This is a copy of the Reference Standard PID controller ala controlguru.com

Dependents:   PIDHeater Printer PIDHeater82 UltiSaverController

Fork of PID by Arnaud Suire

Files at this revision

API Documentation at this revision

Comitter:
unix_guru
Date:
Sun Feb 07 19:06:37 2016 +0000
Parent:
2:55bf0f813bb4
Commit message:
Moved from Double to Floating point PID library

Changed in this revision

PID.cpp Show annotated file Show diff for this revision Revisions of this file
PID.h Show annotated file Show diff for this revision Revisions of this file
--- a/PID.cpp	Wed Jan 27 21:32:11 2016 +0000
+++ b/PID.cpp	Sun Feb 07 19:06:37 2016 +0000
@@ -1,10 +1,9 @@
 /**
- * @author Aaron Berk
+ * Arduino PID Library - Version 1.1.1
+ * @author Brett Beauregard <br3ttb@gmail.com> brettbeauregard.com
  *
  * @section LICENSE
  *
- * Copyright (c) 2010 ARM Limited
- *
  * Permission is hereby granted, free of charge, to any person obtaining a copy
  * of this software and associated documentation files (the "Software"), to deal
  * in the Software without restriction, including without limitation the rights
@@ -30,7 +29,7 @@
  *
  * This library is a port of Brett Beauregard's Arduino PID library:
  *
- *  http://www.arduino.cc/playground/Code/PIDLibrary
+ *  https://github.com/br3ttb/Arduino-PID-Library
  *
  * The wikipedia article on PID controllers is a good place to start on
  * understanding how they work:
@@ -48,290 +47,189 @@
  * Includes
  */
 #include "PID.h"
- 
-PID::PID(float Kc, float tauI, float tauD, float interval) {
- 
-    usingFeedForward = false;
-    inAuto           = false;
- 
-    //Default the limits to the full range of I/O: 3.3V
-    //Make sure to set these to more appropriate limits for
-    //your application.
-    setInputLimits(0.0, 3.3);
-    setOutputLimits(0.0, 3.3);
- 
-    tSample_ = interval;
- 
-    setTunings(Kc, tauI, tauD);
- 
-    setPoint_             = 0.0;
-    processVariable_      = 0.0;
-    prevProcessVariable_  = 0.0;
-    controllerOutput_     = 0.0;
-    prevControllerOutput_ = 0.0;
- 
-    accError_ = 0.0;
-    bias_     = 0.0;
-    
-    realOutput_ = 0.0;
- 
-}
- 
-void PID::setInputLimits(float inMin, float inMax) {
+#include "millis/millis.h"
  
-    //Make sure we haven't been given impossible values.
-    if (inMin >= inMax) {
-        return;
-    }
- 
-    //Rescale the working variables to reflect the changes.
-    prevProcessVariable_ *= (inMax - inMin) / inSpan_;
-    accError_            *= (inMax - inMin) / inSpan_;
- 
-    //Make sure the working variables are within the new limits.
-    if (prevProcessVariable_ > 1) {
-        prevProcessVariable_ = 1;
-    } else if (prevProcessVariable_ < 0) {
-        prevProcessVariable_ = 0;
-    }
- 
-    inMin_  = inMin;
-    inMax_  = inMax;
-    inSpan_ = inMax - inMin;
- 
-}
- 
-void PID::setOutputLimits(float outMin, float outMax) {
- 
-    //Make sure we haven't been given impossible values.
-    if (outMin >= outMax) {
-        return;
-    }
- 
-    //Rescale the working variables to reflect the changes.
-    prevControllerOutput_ *= (outMax - outMin) / outSpan_;
- 
-    //Make sure the working variables are within the new limits.
-    if (prevControllerOutput_ > 1) {
-        prevControllerOutput_ = 1;
-    } else if (prevControllerOutput_ < 0) {
-        prevControllerOutput_ = 0;
-    }
+extern Serial pc;
  
