
 APPLICATION NOTE

R01AN2189EJ0081 Rev.0.81 Page 1 of 62
Sep. 05, 2014

RZ/A1H Group
Example of Using Real Time Clock (Preliminary Version)

Abstract
This document describes an example of the real time clock (hereinafter called "RTC") for the RZ/A1H.

Products
RZ/A1H

When using this application note with other Renesas MCUs, careful evaluation is recommended after making
modifications to comply with the alternate MCU.

R01AN2189EJ0081
Rev.0.81

Sep. 05, 2014

RZ/A1H Group Example of Using Real Time Clock (Preliminary Version)

R01AN2189EJ0081 Rev.0.81 Page 2 of 62
Sep. 05, 2014

Contents

1. Specifications ... 4

2. Operation Confirmation Conditions .. 5

3. Reference Application Notes .. 5

4. Peripheral Functions ... 6

5. Hardware .. 7
5.1 Pins Used ... 7

6. Software ... 8
6.1 Operation Overview ... 8

6.1.1 RTC Initial Setting (Command 1) .. 9
6.1.2 RTC Time Setting (Command 2) .. 10
6.1.3 RTC Time Display (Command 3) ... 11
6.1.4 Starting RTC Time Count Operation (Command 4) ... 11
6.1.5 Stopping RTC Time Count Operation (Command 5) ... 11
6.1.6 RTC Alarm Time Setting and Transition to Deep Standby Mode (Command 6) 12

6.2 Peripheral Functions and Memory Allocation in Sample Code ... 13
6.2.1 Setting for Peripheral Functions ... 13
6.2.2 Section Assignment in Sample Code ... 14

6.3 Fixed-Width Integers .. 17
6.4 Constants ... 18
6.5 Structure List .. 19
6.6 Functions .. 20
6.7 Function Specifications .. 21
6.8 Flowcharts .. 34

6.8.1 Initialization of Peripheral Functions ($Sub$$main Function) .. 34
6.8.2 Processing Corresponding to Deep Standby Mode Cancel Source 36
6.8.3 Acquisition Processing for Deep Standby Mode Cancel Time ... 37
6.8.4 Main Processing ... 37
6.8.5 Processing for Deep Standby Mode Cancel Time Display ... 38
6.8.6 Sample Code Main Processing .. 39
6.8.7 RTC Sample Code Main Processing .. 40
6.8.8 RTC Initial Setting ... 41
6.8.9 RTC Time Setting ... 41
6.8.10 RTC Time Display ... 42
6.8.11 Starting RTC Time Count Operation ... 43
6.8.12 Stopping RTC Time Count Operation ... 44
6.8.13 RTC Alarm Time Setting and Transition to Deep Standby Mode 45
6.8.14 RTC Initial Setting .. 48
6.8.15 Starting RTC Time Count Operation ... 48
6.8.16 Stopping RTC Time Count Operation ... 48
6.8.17 Setting Values to RTC Time Counter .. 49
6.8.18 Obtaining Values from RTC Time Counter.. 51

RZ/A1H Group Example of Using Real Time Clock (Preliminary Version)

R01AN2189EJ0081 Rev.0.81 Page 3 of 62
Sep. 05, 2014

6.8.19 Setting Values to RTC Alarm Registers .. 53
6.8.20 Obtaining Values from RTC Alarm Registers .. 56
6.8.21 RTC Initial Setting .. 59

6.9 Running Sample Code ... 60

7. Sample Code .. 61

8. Reference Documents .. 61

RZ/A1H Group Example of Using Real Time Clock (Preliminary Version)

R01AN2189EJ0081 Rev.0.81 Page 4 of 62
Sep. 05, 2014

1. Specifications
The RTC time (Second, minute, hour, day of the week, day, month, and year) should be set to start the time count
operation using RTC. After starting the time count operation, the time is read from RTC and displayed on the terminal
on the host PC. Then the RZ/A1H transits to the power-down mode (deep standby mode) and returns from the mode
when the RTC alarm interrupt is generated. These basic operations with RTC can be executed by inputting commands
from the terminal. Note that the time does not need to be reset after returning from deep standby mode because RTC
continues the time count operation during deep standby mode.

In this application note, the serial communication interface with FIFO and the power-down mode are abbreviated as
SCIF and STB respectively.

Table 1.1 lists the Peripheral Functions and Their Applications and Figure 1.1 shows the Operation Overview.

Table 1.1 Peripheral Functions and Their Applications

Peripheral Function Application
RTC Used to set and display time using clock/calendar functions.

Uses alarm interrupt as deep standby mode cancel source.
SCIF For communication between SCIF channel 2 and the host PC.
STB Used for clock supply to RTC and for transition to and release from deep

standby mode.

COMMAND>

Host PC

Serial interface
(RS-232C cable)

R7S72100 CPU board
RTK772100BC00000BR

Terminal software
(message output and command input)

R7S72100

Figure 1.1 Operation Overview

RZ/A1H Group Example of Using Real Time Clock (Preliminary Version)

R01AN2189EJ0081 Rev.0.81 Page 5 of 62
Sep. 05, 2014

2. Operation Confirmation Conditions
The sample code accompanying this application note has been run and confirmed under the conditions below.

Table 2.1 Operation Confirmation Conditions

Item Contents
MCU used RZ/A1H
Operating frequency* CPU clock (Iφ): 400MHz

Image processing clock (Gφ): 266.67MHz
Internal bus clock (Bφ): 133.33MHz
Peripheral clock 1 (P1φ): 66.67MHz
Peripheral clock 0 (P0φ): 33.33MHz

Operating voltage Power supply voltage (I/O): 3.3V
Power supply voltage (Internal): 1.18V

Integrated development
environment

ARM® integrated development environment
ARM Development Studio 5 (DS-5TM) Version 5.16

C compiler ARM C/C++ Compiler/Linker/Assembler Ver.5.03 [Build 102]
Compiler options (excluding addition of directory path)
-O3 -Ospace --cpu=Cortex-A9 --littleend --arm --apcs=/interwork
--no_unaligned_access --fpu=vfpv3_fp16 -g --asm

Operating mode Boot mode 0
(CS0-space 16-bit booting)

Terminal software
communication setting

• Communication speed: 115200bps
• Data length: 8 bits
• Parity: None
• Stop bit length: 1 bit
• Flow control: None

Board used GENMAI board
• RTK772100BC00000BR (R7S72100 CPU board)

Device used • NOR flash memory (Connected to CS0 and CS1 spaces)
Manufacturer: Spansion Inc.
Part No.: S29GL512S10TFI01

• Serial inter face (D-sub 9-pin connector)
• LED1

Note: * The operating frequency used in clock mode 0 (Clock input 13.33MHz from EXTAL pin).

3. Reference Application Notes
For additional information associated with this document, refer to the following application notes.

• RZ/A1H Group I/O definition header file <iodefine.h> (R01AN1860EJ)
• RZ/A1H Group Example of Initialization (R01AN1864EJ)

RZ/A1H Group Example of Using Real Time Clock (Preliminary Version)

R01AN2189EJ0081 Rev.0.81 Page 6 of 62
Sep. 05, 2014

4. Peripheral Functions
This chapter provides supplementary information on RTC. Refer to the "RZ/A1H Group User's Manual: Hardware" for
basic information.

RTC has registers(hereinafter collectively called "time counter") which perform BCD coding for second, minute, hour,
day of week, day, month, and year to count time. After the time counter has been set and the time count operation starts,
the time counter can be used as the information of current time (second, minute, hour, day of week, day, month, and
year). Note that the time count operation continues after transition to deep standby mode because the on-chip crystal
oscillator circuit does not stop during power-down mode (deep standby mode).

RTC supports the alarm function and generates alarm interrupt with any of or combination of second, minute, hour, day
of week, day, month, and year. The interrupt using alarm function can be used as the deep standby mode cancel source.
After the alarm time has been set, the RZ/A1H transits to deep standby mode and then returns from it at the alarm time.
Note that if the alarm interrupt is used as the deep standby mode cancel source, it runs as the cancel source regardless of
the setting value of the running priority register for the interrupt controller. Therefore it is not necessary to enable the
alarm interrupt using the alarm interrupt enable flag.

RZ/A1H Group Example of Using Real Time Clock (Preliminary Version)

R01AN2189EJ0081 Rev.0.81 Page 7 of 62
Sep. 05, 2014

5. Hardware

5.1 Pins Used
Table 5.1 lists the Pins Used and Their Functions.

Table 5.1 Pins Used and Their Functions

Pin Name I/O Function
A25 to A1 Output Address signal output to NOR flash memory
D15 to D0 Input/output Data signal input/output of NOR flash memory
CS0# Output Device select signal output to NOR flash memory connected to CS0

space
RD# Output Read control signal output to NOR flash memory
WE0# Output Write enable control signal output to NOR flash memory
MD_BOOT1 Input Selects boot mode

MD_BOOT1: "L", MD_BOOT0: "L" (Set to boot mode 0) MD_BOOT0 Input
P4_10 Output LED on/off
RxD2 Input Serial receive data signal
TxD2 Output Serial transmit data signal
RTC_X1 Input Used to connect a 32.768kHz crystal resonator for RTC
RTC_X2 Output
Note: The symbol # indicates negative logic (or active low).

