+    float invSampleFreq;
+    Madgwick(void);
+    void begin(float sampleFrequency) { invSampleFreq = 1.0f / sampleFrequency; }
+    void update(float gx, float gy, float gz, float ax, float ay, float az, float mx, float my, float mz);
+    void updateIMU(float gx, float gy, float gz, float ax, float ay, float az);
+    //float getPitch(){return atan2f(2.0f * q2 * q3 - 2.0f * q0 * q1, 2.0f * q0 * q0 + 2.0f * q3 * q3 - 1.0f);};
+    //float getRoll(){return -1.0f * asinf(2.0f * q1 * q3 + 2.0f * q0 * q2);};
+    //float getYaw(){return atan2f(2.0f * q1 * q2 - 2.0f * q0 * q3, 2.0f * q0 * q0 + 2.0f * q1 * q1 - 1.0f);};
+    float getRoll() {
+        if (!anglesComputed) computeAngles();
+        return roll * 57.29578f;
+    }
+    float getPitch() {
+        if (!anglesComputed) computeAngles();
+        return pitch * 57.29578f;
+    }
+    float getYaw() {
+        if (!anglesComputed) computeAngles();
+        return yaw * 57.29578f + 180.0f;
+    }
+    float getRollRadians() {
+        if (!anglesComputed) computeAngles();
+        return roll;
+    }
+    float getPitchRadians() {
+        if (!anglesComputed) computeAngles();
+        return pitch;
+    }
+    float getYawRadians() {
+        if (!anglesComputed) computeAngles();
+        return yaw;
+    }
+};
+#endif