-    outMin_  = outMin;
-    outMax_  = outMax;
-    outSpan_ = outMax - outMin;
- 
-}
- 
-void PID::setTunings(float Kc, float tauI, float tauD) {
- 
-    //Verify that the tunings make sense.
-    if (Kc == 0.0 || tauI < 0.0 || tauD < 0.0) {
-        return;
-    }
- 
-    //Store raw values to hand back to user on request.
-    pParam_ = Kc;
-    iParam_ = tauI;
-    dParam_ = tauD;
- 
-    float tempTauR;
- 
-    if (tauI == 0.0) {
-        tempTauR = 0.0;
-    } else {
-        tempTauR = (1.0 / tauI) * tSample_;
-    }
- 
-    //For "bumpless transfer" we need to rescale the accumulated error.
-    if (inAuto) {
-        if (tempTauR == 0.0) {
-            accError_ = 0.0;
-        } else {
-            accError_ *= (Kc_ * tauR_) / (Kc * tempTauR);
-        }
-    }
- 
-    Kc_   = Kc;
-    tauR_ = tempTauR;
-    tauD_ = tauD / tSample_;
- 
-}
- 
-void PID::reset(void) {
- 
-    float scaledBias = 0.0;
- 
-    if (usingFeedForward) {
-        scaledBias = (bias_ - outMin_) / outSpan_;
-    } else {
-        scaledBias = (realOutput_ - outMin_) / outSpan_;
-    }
- 
-    prevControllerOutput_ = scaledBias;
-    prevProcessVariable_  = (processVariable_ - inMin_) / inSpan_;
- 
-    //Clear any error in the integral.
-    accError_ = 0;
- 
-}
- 
-void PID::setMode(int mode) {
- 
-    //We were in manual, and we just got set to auto.
-    //Reset the controller internals.
-    if (mode != 0 && !inAuto) {
-        reset();
-    }
- 
-    inAuto = (mode != 0);
- 
+
+/*Constructor (...)*********************************************************
+ *    The parameters specified here are those for for which we can't set up 
+ *    reliable defaults, so we need to have the user set them.
+ ***************************************************************************/
+PID::PID(float* Input, float* Output, float* Setpoint,
+        float Kp, float Ki, float Kd, int ControllerDirection)
+{
+    
+    myOutput = Output;
+    myInput = Input;
+    mySetpoint = Setpoint;
+    inAuto = false;
+    
+    PID::SetOutputLimits(0, 1000);             // default output limit corresponds to 
+                                                // the arduino pwm limits                                              
+    SampleTime = 100;                           // default Controller Sample Time is 0.1 seconds
+
+    PID::SetControllerDirection(ControllerDirection);
+    PID::SetTunings(Kp, Ki, Kd);
+
+    lastTime = millis()-SampleTime;          
 }
  
-void PID::setInterval(float interval) {
  
-    if (interval > 0) {
-        //Convert the time-based tunings to reflect this change.
-        tauR_     *= (interval / tSample_);
-        accError_ *= (tSample_ / interval);
-        tauD_     *= (interval / tSample_);
-        tSample_   = interval;
-    }
+/* Compute() **********************************************************************
+ *     This, as they say, is where the magic happens.  this function should be called
+ *   every time "void loop()" executes.  the function will decide for itself whether a new
+ *   pid Output needs to be computed.  returns true when the output is computed,
+ *   false when nothing has been done.
+ **********************************************************************************/ 
+bool PID::Compute()
+{
+   if(!inAuto) return false;
+   unsigned long now = millis();
+   unsigned long timeChange = (now - lastTime);
+   if(timeChange>=SampleTime)
+   {
+      /*Compute all the working error variables*/
+      float input = *myInput;
+      float error = *mySetpoint - input;
+      ITerm+= (ki * error);
+      if(ITerm > outMax) ITerm= outMax;
+      else if(ITerm < outMin) ITerm= outMin;
+      float dInput = (input - lastInput);
+// pc.printf("Input = %f, Error = %f, Output = %f, SetPoint = %f\n\r",input,error,output,*mySetpoint);
  