RZ/A1H Group Example of Using Real Time Clock (Preliminary Version)

R01AN2189EJ0081 Rev.0.81 Page 8 of 62
Sep. 05, 2014

6. Software

6.1 Operation Overview
This sample code executes six types of sample operations using RTC. The sample operations can be performed by
inputting commands from the terminal. Table 6.1 lists the Sample Operations.

The basic command input procedure to operate sample code is listed as follows.

(1) Turn ON the GENMAI board under the operation environment shown in Figure 1.1.
(2) Input "1"+"Enter" from the terminal and initialize RTC.
(3) Input "2"+"Enter" from the terminal and set the RTC time counter using the time input according to the message

displayed on the terminal.
(4) Input "4"+"Enter" from the terminal and start the RTC time count operation.
(5) Input "3"+"Enter" from the terminal and display the current time on the terminal.
(6) Input "6"+"Enter" from the terminal and set the RTC alarm time using the time input according to the message

displayed on the terminal. Then transit to deep standby mode.
(7) Return from deep standby mode when the value of time counter indicates the alarm time set in step (6) by using the

time count operation in deep standby mode.

Table 6.1 Sample Operations

Sample operation Outline Command
RTC initial setting Initializes RTC. The RTC time count operation is stopped. 1
RTC time setting Sets current time to time counter. 2
RTC time display Displays current time using time counter. 3
Starting RTC time count
operation

Starts the RTC time count operation. 4

Stopping RTC time count
operation

Stops the RTC time count operation. 5

RTC alarm time setting and
transition to deep standby mode

Sets RTC alarm time and transits to deep standby mode.
Returns from deep standby mode at the alarm time.

6

Note: Command 1 should be executed before executing Commands 2 to 6.

RZ/A1H Group Example of Using Real Time Clock (Preliminary Version)

R01AN2189EJ0081 Rev.0.81 Page 9 of 62
Sep. 05, 2014

6.1.1 RTC Initial Setting (Command 1)
Set STB to supply a clock to RTC, and initialize RTC after the time count operation is stopped.

When this command has been executed, the RTC time count operation is in stopped state. Note that this command
should be executed before executing other commands.

Figure 6.1 shows the Terminal Display for Initial Setting.

RTC SAMPLE> 1

RTC initialize complete.

Figure 6.1 Terminal Display for Initial Setting

RZ/A1H Group Example of Using Real Time Clock (Preliminary Version)

R01AN2189EJ0081 Rev.0.81 Page 10 of 62
Sep. 05, 2014

6.1.2 RTC Time Setting (Command 2)
Sets the RTC time counter (Second, minute, hour, day of week, day, month, and year). Input the time by using decimal
digit in the order of day of week, month, day, year, hour, minute, and second. Note that no value is set to the RTC time
counter if "-1" is input. The time count operation starts with the initial value listed in "RZ/A1H group User's Manual:
Hardware" when starting the time count operation without setting time using this command after the GENMAI board
turned ON.

Table 6.2 Table of Time Input

Time Value can be Input (Decimal digit)
Day of week 0 to 6

0: Sunday, 1: Monday, 2: Tuesday, 3: Wednesday,
4: Thursday, 5: Friday, 6: Saturday
-1: No change

Month 1 to 12
-1: No change

Day 1 to 31
-1: No change

Year 0 to 9999
-1: No change

Hour 0 to 23
-1: No change

Minute 0 to 59
-1: No change

Second 0 to 59
-1: No change

Figure 6.2 shows the example to set "Tuesday April 1st, 2014 at 10:15" ("Seconds" is not used.)

RTC SAMPLE> 2

Enter time (decimal).
Enter "-1" to the item where you do not want to change the time.

Day of week (Sun=0/Mon=1/Tue=2/Wed=3/Thu=4/Fri=5/Sat=6) : 2
Month (1 - 12) : 4
Day (1 - 31) : 1
Year (0 - 9999) : 2014
Hour (0 - 23) : 10
Minute (0 - 59) : 15
Second (0 - 59) : -1

RTC time counter setting complete.

Figure 6.2 Example of Time Setting

RZ/A1H Group Example of Using Real Time Clock (Preliminary Version)

R01AN2189EJ0081 Rev.0.81 Page 11 of 62
Sep. 05, 2014

6.1.3 RTC Time Display (Command 3)
Obtain BCD-coded time information from the RTC time counter and display it on the terminal in the form of "Day of
week month day, year at hour: minute: second".

Figure 6.3 shows the example of "Tuesday April 1st, 2014 at 10:15:45".

RTC SAMPLE> 3

Tue. Apr. 1, 2014 at 10:15:45

Figure 6.3 Example of Time Display

6.1.4 Starting RTC Time Count Operation (Command 4)
Start the RTC time count operation. Display the time to start it.

Figure 6.4 shows the Example of Starting of Time Count Operation on "Tuesday April 1st, 2014 at 10:15:10".

RTC SAMPLE> 4

Tue. Apr. 1, 2014 at 10:15:10

RTC time count start.

Figure 6.4 Example of Starting of Time Count Operation

6.1.5 Stopping RTC Time Count Operation (Command 5)
Stop the RTC time count operation. Display the time to stop it.

Figure 6.5 shows the Example of Stopping of Time Count Operation on "Tuesday April 1st, 2014 at 10:15:45".

RTC SAMPLE> 5

RTC time count stop.

Tue. Apr. 1, 2014 at 10:15:45

Figure 6.5 Example of Stopping of Time Count Operation

RZ/A1H Group Example of Using Real Time Clock (Preliminary Version)

R01AN2189EJ0081 Rev.0.81 Page 12 of 62
Sep. 05, 2014

6.1.6 RTC Alarm Time Setting and Transition to Deep Standby Mode (Command 6)
The following is performed when executing this command.

(1) Input time to be set to the RTC alarm time from the terminal.
(2) Set the time input in step (1) to the alarm time.
(3) Obtain current time from the RTC time counter and display it on the terminal as transition time to deep standby

mode.
(4) Set the deep standby mode cancel source to the alarm interrupt and transit to deep standby mode.
(5) Return from deep standby mode when the value of time counter indicates the alarm time set in step (2) by using time

count operation in deep standby mode.
(6) Check the deep standby mode cancel source. When the cancel source is the RTC alarm interrupt, obtain time from

the time counter and display it on the terminal as the deep standby mode cancel time.

Figure 6.6 shows the example when the deep standby mode cancel time is "10:20" and transition to deep standby mode
on "Tuesday April 1st, 2014 at 10:15:45".

RTC SAMPLE> 6

Transit to deep standby mode.
Enter time to cancel deep standby mode (decimal).
Enter "-1" to the item where you set current time.

Hour (0 - 23) : 10
Minute (0 - 59) : 20

Transit to deep standby mode at..

Tue. Apr. 1, 2014 at 10:15:45

Deep standby mode will be canceled at 10:20:00.

RZ/A1H CPU Board Sample Program. Ver.X.XX
Copyright (C) 2014 Renesas Electronics Corporation. All rights reserved.

Deep standby mode canceled at..

Tue. Apr. 1, 2014 at 10:20:00

select sample program.

SAMPLE>

Figure 6.6 Example of Alarm Time Setting and Transition to Deep Standby Mode

The deep standby mode cancel time is stored in the sample function STB_CancelDeepStandby called by the initial
setting function for peripheral function ($Sub$$main). The stored time is displayed on the terminal using the sample
function RTC_DispTimeCanDeepStb called by the main function.

RZ/A1H Group Example of Using Real Time Clock (Preliminary Version)

R01AN2189EJ0081 Rev.0.81 Page 13 of 62
Sep. 05, 2014

6.2 Peripheral Functions and Memory Allocation in Sample Code
6.2.1 Setting for Peripheral Functions

Table 6.3 Peripheral Function Settings

Module Setting
RTC Operating clock: Select 32.768kHz from RTC_X1

Periodic interrupt generation: Disabled
Carry interrupt generation: Disabled
Alarm interrupt generation: Disabled

SCIF Sets the channel 2 in asynchronous communication mode.
• Data length: 8 bits
• Stop bit length: 1 bit
• Parity: None
Sets the clock source without frequency dividing and the bit rate value at 17.
Sets the bit rate to be 115200pbs when P1φ is 66.67MHz.
Difference is 0.46%.

STB Clock supply to RTC.
Transition to deep standby mode.
Deep standby mode is cancelled when the RTC alarm interrupt is generated.
Startup from the external memory after deep standby mode is cancelled.

RZ/A1H Group Example of Using Real Time Clock (Preliminary Version)

R01AN2189EJ0081 Rev.0.81 Page 14 of 62
Sep. 05, 2014

6.2.2 Section Assignment in Sample Code
Table 6.4 and Table 6.5 list the Sections Used in this sample code. Figure 6.7 shows the Section Assignment for the
initial condition of the sample code and the condition after using the scatter loading function.

Refer to "Image structure and generation" in "ARM Compiler toolchain Using the Linker" provided by the ARM for
more information about the section and the scatter-loading function.

Table 6.4 Sections to be Used (1/2)

Area Name Description Type Loading
Area

Execution
Area

VECTOR_TABLE Exception processing vector table Code FLASH FLASH
RESET_HANDLER Program code area of reset handler

processing
This area consists of the following sections.
• INITCA9CACHE (L1 cache setting)
• INIT_TTB (MMU setting)
• RESET_HANDLER (Reset handler)

Code FLASH FLASH

CODE_BASIC_SETUP Program code area to optimize operating
frequency and flash memory

Code FLASH FLASH

InRoot This area consists of the sections located in
the root area such as C standard library.

Code
and
RO Data

FLASH FLASH

CODE_FPU_INIT Program code area for NEON and VFP
initializations
This area consists of the following sections.
• CODE_FPU_INIT
• FPU_INIT

Code FLASH FLASH

CODE_RESET Program code area for hardware
initializations
This area consists of the following sections.
• CODE_RESET (Startup processing)
• INIT_VBAR (Vector base setting)

Code FLASH FLASH

CODE_IO_REGRW Program code area for read/write function of
I/O register

Code FLASH FLASH

CODE Program code area for defaults
All the Code type sections which do not
define section names with C source are
assigned in this area.

Code FLASH FLASH

CONST Constant data area for defaults
All the RO Data type sections which do not
define section names with C source are
assigned in this area.

RO Data FLASH FLASH

RZ/A1H Group Example of Using Real Time Clock (Preliminary Version)

R01AN2189EJ0081 Rev.0.81 Page 15 of 62
Sep. 05, 2014

Table 6.5 Sections to be Used (2/2)

Area Name Description Type Load Area Execution
Area

VECTOR_MIRROR_
TABLE

Exception processing vector table
(Section to transfer data to large-capacity
on-chip RAM)

Code FLASH LRAM

CODE_HANDLER_
JMPTBL

Program code area for user-defined
functions of IRQ interrupt handler

Code FLASH LRAM

CODE_HANDLER Program code area of IRQ interrupt
handler
This area consists of the following
sections.
• CODE_HANDLER
• IRQ_FIQ_HANDLER

Code FLASH LRAM

DATA_HANDLER_
JMPTBL

Registration table data area for user-
defined functions of IRQ interrupt handler

RW Data FLASH LRAM

DATA_RESET Data area with initial value for hardware
initializations

RW Data FLASH LRAM

BSS_RESET Data area without initial value for
hardware initializations

ZI Data - LRAM

ARM_LIB_STACK Application stack area ZI Data - LRAM
IRQ_STACK IRQ mode stack area ZI Data - LRAM
FIQ_STACK FIQ mode stack area ZI Data - LRAM
SVC_STACK Supervisor (SVC) mode stack area ZI Data - LRAM
ABT_STACK Abort (ABT) mode stack area ZI Data - LRAM
TTB MMU translation table area ZI Data - LRAM
ARM_LIB_HEAP Application heap area ZI Data - LRAM
DATA Data area with initial value for defaults

All the RW Data type sections which do
not define section names with C source
are assigned in this area.

RW Data FLASH LRAM

BSS Data area without initial value for defaults
All the ZI Data type sections which do not
define section names with C source area
assigned in this area.

ZI Data - LRAM

Notes: 1. "FLASH" and "LRAM" shown in Loading Area and Execution Area indicate the NOR flash memory
area and the large-capacity on-chip RAM area respectively.

 2. Basically the section name is set to be the same as the region's, however it consists of some
sections in the areas of RESET_HANDLER, InRoot, CODE_FPU_INIT, CODE_RESET, CODE,
CONST, CODE_HANDLER, DATA, and BSS. Refer to the ARM compiler toolchain manual about
the region and the section.

RZ/A1H Group Example of Using Real Time Clock (Preliminary Version)

R01AN2189EJ0081 Rev.0.81 Page 16 of 62
Sep. 05, 2014

DATA_RESET
BSS_RESET

DATA_RESET

H'FFFF FFFF

RZ/A1H group
Address space

H'4000 0000

CS0 space
 (64MB)

H'2000 0000

H'1C00 0000

H'1800 0000

H'1000 0000

H'20A0 0000
Large-capacity on-chip RAM

(10MB)

H'0000 0000

H'0C00 0000

H'0800 0000

H'0400 0000

H'2002 E000
H'2002 C000

H'2002 4000

Section assignment
(Load view)

H'2002 0100

RESER_HANDLER

H'2002 0000

VECTOR_TABLE

H'2000 0000

H'03FF FFFF

CODE_BASIC_SETUP

InRoot

H'0000 0000

H'0000 0200

H'0000 0100 VECTOR_MIRROR_TABLE

CODE_FPU_INIT

CODE_RESET

CODE_IO_REGRW

CODE

CONST

CODE_HANDLER

CODE_HANDLER_JMPTBL

DATA_HANDLER_JMPTBL

H'2003 0000
H'2003 2000
H'2003 4000

H'2003 8000

H'200B 8000

Section assignment
(Execution view)

RESER_HANDLER

VECTOR_TABLE

CODE_BASIC_SETUP

InRoot

CODE_FPU_INIT

CODE_RESET

CODE_IO_REGRW

CODE

CONST

CODE_HANDLER_JMPTBL

VECTOR_MIRROR_TABLE

CODE_HANDLER

DATA_HANDLER_JMPTBL

ARM_LIB_STACK

IRQ_STACK
FIQ_STAC

SVC_STACK
ABT_STACK

TTB

ARM_LIB_HEAP

DATA

BSS

H'209F FFFF

Memory allocation after
executing scatter-loading

Clear to zero

DATA

Initialize data
with initial value

Transfer program
code which requires
speeding up to on-

chip RAM

Initialize data
with initial value

Transfer exception
processing vector to
on-chip RAM

Secure area such
as stack area

Clear to zero

Figure 6.7 Section Assignment

RZ/A1H Group Example of Using Real Time Clock (Preliminary Version)

R01AN2189EJ0081 Rev.0.81 Page 17 of 62
Sep. 05, 2014

6.3 Fixed-Width Integers
Table 6.6 lists the Fixed-Width Integers Used in Sample Code.

Table 6.6 Fixed-Width Integers Used in Sample Code

Symbol Contents
char_t 8-bit character
bool_t Boolean type, value: true (1) or false (0)
int_t High-speed integer, signed

32-bit integer in this sample code
int8_t 8-bit integer, singed (Defined by standard library)
int16_t 16-bit integer, singed (Defined by standard library)
int32_t 32-bit integer, singed (Defined by standard library)
int64_t 64-bit integer, singed (Defined by standard library)
uint8_t 8-bit integer, unsigned (Defined by standard library)
uint16_t 16-bit integer, unsigned (Defined by standard library)
uint32_t 32-bit integer, unsigned (Defined by standard library)
uint64_t 64-bit integer, unsigned (Defined by standard library)
float32_t 32-bit floating point

(Defined by standard library when specifying "__ARM_NEON__")
float64_t 64-bit floating point (Defined by standard library)

(Defined by standard library when specifying "__ARM_NEON__")
float128_t 128-bit floating point

RZ/A1H Group Example of Using Real Time Clock (Preliminary Version)

R01AN2189EJ0081 Rev.0.81 Page 18 of 62
Sep. 05, 2014

6.4 Constants
Table 6.7 lists the Constants Used in Sample Code.

Table 6.7 Constants Used in Sample Code

Constant Name Setting Value Contents
RTC_ENABLE (1) Enable setting and reading time counter (Second,

minute, hour, day of week, day, month, and year)
RTC_DISABLE (0) Disable setting and reading time counter

(Second, minute, hour, day of week, day, month,
and year)

RTC_WK_SUNDAY
RTC_WK_MONDAY
RTC_WK_TUESDAY
RTC_WK_WEDNESDAY
RTC_WK_THURSDAY
RTC_WK_FRIDAY
RTC_WK_SATURDAY
RTC_WK_TOTAL

(0)
(1)
(2)
(3)
(4)
(5)
(6)
(7)

Day of week definitions
Sunday
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday
Total days of week

STB_GENERATE_ALARM_INT (1) The definition in the state where deep standby
mode was canceled by RTC alarm interrupt

STB_NO_GENERATE_ALARM_INT (0) The definition in the state where deep standby
mode was not canceled by RTC alarm interrupt
(Startup from power-on reset also uses this
definition)

RZ/A1H Group Example of Using Real Time Clock (Preliminary Version)

R01AN2189EJ0081 Rev.0.81 Page 19 of 62
Sep. 05, 2014

6.5 Structure List
Figure 6.8 shows the Structure Used in Sample Code.

/* ==== Type declaration for time setting ==== */
/* ---- Type declaration for registers with 8-bit width ---- */
typedef struct rtc_8
{
 uint8_t value; /* Setting values for time counter or alarm register */
 uint8_t enable; /* Specification for setting or acquisition */
 /* (RTC_DISABLE : Disable setting or acquisition, */
 /* RTC_ENABLE : Enable setting or acquisition) */
} rtc_8_t;

/* ---- Type declaration for registers with 16-bit width
 (For year counter and year alarm registers) ---- */
typedef struct rtc_16
{
 uint16_t value; /* Setting values for year counter or year alarm register */
 uint8_t enable; /* Specification for setting or acquisition */
 /* (RTC_DISABLE : Disable setting or acquisition, */
 /* RTC_ENABLE : Enable setting or acquisition) */
} rtc_16_t;