-}
- 
-void PID::setSetPoint(float sp) {
+      /*Compute PID Output*/
+      float output = kp * error + ITerm- kd * dInput;
+// pc.printf("Input = %f, Error = %f, Output = %f, SetPoint = %f\n\r",input,error,output,*mySetpoint);
+      
+      if(output > outMax) output = outMax;
+      else if(output < outMin) output = outMin;
+      *myOutput = output;
  
-    setPoint_ = sp;
- 
+      /*Remember some variables for next time*/
+      lastInput = input;
+      lastTime = now;
+      return true;
+   }
+   else return false;
 }
- 
-void PID::setProcessValue(float pv) {
- 
-    processVariable_ = pv;
+
+
+/* SetTunings(...)*************************************************************
+ * This function allows the controller's dynamic performance to be adjusted. 
+ * it's called automatically from the constructor, but tunings can also
+ * be adjusted on the fly during normal operation
+ ******************************************************************************/ 
+void PID::SetTunings(float Kp, float Ki, float Kd)
+{
+   if (Kp<0 || Ki<0 || Kd<0) return;
  
-}
- 
-void PID::setBias(float bias){
+   dispKp = Kp; dispKi = Ki; dispKd = Kd;
+   
+   float SampleTimeInSec = ((float)SampleTime)/1000;  
+   kp = Kp;
+   ki = Ki * SampleTimeInSec;
+   kd = Kd / SampleTimeInSec;
  
-    bias_ = bias;
-    usingFeedForward = 1;
- 
+  if(controllerDirection ==REVERSE)
+   {
+      kp = (0 - kp);
+      ki = (0 - ki);
+      kd = (0 - kd);
+   }
+}
+  
+/* SetSampleTime(...) *********************************************************
+ * sets the period, in Milliseconds, at which the calculation is performed  
+ ******************************************************************************/
+void PID::SetSampleTime(int NewSampleTime)
+{
+   if (NewSampleTime > 0)
+   {
+      float ratio  = (float)NewSampleTime
+                      / (float)SampleTime;
+      ki *= ratio;
+      kd /= ratio;
+      SampleTime = (unsigned long)NewSampleTime;
+   }
 }
  
-float PID::compute() {
- 
-    //Pull in the input and setpoint, and scale them into percent span.
-    float scaledPV = (processVariable_ - inMin_) / inSpan_;
- 
-    if (scaledPV > 1.0) {
-        scaledPV = 1.0;
-    } else if (scaledPV < 0.0) {
-        scaledPV = 0.0;
-    }
- 
-    float scaledSP = (setPoint_ - inMin_) / inSpan_;
-    if (scaledSP > 1.0) {
-        scaledSP = 1;
-    } else if (scaledSP < 0.0) {
-        scaledSP = 0;
-    }
- 
-    float error = scaledSP - scaledPV;
- 
-    //Check and see if the output is pegged at a limit and only
-    //integrate if it is not. This is to prevent reset-windup.
-    if (!(prevControllerOutput_ >= 1 && error > 0) && !(prevControllerOutput_ <= 0 && error < 0)) {
-        accError_ += error;
-    }
+/* SetOutputLimits(...)****************************************************
+ *     This function will be used far more often than SetInputLimits.  while
+ *  the input to the controller will generally be in the 0-1023 range (which is
+ *  the default already,)  the output will be a little different.  maybe they'll
+ *  be doing a time window and will need 0-8000 or something.  or maybe they'll
+ *  want to clamp it from 0-125.  who knows.  at any rate, that can all be done
+ *  here.
+ **************************************************************************/
+void PID::SetOutputLimits(float Min, float Max)
+{
+   if(Min >= Max) return;
+   outMin = Min;
+   outMax = Max;
  