/* ==== Structure declaration for time setting ==== */
typedef struct rtc_time
{ /* value enable */
 rtc_8_t second; /* Second (0 to 59) (RTC_DISABLE or RTC_ENABLE) */
 rtc_8_t minute; /* Minute (0 to 59) (RTC_DISABLE or RTC_ENABLE) */
 rtc_8_t hour; /* Hour (0 to 23) (RTC_DISABLE or RTC_ENABLE) */
 rtc_8_t week; /* Day of week (0 to 6) (RTC_DISABLE or RTC_ENABLE) */
 rtc_8_t day; /* Day (1 to 31) (RTC_DISABLE or RTC_ENABLE) */
 rtc_8_t month; /* Month (1 to 12) (RTC_DISABLE or RTC_ENABLE) */
 rtc_16_t year; /* Year (0 to 9999) (RTC_DISABLE or RTC_ENABLE) */
} rtc_time_t;

/* ==== Structure declaration for alarm-specified information (ENB bit) ==== */
typedef struct rtc_alarm_enb
{
 uint8_t second; /* Second (0 or 1) */
 uint8_t minute; /* Minute (0 or 1) */
 uint8_t hour; /* Hour (0 or 1) */
 uint8_t week; /* Day of week (0 or 1) */
 uint8_t day; /* Day (0 or 1) */
 uint8_t month; /* Month (0 or 1) */
 uint8_t year; /* Year (0 or 1) */
} rtc_alarm_enb_t;
Figure 6.8 Structure Used in Sample Code

RZ/A1H Group Example of Using Real Time Clock (Preliminary Version)

R01AN2189EJ0081 Rev.0.81 Page 20 of 62
Sep. 05, 2014

6.6 Functions
The sample code consists of the interface functions to control RTC (API functions), the user-defined functions which
need to be prepared by the user for the system applications (functions called from the API functions), and the sample
function required to operate the sample code.

Table 6.8, Table 6.9, and Table 6.10 list the Sample Functions, API Functions, and User-Defined Function.

Table 6.8 Sample Functions

Function Name Outline
$Sub$$main Initialization of on-chip peripheral functions

(Call $Super$$main function, and branch to main function)
STB_CancelDeepStandby Processing corresponding to deep standby mode cancel source
RTC_GetTimeCanDeepStb Acquisition processing for deep standby mode cancel time
main Main processing
RTC_DispTimeCanDeepStb Processing for deep standby mode cancel time display
Sample_Main Sample code main processing
Sample_RTC_Main RTC sample code main processing
Sample_RTC_Init RTC initial setting
Sample_RTC_SetTime RTC time setting
Sample_RTC_GetTime RTC time display
Sample_RTC_Start Starting RTC time count operation
Sample_RTC_Stop Stopping RTC time count operation
Sample_RTC_DeepStandby RTC alarm time setting and transition to deep standby mode

Table 6.9 API Functions

Function Name Outline
R_RTC_Init RTC initial setting
R_RTC_Open Starting RTC time count operation
R_RTC_Close Stopping RTC time count operation
R_RTC_SetCnt Setting values to RTC time counter
R_RTC_GetCnt Obtaining values from RTC time counter
R_RTC_SetAlarm Setting values to RTC alarm registers
R_RTC_GetAlarm Obtaining values from RTC alarm registers

Table 6.10 User-Defined Functions

Function Name Outline
Userdef_RTC_Init RTC initial setting

RZ/A1H Group Example of Using Real Time Clock (Preliminary Version)

R01AN2189EJ0081 Rev.0.81 Page 21 of 62
Sep. 05, 2014

6.7 Function Specifications
The following tables list the sample code function specifications.

$Sub$$main
Outline Initialization of on-chip peripheral functions

Declaration void $Sub$$main(void)
Description Executes initial setting for the peripheral functions, and jumps to the main function by

calling the $Super$$main of the library function.
In the sample code, the processing corresponding to the deep standby mode cancel
source is executed by calling the sample function STB_CancelDeepStandby, and the
initial settings for STB, PORT, INTC, and L1 cache are performed. The vector
address is also set in the on-chip RAM area.
The IRQ and the FIQ interrupts are enabled by calling the __enable_irq and
__enable_fiq of the library function.

Arguments None
Return Value None

STB_CancelDeepStandby
Outline Processing corresponding to deep standby mode cancel source

Declaration void STB_CancelDeepStandby(void)
Description Determine if this function has been called after returning from deep standby mode

with reference to the cancel source confirmation flag for the deep standby cancel
source flag register (DSFR). If this function has been called after returning from deep
standby mode, the processing corresponding to the deep standby mode cancel
source should be executed to release the retention of pin state.
In the sample code, if the deep standby mode cancel source is the alarm interrupt of
the RTC, the RTCARF bit in the deep standby cancel source flag register (DSFR) is
cleared to "0", and each counter value of the RTC is stored in the area retained in the
large-capacity on-chip RAM as the time when the deep standby mode is cancelled.
The stored time can be obtained from the sample function
RTC_GetTimeCanDeepStb. The flag should be set to notify that this function has
been called after returning from deep standby mode.
Also, when the IOKEEP bit in the deep standby cancel source flag register (DSFR) is
"1", the retention of the pin state can be released by setting the IOKEEP bit to "0".

Arguments None
Return Value None

RZ/A1H Group Example of Using Real Time Clock (Preliminary Version)

R01AN2189EJ0081 Rev.0.81 Page 22 of 62
Sep. 05, 2014

RTC_GetTimeCanDeepStb
Outline Acquisition processing for deep standby mode cancel time

Declaration uint32_t RTC_GetTimeCanDeepStb(rtc_time_t * time)
Description Stores the time of deep standby mode cancellation in the area specified by the

argument time.
Arguments rtc_time_t * time : Time of deep standby mode cancellation

time->second.value Second (0 to 59)
time->minute.value : Minute (0 to 59)
time->hour.value : Hour (0 to 23)
time->week.value : Day of week (0 to 6)
 0: Sunday
 1: Monday
 2: Tuesday
 3: Wednesday
 4: Thursday
 5: Friday
 6: Saturday
time->day.value : Day (1 to 31)
time->month.value : Month (1 to 12)
time->year.value : Year (0 to 9999)

Return Value STB_GENERATE_ALARM_INT: The state where deep standby mode was
canceled by RTC alarm interrupt

STB_NO_GENERATE_ALARM_INT: The state where deep standby mode was
not canceled by RTC alarm interrupt or

 the state started from power-on reset
Note The sample function STB_CancelDeepStandby is used to store the time when the

deep standby mode is cancelled. Therefore, this function should be called after the
function STB_CancelDeepStandby is executed.
If this function return STB_NO_GENERATE_ALARM_INT, time of deep standby
mode cancellation is not stored to the argument time.

RZ/A1H Group Example of Using Real Time Clock (Preliminary Version)

R01AN2189EJ0081 Rev.0.81 Page 23 of 62
Sep. 05, 2014

main
Outline Main processing

Declaration int_t main(void)
Description Displays the sample code information on the terminal of the host PC which is

connected to the GENMAI board by the serial interface. If this function is called after
the deep standby mode is cancelled, displays the time when the deep standby mode
is cancelled.
Also, executes initial setting for the PORT connected with the LEDs on the board.
Executes initial setting for the OSTM channel 0, and sets the timer counter so that
the OSTM0 interrupt occurs every 500ms.

Arguments None
Return Value 0

RTC_DispTimeCanDeepStb
Outline Processing for deep standby mode cancel time display

Declaration void RTC_DispTimeCanDeepStb(void)
Description This is a sample function to obtain the time when the deep standby mode is

cancelled.
In the sample code, the value of the RTC time counter is obtained by using the
sample function RTC_GetTimeCanDeepStb. If the time when the deep standby
mode is cancelled is stored, the value of the BCD-coded time counter is converted
into integer value and display to the terminal.

Arguments None
Return Value None

Note The RTC time counter values (BCD) are stored as the time when deep standby
mode is cancelled by using the sample function STB_CancelDeepStandby.

Sample_Main
Outline Sample code main processing

Declaration void Sample_Main(void)
Description Waits for character input from the terminal running on the host PC connected to the

GENMAI board via the serial interface.
Activates the RTC sample code when "RTC" + "Enter" key is input.

Arguments None
Return Value None

RZ/A1H Group Example of Using Real Time Clock (Preliminary Version)

R01AN2189EJ0081 Rev.0.81 Page 24 of 62
Sep. 05, 2014

Sample_RTC_Main
Outline RTC sample code main processing

Declaration int32_t Sample_RTC_Main(int32_t argc, char_t ** argv)
Description Waits for character input from the terminal on the host PC connected to GENMAI

board by the serial interface. Runs each sample according to the input characters
input.
When "1"+"Enter" keys are input, execute RTC initial settings.
When "2"+"Enter" keys are input, execute RTC time setting.
When "3"+"Enter" keys are input, execute RTC time display.
When "4"+"Enter" keys are input, execute starting RTC time count operation.
When "5"+"Enter" keys are input, execute stopping RTC time count operation.
When "6"+"Enter" keys are input, execute RTC alarm time setting and transition to
deep standby mode.

Arguments int32_t argc : The number of command arguments input from the terminal
 char_t **argv : Pointer to the command input from the terminal

Return Value COMMAND_EXIT : Termination of RTC sample code processing

Sample_RTC_Init
Outline RTC initial setting

Declaration int32_t Sample_RTC_Init(int32_t argc, char_t ** argv)
Description This is a sample function to initialize RTC. Called when "1"+"Enter" keys are input

during the wait processing for character input using the sample function
Sample_RTC_Main.
In the sample code, RTC is initialized by using the API function R_RTC_Init.

Arguments int32_t argc : The number of command arguments input from the terminal.
Not used in this function.

 char_t **argv : Pointer to the command input from the terminal.
Not used in this function.

Return Value COMMAND_SUCCESS : Success of RTC sample code processing

RZ/A1H Group Example of Using Real Time Clock (Preliminary Version)

R01AN2189EJ0081 Rev.0.81 Page 25 of 62
Sep. 05, 2014

Sample_RTC_SetTime
Outline RTC time setting

Declaration int32_t Sample_RTC_SetTime(int32_t argc, char_t ** argv)
Description This is a sample function to set the time to the RTC time counter. Called when

"2"+"Enter" keys are input during the wait processing for character input using the
sample function Sample_RTC_Main.
In the sample code, the time (decimal digit) input from the terminal is set to the RTC
time counter using the API function R_RTC_SetCnt. The items for the time should be
input in order day of week, month, day, year, hour, minute, and second. Inputs the
values of the specified range (Refer to Table 6.2 for effective range for input values).
If a value outside the specified range is input, waits until appropriate value is input.
When "-1" is input, the item should not be set to the RTC time counter.

Arguments int32_t argc : The number of command arguments input from the terminal.
Not used in this function.

 char_t **argv : Pointer to the command input from the terminal.
Not used in this function.

Return Value COMMAND_SUCCESS : Success of RTC sample code processing
Note This sample function runs on the condition that initial settings have been made by

using the sample function Sample_RTC_Init.

Sample_RTC_GetTime
Outline RTC time display

Declaration int32_t Sample_RTC_GetTime(int32_t argc, char_t ** argv)
Description This is a sample function to obtain time from the RTC time counter. Called when

"3"+"Enter" keys are input during wait processing for character input using the
sample function Sample_RTC_Main.
In the sample code, this function displays the time obtained from the RTC time
counter to the terminal using the API function R_RTC_GetCnt.

Arguments int32_t argc : The number of command arguments input from the terminal.
Not used in this function.

 char_t **argv : Pointer to the command input from the terminal.
Not used in this function.

Return Value COMMAND_SUCCESS : Success of RTC sample code processing
Note This sample function runs on the condition that initial settings have been made by

using the sample function Sample_RTC_Init.

RZ/A1H Group Example of Using Real Time Clock (Preliminary Version)

R01AN2189EJ0081 Rev.0.81 Page 26 of 62
Sep. 05, 2014

Sample_RTC_Start
Outline Starting RTC time count operation

Declaration int32_t Sample_RTC_Start(int32_t argc, char_t ** argv)
Description This is a sample function to start the RTC time count operation. Called when

"4"+"Enter" keys are input during wait processing for character input using the
sample function Sample_RTC_Main.
In the sample code, this function displays the time obtained from the RTC time
counter to the terminal and starts the RTC time count operation using the API
function R_RTC_Open.

Arguments int32_t argc : The number of command arguments input from the terminal.
Not used in this function.

 char_t **argv : Pointer to the command input from the terminal.
Not used in this function.

Return Value COMMAND_SUCCESS : Success of RTC sample code processing
Note This sample function runs on the condition that initial settings have been made by

using the sample function Sample_RTC_Init.

Sample_RTC_Stop
Outline Stopping RTC time count operation

Declaration int32_t Sample_RTC_Stop(int32_t argc, char_t ** argv)
Description This is a sample function to stop the RTC time count operation. Called when

"5"+"Enter" keys are input during wait processing for character input using the
sample function Sample_RTC_Main.
In the sample code, this function stops the RTC time count operation using the API
function R_RTC_Close, and displays the time obtained from the RTC time counter to
the terminal.

Arguments int32_t argc : The number of command arguments input from the terminal.
Not used in this function.

 char_t **argv : Pointer to the command input from the terminal.
Not used in this function.

Return Value COMMAND_SUCCESS : Success of RTC sample code processing
Note This sample function runs on the condition that initial settings have been made by

using the sample function Sample_RTC_Init.

RZ/A1H Group Example of Using Real Time Clock (Preliminary Version)

R01AN2189EJ0081 Rev.0.81 Page 27 of 62
Sep. 05, 2014

Sample_RTC_DeepStandby
Outline RTC alarm time setting and transition to deep standby mode

Declaration int32_t Sample_RTC_DeepStandby(int32_t argc, char_t ** argv)
Description This is a sample processing to transit to deep standby mode after selecting alarm

interrupt as deep standby mode cancel source. Called when "6"+"Enter" keys are
input during wait processing for character input using the sample function
Sample_RTC_Main.
In the sample code, the time values input from the terminal are specified for the hour
alarm register (RHRAR) and the minute alarm register (RMINAR), and "0" for the
second alarm register (RSECAR) to generate alarm interrupt at the time (hour and
minute) input from the terminal. Then the ENB bits of each register are set. Reads
the time from the RTC time counter and displays it to the terminal as the time to
transit to deep standby mode. Sets the STB so that the cancel deep standby mode is
cancelled when the RTC alarm interrupt is generated, and transits to deep standby
mode. The STB settings are made to activation through the external memory (NOR
flash memory connected to the CS0 space) after the deep standby mode is
cancelled.
When both the time (Hour, Minute) input from the terminal is "-1", or when reading
time from the RTC time counter and an error occurs, COMMAND_ERROR is
returned by this function.

Arguments int32_t argc : The number of command arguments input from the terminal.
Not used in this function.

 char_t **argv : Pointer to the command input from the terminal.
Not used in this function.

Return Value COMMAND_SUCCESS : Success of RTC sample code processing
COMMAND_ERROR : Failure of RTC sample code processing

Note This sample function performs initial setting by using the sample function
Sample_RTC_Init and runs on the condition that RTC is in the time count operation.

RZ/A1H Group Example of Using Real Time Clock (Preliminary Version)

R01AN2189EJ0081 Rev.0.81 Page 28 of 62
Sep. 05, 2014

R_RTC_Init
Outline RTC initial setting

Declaration void R_RTC_Init(void)
Description Initializes the RTC.

Calls the user-defined function Userdef_RTC_Init and initializes the RTC by
Userdef_RTC_Init.

Arguments None
Return Value None

R_RTC_Open
Outline Starting RTC time count operation

Declaration void R_RTC_Open(void)
Description Starts the RTC time count operation.

RTC starts the time count according to the current time of time counter.
Arguments None

Return Value None
Note Set available time to RTC using the API function R_RTC_SetCnt before calling this

API function.

R_RTC_Close
Outline Stopping RTC time count operation

Declaration void R_RTC_Close(void)
Description Stops the RTC time count operation.
Arguments None

Return Value None

RZ/A1H Group Example of Using Real Time Clock (Preliminary Version)

R01AN2189EJ0081 Rev.0.81 Page 29 of 62
Sep. 05, 2014

R_RTC_SetCnt
Outline Setting values to RTC time counter

Declaration int32_t R_RTC_SetCnt(rtc_time_t * time)
Description Sets the time specified by the argument time to RTC time counter.

Sets the RESET bit in the control register 2 (RCR2). If RTC_ENABLE is specified for
the argument time->second.enable, performs BCD-coding for the time of the
argument time->second.value and writes it to the RTC second counter (RSECCNT).
If RTC_DISABLE is specified for the argument time->second.enable, writing is not
performed. Otherwise, any other member of the time should also be written to the
respective RTC time counters.
Because writing to the time counter is disabled while the RTC is in time count
operation, suspends the time count operation at the beginning of this function and
restarts at the end of this function.

Arguments rtc_time_t * time : Time
time->second.value : Second (0 to 59)
time->minute.value : Minute (0 to 59)
time->hour.value : Hour (0 to 23)
time->week.value : Day of week (0 to 6)
 0: Sunday
 1: Monday
 2: Tuesday
 3: Wednesday
 4: Thursday
 5: Friday
 6: Saturday
time->day.value : Day (1 to 31)
time->month.value : Month (1 to 12)
time->year.value : Year (0 to 9999)

Specification for setting object
(RTC_ENABLE: Do set, RTC_DISABLE: Do NOT set)

time->second.enable : Second counter setting
time->minute.enable : Minute counter setting
time->hour.enable : Hour counter setting
time->week.enable : Day of week counter setting
time->day.enable : Day counter setting
time->month.enable : Month counter setting
time->year.enable : Year counter setting

Return Value DEVDRV_SUCCESS : Success in setting value to RTC time counter
DEVDRV_ERROR : Failure in setting value to RTC time counter

Note Call the API function R_RTC_Close before calling this API function to stop the time
count operation.