-    //Compute the current slope of the input signal.
-    float dMeas = (scaledPV - prevProcessVariable_) / tSample_;
- 
-    float scaledBias = 0.0;
- 
-    if (usingFeedForward) {
-        scaledBias = (bias_ - outMin_) / outSpan_;
+   if(inAuto)
+   {
+       if(*myOutput > outMax) *myOutput = outMax;
+       else if(*myOutput < outMin) *myOutput = outMin;
+     
+       if(ITerm > outMax) ITerm= outMax;
+       else if(ITerm < outMin) ITerm= outMin;
+   }
+}
+
+/* SetMode(...)****************************************************************
+ * Allows the controller Mode to be set to manual (0) or Automatic (non-zero)
+ * when the transition from manual to auto occurs, the controller is
+ * automatically initialized
+ ******************************************************************************/ 
+void PID::SetMode(int Mode)
+{
+    bool newAuto = (Mode == AUTOMATIC);
+    if(newAuto == !inAuto)
+    {  /*we just went from manual to auto*/
+        PID::Initialize();
     }
- 
-    //Perform the PID calculation.
-    controllerOutput_ = scaledBias + Kc_ * (error + (tauR_ * accError_) - (tauD_ * dMeas));
- 
-    //Make sure the computed output is within output constraints.
-    if (controllerOutput_ < 0.0) {
-        controllerOutput_ = 0.0;
-    } else if (controllerOutput_ > 1.0) {
-        controllerOutput_ = 1.0;
-    }
- 
-    //Remember this output for the windup check next time.
-    prevControllerOutput_ = controllerOutput_;
-    //Remember the input for the derivative calculation next time.
-    prevProcessVariable_  = scaledPV;
- 
-    //Scale the output from percent span back out to a real world number.
-    return ((controllerOutput_ * outSpan_) + outMin_);
- 
+    inAuto = newAuto;
 }
  
-float PID::getInMin() {
- 
-    return inMin_;
- 
-}
- 
-float PID::getInMax() {
- 
-    return inMax_;
- 
-}
- 
-float PID::getOutMin() {
- 
-    return outMin_;
- 
-}
- 
-float PID::getOutMax() {
- 
-    return outMax_;
- 
-}
- 
-float PID::getInterval() {
- 
-    return tSample_;
- 
+/* Initialize()****************************************************************
+ *  does all the things that need to happen to ensure a bumpless transfer
+ *  from manual to automatic mode.
+ ******************************************************************************/ 
+void PID::Initialize()
+{
+   ITerm = *myOutput;
+   lastInput = *myInput;
+   if(ITerm > outMax) ITerm = outMax;
+   else if(ITerm < outMin) ITerm = outMin;
 }
- 
-float PID::getPParam() {
- 
-    return pParam_;
- 
-}
- 
-float PID::getIParam() {
- 
-    return iParam_;
- 
+
+/* SetControllerDirection(...)*************************************************
+ * The PID will either be connected to a DIRECT acting process (+Output leads 
+ * to +Input) or a REVERSE acting process(+Output leads to -Input.)  we need to
+ * know which one, because otherwise we may increase the output when we should
+ * be decreasing.  This is called from the constructor.
+ ******************************************************************************/
+void PID::SetControllerDirection(int Direction)
+{
+   if(inAuto && Direction !=controllerDirection)
+   {
+      kp = (0 - kp);
+      ki = (0 - ki);
+      kd = (0 - kd);
+   }   
+   controllerDirection = Direction;
 }
- 
-float PID::getDParam() {
- 
-    return dParam_;
- 
-}
- 
-            
-
 
-            
-
-
-    
+/* Status Funcions*************************************************************
+ * Just because you set the Kp=-1 doesn't mean it actually happened.  these
+ * functions query the internal state of the PID.  they're here for display 
+ * purposes.  this are the functions the PID Front-end uses for example
+ ******************************************************************************/
+float PID::GetKp(){ return  dispKp; }
+float PID::GetKi(){ return  dispKi;}
+float PID::GetKd(){ return  dispKd;}
+int PID::GetMode(){ return  inAuto ? AUTOMATIC : MANUAL;}
+int PID::GetDirection(){ return controllerDirection;}
 