RZ/A1H Group Example of Using Real Time Clock (Preliminary Version)

R01AN2189EJ0081 Rev.0.81 Page 30 of 62
Sep. 05, 2014

R_RTC_GetCnt
Outline Obtaining values from RTC time counter

Declaration int32_t R_RTC_GetCnt(rtc_time_t * time)
Description Obtains the time from the RTC time counter and stores it in the area specified by the

argument time.
If RTC_ENABLE is specified for the argument time->second.enable, converts the
BCD-coded time read from the RTC second counter (RSECCNT) into integer value
and stores it in the argument time->second.value. If RTC_DISABLE is specified for
the argument time->second.enable, readout is not performed. Otherwise, any other
member of the time should also be readout from the respective RTC time counters.
During the readout processing from the RTC time counter, the carry flag (CF) of the
control register 1 (RCR1) is cleared to "0", the count value from the time counter is
read, and the carry flag is verified. If the carry flag is set when reading out from the
time counter, the readout is determined to be invalid and the readout processing from
the time counter is re-executed. If the carry flag is not set even after the readout
processing has been executed twice, this function returns DEVDRV_ERROR.

Arguments rtc_time_t * time : Storage area for obtained time
time->second.value : Second (0 to 59)
time->minute.value : Minute (0 to 59)
time->hour.value : Hour (0 to 23)
time->week.value : Day of week (0 to 6)
 0: Sunday
 1: Monday
 2: Tuesday
 3: Wednesday
 4: Thursday
 5: Friday
 6: Saturday
time->day.value : Day (1 to 31)
time->month.value : Month (1 to 12)
time->year.value : Year (0 to 9999)

Specification for obtaining object
(RTC_ENABLE: Do obtain, RTC_DISABLE: Do NOT obtain)

time->second.enable : Second counter obtaining
time->minute.enable : Minute counter obtaining
time->hour.enable : Hour counter obtaining
time->week.enable : Day of week counter obtaining
time->day.enable : Day counter obtaining
time->month.enable : Month counter obtaining
time->year.enable : Year counter obtaining

Return Value DEVDRV_SUCCESS : Success in obtaining value from RTC time counter
DEVDRV_ERROR : Failure in obtaining value from RTC time counter

RZ/A1H Group Example of Using Real Time Clock (Preliminary Version)

R01AN2189EJ0081 Rev.0.81 Page 31 of 62
Sep. 05, 2014

R_RTC_SetAlarm
Outline Setting values to RTC alarm registers

Declaration int32_t R_RTC_SetAlarm(rtc_time_t * time, rtc_alarm_enb_t * alarm_enb)
Description Sets the alarm time specified by the argument time to the RTC alarm register. Also,

specifies the time (second, minute, hour, day of week, day, month, and year) for
alarm to become active using member of the argument alarm_enb.
If this function is called in the state of the alarm interrupt enable, disables the alarm
interrupt. If RTC_ENABLE is specified for the argument time->second.enable,
performs BCD-coding for the alarm time of the argument time->second.value and
writes it to the RTC second alarm register (RSECAR). If RTC_DISABLE is specified
for the argument time->second.enable, writing is not performed. Otherwise, any other
member of the alarm timer should also be written to the respective RTC alarm
registers.
Writes the value of the argument alarm_enb->second to the ENB bit in the RTC
second alarm register (RSECAR). Other member of the setting information of
activating of the alarm time is also written to the ENB bits in the RTC alarm registers.
Clears the alarm flag (AF bit in the Control Register 1 (RCR1)) to "0". If this function
is called in the state of the alarm interrupt enable, enables the alarm interrupt.
When the time of the alarm register in which "1" has been set to the ENB bit matches
the time counter, "1" is set to the alarm flag. That means the alarm flag informs that
the current time matches the alarm time.

Arguments rtc_time_t * time : Alarm time
time->second.value : Second (0 to 59)
time->minute.value : Minute (0 to 59)
time->hour.value : Hour (0 to 23)
time->week.value : Day of week (0 to 6)
 0: Sunday, 1: Monday,
 2: Tuesday, 3: Wednesday,
 4: Thursday, 5: Friday,
 6: Saturday
time->day.value : Day (1 to 31)
time->month.value : Month (1 to 12)
time->year.value : Year (0 to 9999)

Specification for setting object
(RTC_ENABLE: Do set, RTC_DISABLE: Do NOT set)

time->second.enable : Second alarm setting
time->minute.enable : Minute alarm setting
time->hour.enable : Hour alarm setting
time->week.enable : Day of week alarm setting
time->day.enable : Day alarm setting
time->month.enable : Month alarm setting
time->year.enable : Year alarm setting

 rtc_alarm_enb_t
 * alarm_enb

: Setting information of activating of the alarm time
(0: Activate alarm time, 1: Deactivate alarm time)
alarm_enb->second : Second (0 or 1)
alarm_enb->minute : Minute (0 or 1)
alarm_enb->hour : Hour (0 or 1)
alarm_enb->week : Day of week (0 or 1)
alarm_enb->day : Day (0 or 1)
alarm_enb->month : Month (0 or 1)
alarm_enb->year : Year (0 or 1)

Return Value DEVDRV_SUCCESS : Success in setting value to RTC alarm register
DEVDRV_ERROR : Failure in setting value to RTC alarm register

RZ/A1H Group Example of Using Real Time Clock (Preliminary Version)

R01AN2189EJ0081 Rev.0.81 Page 32 of 62
Sep. 05, 2014

R_RTC_GetAlarm
Outline Obtaining values from RTC alarm registers

Declaration int32_t R_RTC_GetAlarm(rtc_time_t * time, rtc_alarm_enb_t * alarm_enb)
Description Obtains the alarm time from the RTC alarm register and stores it in the area specified

by the argument time.
If RTC_ENABLE is specified for the argument time->second.enable, converts the
BCD-coded alarm time read from the RTC second alarm register (RSECAR) into
integer value and stores it in the argument time->second.value. If RTC_DISABLE is
specified for the argument time->second.enable, any readout is not performed. Any
other member of the alarm time is read out from the respective RTC alarm registers.
Reads the setting information of activating of the alarm time from the ENB bit in the
second alarm register (RSECAR) and stores it in the argument alarm_enb->second.
Other member of the setting information of activating of the alarm time is also read
from the ENB bits in the RTC alarm registers.

Arguments rtc_time_t * time : Storage area for obtained alarm time
time->second.value : Second (0 to 59)
time->minute.value : Minute (0 to 59)
time->hour.value : Hour (0 to 23)
time->week.value : Day of week (0 to 6)
 0: Sunday
 1: Monday
 2: Tuesday
 3: Wednesday
 4: Thursday
 5: Friday
 6: Saturday
time->day.value : Day (1 to 31)
time->month.value : Month (1 to 12)
time->year.value : Year (0 to 9999)

Specification for obtaining object
(RTC_ENABLE: Do obtain, RTC_DISABLE: Do NOT obtain)

time->second.enable : Second alarm obtaining
time->minute.enable : Minute alarm obtaining
time->hour.enable : Hour alarm obtaining
time->week.enable : Day of week alarm obtaining
time->day.enable : Day alarm obtaining
time->month.enable : Month alarm obtaining
time->year.enable : Year alarm obtaining

 rtc_alarm_enb_t
 * alarm_enb

: Storage area for obtained setting information of activating of
the alarm time

(0: Activate alarm time, 1: Deactivate alarm time)
alarm_enb->second : Second (0 or 1)
alarm_enb->minute : Minute (0 or 1)
alarm_enb->hour : Hour (0 or 1)
alarm_enb->week : Day of week (0 or 1)
alarm_enb->day : Day (0 or 1)
alarm_enb->month : Month (0 or 1)
alarm_enb->year : Year (0 or 1)

Return Value DEVDRV_SUCCESS : Success in obtaining value from RTC alarm register
DEVDRV_ERROR : Failure in obtaining value from RTC alarm register

RZ/A1H Group Example of Using Real Time Clock (Preliminary Version)

R01AN2189EJ0081 Rev.0.81 Page 33 of 62
Sep. 05, 2014

Userdef_RTC_Init
Outline RTC initial setting

Declaration void Userdef_RTC_Init(void)
Description This is a user-defined function. RTC should be initialized.

In the sample code, this function stops the time count operation and disables the
carry interrupt, alarm interrupt, and periodic interrupt after the RTC module standby
has been cancelled. Selects 32.768kHz from RTC_X1 as an operation clock and sets
RTC to operate the on-chip crystal oscillator. The RESET bit in the RTC control
register 2 (RCR2) is also set.

Arguments None
Return Value None

RZ/A1H Group Example of Using Real Time Clock (Preliminary Version)

R01AN2189EJ0081 Rev.0.81 Page 34 of 62
Sep. 05, 2014

6.8 Flowcharts
6.8.1 Initialization of Peripheral Functions ($Sub$$main Function)
Figure 6.9 and Figure 6.10 show flowchart of Initialization of Peripheral Functions ($Sub$$main Function).

Initialize the STB.
The sample program sets STB2 to STB12 and supplies clocks.
Refer to the RZ/A1H Group Example of Initialization application
note for details.

$Sub$$main

Initialize the INTC.
Refer to the RZ/A1H Group Example of Initialization application
note for details.

Initialize INTC
R_INTC_Init()

Initialize STB
STB_Init()

Initialize the PORT.
The sample program initializes the PORT to use the NOR flash
memory in the CS1, and the SDRAM in CS2 and CS3.
Refer to the RZ/A1H Group Example of Initialization application
note for details.

Initialize PORT
PORT_Init()

Initialize the BSC to use the CS1, CS2, and CS3 spaces.
The sample program executes initialization to use the NOR flash
memory in area 1, and the SDRAM in area 2 and 3.
When using the SDRAM in both these areas, the CS2 space
should be initialized after initializing the BSC in the CS3.
Refer to the RZ/A1H Group Example of Initialization application
note for details.

Initialize BSC in CS3 space
R_BSC_Init()

Initialize BSC in CS2 space
R_BSC_Init()

If deep standby mode has been cancelled, the processing
corresponding to the deep standby mode cancel source is
executed and the retention of pin state is released.

Processing corresponding to deep
standby mode cancel source
STB_CancelDeepStandby()

Initialize BSC in CS1 space
R_BSC_Init()

A

Figure 6.9 Initialization of Peripheral Functions ($Sub$$main Function) (1/2)

RZ/A1H Group Example of Using Real Time Clock (Preliminary Version)

R01AN2189EJ0081 Rev.0.81 Page 35 of 62
Sep. 05, 2014

Initialize L1 cache
L1CacheInit()

Call standard library function
$Super$$main()

Set level 1 cache, and enable the instruction cache and the
data cache.

Enable the FIQ interrupt.Call library function
__enable_fiq()

Call the standard library function $Super$$main.
Branch from $Super$$main to the main function.

Set the vector base address, and place the exception
processing vector table to the on-chip RAM.
The exception processing vector table is assigned to the 32
bytes area from the address H'2002 0000.

Initialize vector base address
(VBAR)

VbarInit()

Enable the IRQ interrupt.Call library function
__enable_irq()

Initialize the SCIF channel 2 to connect with the terminal by
the UART communication.
Set the baud rate to be 115200bps when P1f is 66.67MHz.
Refer to the RZ/A1H Group Example of Initialization
application note for details.

Initialize SCIF channel 2 to
Connect with terminal by

serial communication
IoInitScif2()

A

Figure 6.10 Initialization of Peripheral Functions ($Sub$$main function) (2/2)

RZ/A1H Group Example of Using Real Time Clock (Preliminary Version)

R01AN2189EJ0081 Rev.0.81 Page 36 of 62
Sep. 05, 2014

6.8.2 Processing Corresponding to Deep Standby Mode Cancel Source
Figure 6.11 shows the flowchart of Processing Corresponding to Deep Standby Mode Cancel Source.

STB_CancelDeepStandby

return

Pin state is retained?
(IOKEEP = 1?)

Pin state retained

Check retention of pin state due to
transition to deep standby mode

Read the DSFR register
 IOKEEP bit: 0 : Pin state NOT retained

1 : Pin state retained
 (State when returning from deep standby mode)

Deep standby mode cancel
by alarm interrupt?

Deep standby mode is
cancelled by alarm interrupt

Store the values of RTC time counters
in variables which indicate deep

standby mode cancel time

stb_rtc_time.second.value ← Read the RSECCNT register
stb_rtc_time.minute.value ← Read the RMINCNT register
stb_rtc_time.hour.value ← Read the RHRCNT register
stb_rtc_time.week.value ← Read the RWKCNT register
stb_rtc_time.day.value ← Read the RDAYCNT register
stb_rtc_time.month.value ← Read the RMONCNT register
stb_rtc_time.year.value ← Read the RYRCNT register

Set variable which indicates
deep standby mode cancel time

has been stored
stb_rtc_state ← STB_GENERATE_ALARM_INT

Release retention of pin state due to
transition to deep standby mode

stb_rtc_state ← STB_NO_GENERATE_ALARM_INT

DSFR register
 IOKEEP bit ← 0
After setting the IOKEEP bit, perform a readout (dummy read) of the DSFR register.

Initialize variable which indicates
deep standby mode cancel time has

been stored

Check deep standby mode
cancel source flag

Read the DSFR register
 RTCARF bit: 0 : No realtime clock alarm interrupt generated

1 : Realtime clock alarm interrupt generated
 (Deep standby mode is cancelled by the alarm interrupt.)

Clear deep standby mode
cancel source flag

DSFR register
 RTCARF bit ← 0
After setting the RTCARF bit, perform a readout (dummy read) of the DSFR register.

The time structure variable stb_rtc_time and 32bit variable stb_rtc_state which can be
accessed from this function and the sample function RTC_GetTimeCanDeepStb is
allocated to the on-chip RAM.

Clear alarm flag
RCR1 register
 AF bit ← 0
After setting the AF bit, perform a readout (dummy read) of the RCR1 register.

Figure 6.11 Processing Corresponding to Deep Standby Mode Cancel Source

RZ/A1H Group Example of Using Real Time Clock (Preliminary Version)

R01AN2189EJ0081 Rev.0.81 Page 37 of 62
Sep. 05, 2014

6.8.3 Acquisition Processing for Deep Standby Mode Cancel Time
Figure 6.12 shows the flowchart of Acquisition Processing for Deep Standby Mode Cancel Time.

RTC_GetTimeCanDeepStb
The time when deep standby mode has been cancelled is
stored in the variable stb_rtc_state using the sample function
STB_CancelDeepStandby, and this function obtain value of
stb_rtc_state.

return (stb_rtc_state)

Store the deep standby mode
cancel time to the argument time

time->second.value ← stb_rtc_time.second.value
time->minute.value ← stb_rtc_time.minute.value
time->hour.value ← stb_rtc_time.hour.value
time->week.value ← stb_rtc_time.week.value
time->day.value ← stb_rtc_time.day.value
time->month.value ← stb_rtc_time.month.value
time->year.value ← stb_rtc_time.year.value

This function returns with a variable stb_rtc_state stored by the
sample function STB_CancelDeepStandby.
That stb_rtc_state is "STB_GENERATE_ALARM_INT" means
being in the state where deep standby mode was cancelled by
alarm interrupt of RTC.

Figure 6.12 Acquisition Processing for Deep Standby Mode Cancel Time

6.8.4 Main Processing
Figure 6.13 shows the flowchart of Main Processing.

Output the sample code version information on the terminal of the
host PC which is connected by the serial interface.

main

Peripheral function sample
code startup function

Sample_Main()

Branches to processing that waits to receive a command from
the terminal. When "RTC" + "Enter" keys are input, execute
RTC sample code.

Output to terminal
printf()

OSTM0-related settings Blinks The LED at 500ms intervals using the OSTM channel 0
interrupt.
Refer to the RZ/A1H Group Example of Initialization application note
for details.

return (0)

Processing for deep standby
mode cancel time display

RTC_DispTimeCanDeepStb()

When deep standby mode has been cancelled, display the cancel
time on the terminal.

Figure 6.13 Main Processing

RZ/A1H Group Example of Using Real Time Clock (Preliminary Version)

R01AN2189EJ0081 Rev.0.81 Page 38 of 62
Sep. 05, 2014

6.8.5 Processing for Deep Standby Mode Cancel Time Display
Figure 6.14 shows the flowchart of Processing for Deep Standby Mode Cancel Time Display.

The time when deep standby mode has been cancelled is obtained using the sample function
RTC_GetTimeCanDeepStb, the BCD-coded time counter values are converted into integer values and then displayed on
the terminal.

By using the sample function STB_CancelDeepStandby, the value of the RTC time counter (BCD) are stored as the
time when deep standby mode has been cancelled.

RTC_DispTimeCanDeepStb

Acquisition processing for deep
standby mode cancel time

RTC_GetTimeCanDeepStb()

return

Display time on terminal
Display "Day of week Month Day, Year at Hour : Minute : Second" using the time
stored in time.

Obtain the values for time counter (BCD) have been stored as the deep standby mode
cancel time and store them in the time structure variable can_time declared in this
function.

Deep standby
mode cancel time has

been stored?

Stored
(Return value of the function is STB_GENERATE_ALARM_INT)

Convert BCD-coded values for time
counter into integer values

Convert the BCD-coded values for time counter in the area specified by can_time into
integer values and store them in time structure variable time declared in this function.

Not stored
(Return value of the function is STB_NO_GENERATE_ALARM_INT)

Figure 6.14 Processing for Deep Standby Mode Cancel Time Display

RZ/A1H Group Example of Using Real Time Clock (Preliminary Version)

R01AN2189EJ0081 Rev.0.81 Page 39 of 62
Sep. 05, 2014

6.8.6 Sample Code Main Processing
Figure 6.15 shows the flowchart of Sample Code Main Processing. This function waits for the character input from the
terminal running on the host PC.

The RTC sample code is executed when "RTC" + "Enter" keys is input.

Outputs a prompt from the sample code to the terminal of the host
PC.

Sample_Main

Wait for command input
gets()

Output to terminal
printf()

Analyze and run command
CommandExe()

Acquisition of
main processing command list

Sample_GetCmdList()

Obtains the main processing command list. The menu list for
launching the RTC sample code is obtained in this sample code.

Registration of
main processing command list

CommandSetCmdList()

Registers the main processing command list. The menu list for
launching the RTC sample code is registered in this sample code.