-
-
-
-
--- a/PID.h	Wed Jan 27 21:32:11 2016 +0000
+++ b/PID.h	Sun Feb 07 19:06:37 2016 +0000
@@ -1,5 +1,5 @@
 /**
- * @author Aaron Berk
+ * @author Brett Beauregard
  *
  * @section LICENSE
  *
@@ -30,7 +30,7 @@
  *
  * This library is a port of Brett Beauregard's Arduino PID library:
  *
- *  http://www.arduino.cc/playground/Code/PIDLibrary
+ *  https://github.com/br3ttb/Arduino-PID-Library
  *
  * The wikipedia article on PID controllers is a good place to start on
  * understanding how they work:
@@ -44,8 +44,6 @@
  *  http://www.controlguru.com/
  */
  
-#ifndef PID_H
-#define PID_H
  
 /**
  * Includes
@@ -55,172 +53,85 @@
 /**
  * Defines
  */
-#define MANUAL_MODE 0
-#define AUTO_MODE   1
  
-/**
- * Proportional-integral-derivative controller.
- */
-class PID {
- 
-public:
- 
-    /**
-     * Constructor.
-     *
-     * Sets default limits [0-3.3V], calculates tuning parameters, and sets
-     * manual mode with no bias.
-     *
-     * @param Kc - Tuning parameter
-     * @param tauI - Tuning parameter
-     * @param tauD - Tuning parameter
-     * @param interval PID calculation performed every interval seconds.
-     */
-    PID(float Kc, float tauI, float tauD, float interval);
- 
-    /**
-     * Scale from inputs to 0-100%.
-     *
-     * @param InMin The real world value corresponding to 0%.
-     * @param InMax The real world value corresponding to 100%.
-     */
-    void setInputLimits(float inMin , float inMax);
- 
-    /**
-     * Scale from outputs to 0-100%.
-     *
-     * @param outMin The real world value corresponding to 0%.
-     * @param outMax The real world value corresponding to 100%.
-     */
-    void setOutputLimits(float outMin, float outMax);
- 
-    /**
-     * Calculate PID constants.
-     *
-     * Allows parameters to be changed on the fly without ruining calculations.
-     *
-     * @param Kc - Tuning parameter
-     * @param tauI - Tuning parameter
-     * @param tauD - Tuning parameter
-     */
-    void setTunings(float Kc, float tauI, float tauD);
- 
-    /**
-     * Reinitializes controller internals. Automatically
-     * called on a manual to auto transition.
-     */
-    void reset(void);
-    
-    /**
-     * Set PID to manual or auto mode.
-     *
-     * @param mode        0 -> Manual
-     *             Non-zero -> Auto
-     */
-    void setMode(int mode);
-    
-    /**
-     * Set how fast the PID loop is run.
-     *
-     * @param interval PID calculation peformed every interval seconds.
-     */
-    void setInterval(float interval);
-    
-    /**
-     * Set the set point.
-     *
-     * @param sp The set point as a real world value.
-     */
-    void setSetPoint(float sp);
-    
-    /**
-     * Set the process value.
-     *
-     * @param pv The process value as a real world value.
-     */
-    void setProcessValue(float pv);
-    
-    /**
-     * Set the bias.
-     *
-     * @param bias The bias for the controller output.
-     */
-    void setBias(float bias);
- 
-    /**
-     * PID calculation.
-     *
-     * @return The controller output as a float between outMin and outMax.
-     */
-    float compute(void);
- 
-    //Getters.
-    float getInMin();
-    float getInMax();
-    float getOutMin();
-    float getOutMax();
-    float getInterval();
-    float getPParam();
-    float getIParam();
-    float getDParam();
- 
-private:
- 
-    bool usingFeedForward;
-    bool inAuto;
- 
-    //Actual tuning parameters used in PID calculation.
-    float Kc_;
-    float tauR_;
-    float tauD_;
-    
-    //Raw tuning parameters.
-    float pParam_;
-    float iParam_;
-    float dParam_;
-    
-    //The point we want to reach.
-    float setPoint_;         
-    //The thing we measure.
-    float processVariable_;  
-    float prevProcessVariable_;
-    //The output that affects the process variable.
-    float controllerOutput_; 
-    float prevControllerOutput_;
- 
-    //We work in % for calculations so these will scale from
-    //real world values to 0-100% and back again.
-    float inMin_;
-    float inMax_;
-    float inSpan_;
-    float outMin_;
-    float outMax_;
-    float outSpan_;
- 
-    //The accumulated error, i.e. integral.
-    float accError_;
-    //The controller output bias.
-    float bias_;
- 
-    //The interval between samples.
-    float tSample_;          
- 
-    //Controller output as a real world value.
-    volatile float realOutput_;
- 
-};
- 
-#endif /* PID_H */
- 
-            
+#ifndef PID_H
+#define PID_H
+
+#define LIBRARY_VERSION 1.1.1
+
+class PID
+{
 
 
-            
+  public:
+
+  //Constants used in some of the functions below
+  #define AUTOMATIC 1
+  #define MANUAL    0
+  #define DIRECT  0
+  #define REVERSE  1
 
+  //commonly used functions **************************************************************************
+    PID(float*, float*, float*,        // * constructor.  links the PID to the Input, Output, and 
+        float, float, float, int);     //   Setpoint.  Initial tuning parameters are also set here
+    
+    void SetMode(int Mode);               // * sets PID to either Manual (0) or Auto (non-0)
 
+    bool Compute();                       // * performs the PID calculation.  it should be
+                                          //   called every time loop() cycles. ON/OFF and
+                                          //   calculation frequency can be set using SetMode
+                                          //   SetSampleTime respectively
+
+    void SetOutputLimits(float, float); //clamps the output to a specific range. 0-1.0 by default, but
+                                          //it's likely the user will want to change this depending on
+                                          //the application
     
 
 
-
+  //available but not commonly used functions ********************************************************
+    void SetTunings(float, float,       // * While most users will set the tunings once in the 
+                    float);              //   constructor, this function gives the user the option
+                                          //   of changing tunings during runtime for Adaptive control
+    void SetControllerDirection(int);     // * Sets the Direction, or "Action" of the controller. DIRECT
+                                          //   means the output will increase when error is positive. REVERSE
+                                          //   means the opposite.  it's very unlikely that this will be needed
+                                          //   once it is set in the constructor.
+    void SetSampleTime(int);              // * sets the frequency, in Milliseconds, with which 
+                                          //   the PID calculation is performed.  default is 100
+                                          
+                                          
+                                          
+  //Display functions ****************************************************************
+    float GetKp();                       // These functions query the pid for interal values.
+    float GetKi();                       //  they were created mainly for the pid front-end,
+    float GetKd();                       // where it's important to know what is actually 
+    int GetMode();                        //  inside the PID.
+    int GetDirection();                   //
 
+  private:
+    void Initialize();
+    
+    float dispKp;              // * we'll hold on to the tuning parameters in user-entered 
+    float dispKi;              //   format for display purposes
+    float dispKd;              //
+    
+    float kp;                  // * (P)roportional Tuning Parameter
+    float ki;                  // * (I)ntegral Tuning Parameter
+    float kd;                  // * (D)erivative Tuning Parameter
 
+    int controllerDirection;
+
+    float *myInput;              // * Pointers to the Input, Output, and Setpoint variables
+    float *myOutput;             //   This creates a hard link between the variables and the 
+    float *mySetpoint;           //   PID, freeing the user from having to constantly tell us
+                                  //   what these values are.  with pointers we'll just know.
+              
+    unsigned long lastTime;
+    float ITerm, lastInput;
+
+    unsigned long SampleTime;
+    float outMin, outMax;
+    bool inAuto;
+};
+#endif
+