Wait for command input from the terminal and store it in the
command buffer.

Analyzes and executes the contents of the command buffer. In the
sample code, this function registers the menu list for RTC sample
code processing and branches to the Sample_RTC_Main function,
which performs the sample code processing.

"EXIT" input?

Reacquisition of
main processing command list

Sample_GetCmdList()

Reregistration of
main processing command list

CommandSetCmdList()

"EXIT" was input

"EXIT" was NOT input

Figure 6.15 Sample Code Main Processing

RZ/A1H Group Example of Using Real Time Clock (Preliminary Version)

R01AN2189EJ0081 Rev.0.81 Page 40 of 62
Sep. 05, 2014

6.8.7 RTC Sample Code Main Processing
Figure 6.16 shows the flowchart of RTC Sample Code Main Processing. This function waits for the character input
from the terminal running on the host PC and branches to the RTC sample code processing according to the input
command.

When "1" + "Enter" key is input, execute RTC initial setting.

When "2" + "Enter" key is input, execute RTC time setting.

When "3" + "Enter" key is input, execute RTC time display.

When "4" + "Enter" key is input, execute starting RTC time count operation.

When "5" + "Enter" key is input, execute stopping RTC time count operation.

When "6" + "Enter" key is input, execute RTC alarm time setting and transition to deep standby mode.

Output the RTC sample code version information on the terminal
on the host PC.

Sample_RTC_Main

Wait for command input
gets()

Output to terminal
printf()

Analyze and run command
CommandExe()

Acquisition of command list
of RTC sample processing

Sample_RTC_GetCmdList()

Obtains the RTC sample processing command list. The menu list for
launching the RTC sample code is obtained in this sample code.

Registration of command list
of RTC sample processing

CommandSetCmdList()

Registers the RTC sample processing command list. The menu
list for launching the RTC sample code is registered in this
sample code.

Wait for command input from the terminal and store it in the
command buffer.

Analyze and execute the contents of the command buffer. In the
sample code, this function branches to the following RTC sample
code processing routines, according to the input command.
 "1" : Branch to the Sample_RTC_Init function
 "2" : Branch to the Sample_RTC_SetTime function
 "3" : Branch to the Sample_RTC_GetTime function
 "4" : Branch to the Sample_RTC_Start function
 "5" : Branch to the Sample_RTC_Stop function
 "6" : Branch to the Sample_RTC_DeepStandby function
 "HELP" : Displays a list of available commands

"EXIT" input?

return (COMMAND_EXIT)

"EXIT" was input

"EXIT" was NOT input

Figure 6.16 RTC Sample Code Main Processing

RZ/A1H Group Example of Using Real Time Clock (Preliminary Version)

R01AN2189EJ0081 Rev.0.81 Page 41 of 62
Sep. 05, 2014

6.8.8 RTC Initial Setting
Figure 6.17 shows the flowchart of RTC Initial Setting.

This function runs when Command 1 is input during the RTC command wait processing of the sample function
Sample_RTC_Main.

Sample_RTC_Init

After cancelling the RTC module standby mode, stop the time count operation and
disable the carry interrupt, alarm interrupt, and periodic interrupt.
Select 32.768kHz from RTC_X1 as operating clock and set RTC to operate the on-chip
crystal oscillator. The RESET bit in the RTC control register 2 (RCR2) is set.

RTC initial setting
R_RTC_Init()

return (COMMAND_SUCCESS)

Figure 6.17 RTC Initial Setting

6.8.9 RTC Time Setting
Figure 6.18 shows the flowchart of RTC Time Setting.

This function runs when Command 2 is input during the RTC command wait processing of the sample function
Sample_RTC_Main.

Sample_RTC_SetTime

Set the time store in time to the RTC time counter. Note that only the time which has
RTC_ENABLE for time.xxxx.enable can be set.

Setting values to
RTC time counter
R_RTC_SetCnt()

return (COMMAND_SUCCESS)

Obtain time input from terminal Wait for the time input from the terminal and store the input values in the time structure
variable time declared in this function. Upper and lower limit is given to the values for
the time. Wait for re-enter when the values exceed the limit. Store the values in
time.xxxx.value and RTC_ENABLE in time.xxxx.enable when the input values are
within the limit. If "-1" is input, store RTC_DISABLE in time.xxxx.enable.

0 to 6
RTC_DISABLE or RTC_ENABLE

0 to 9999

1 to 12

1 to 31

0 to 23

0 to 59

0 to 59

time.week.value
time.week.enable

time.month.enable
time.month.value

time.day.enable
time.day.value

time.year.enable
time.year.value

time.hour.enable
time.hour.value

time.minute.enable
time.minute.value

time.second.enable
time.second.value

Day of
week

Month

Day

Year

Hour

Minute

Second

RTC_DISABLE or RTC_ENABLE

RTC_DISABLE or RTC_ENABLE

RTC_DISABLE or RTC_ENABLE

RTC_DISABLE or RTC_ENABLE

RTC_DISABLE or RTC_ENABLE

RTC_DISABLE or RTC_ENABLE

Figure 6.18 RTC Time Setting

RZ/A1H Group Example of Using Real Time Clock (Preliminary Version)

R01AN2189EJ0081 Rev.0.81 Page 42 of 62
Sep. 05, 2014

6.8.10 RTC Time Display
Figure 6.19 shows the flowchart of RTC Time Display.

This function runs when Command 3 is input during the RTC command wait processing of the sample function
Sample_RTC_Main.

Sample_RTC_GetTime

Store the time obtained from the RTC time counter in time.Obtaining values from
RTC time counter
R_RTC_GetCnt()

return (COMMAND_SUCCESS)

Preparation to obtain values for
RTC time counter

Declare time structure variable time in this function and store RTC_ENABLE in
time.xxxx.enable to obtain all values for the RTC time counter.

RTC_ENABLE

Display obtained time to terminal Display "Day of week Month Day, Year at Hour : Minute : Second" using the time
stored in time.

time.week.value
time.week.enable

time.month.enable
time.month.value

time.day.enable
time.day.value

time.year.enable
time.year.value

time.hour.enable
time.hour.value

time.minute.enable
time.minute.value

time.second.enable
time.second.value

Day of
week

Month

Dat

Year

Hour

Minute

Second

RTC_ENABLE

RTC_ENABLE

RTC_ENABLE

RTC_ENABLE

RTC_ENABLE

RTC_ENABLE

Figure 6.19 RTC Time Display

RZ/A1H Group Example of Using Real Time Clock (Preliminary Version)

R01AN2189EJ0081 Rev.0.81 Page 43 of 62
Sep. 05, 2014

6.8.11 Starting RTC Time Count Operation
Figure 6.20 shows the flowchart of Starting RTC Time Count Operation.

This function runs when Command 4 is input during the RTC command wait processing of the sample function
Sample_RTC_Main.

Sample_RTC_Start

Starting RTC time
count operation
R_RTC_Open()

return (COMMAND_SUCCESS)

Store the time obtained from the RTC time counter in time.Obtaining values from
RTC time counter
R_RTC_GetCnt()

Preparation to obtain values for
RTC time counter

Declare time structure variable time in this function and store RTC_ENABLE in
time.xxxx.enable to obtain all values for the RTC time counter.

Display obtained time to terminal Display "Day of week Month Day, Year at Hour : Minute : Second" using the time
stored in time.

time.week.value
time.week.enable

time.month.enable
time.month.value

time.day.enable
time.day.value

time.year.enable
time.year.value

time.hour.enable
time.hour.value

time.minute.enable
time.minute.value

time.second.enable
time.second.value

Day of
week

Month

Day

Year

Hour

Minute

Second

RTC_ENABLE

RTC_ENABLE

RTC_ENABLE

RTC_ENABLE

RTC_ENABLE

RTC_ENABLE

RTC_ENABLE

Figure 6.20 Starting RTC Time Count Operation

RZ/A1H Group Example of Using Real Time Clock (Preliminary Version)

R01AN2189EJ0081 Rev.0.81 Page 44 of 62
Sep. 05, 2014

6.8.12 Stopping RTC Time Count Operation
Figure 6.21 shows the flowchart of Stopping RTC Time Count Operation.

This function runs when Command 5 is input during the RTC command wait processing of the sample function
Sample_RTC_Main.

Sample_RTC_Stop

Stopping RTC time
count operation
R_RTC_Close()

return (COMMAND_SUCCESS)

Store the time obtained from the RTC time counter in time.Obtaining values from
RTC time counter
R_RTC_GetCnt()

Preparation to obtain values for
RTC time counter

Declare time structure variable time in this function and store RTC_ENABLE in
time.xxxx.enable to obtain all values for the RTC time counter.

Display obtained time to terminal Display "Day of week Month Day, Year at Hour : Minute : Second" using the time
stored in time.

time.week.value
time.week.enable

time.month.enable
time.month.value

time.day.enable
time.day.value

time.year.enable
time.year.value

time.hour.enable
time.hour.value

time.minute.enable
time.minute.value

time.second.enable
time.second.value

Day of
week

Month

Day

Year

Hour

Minute

Second

RTC_ENABLE

RTC_ENABLE

RTC_ENABLE

RTC_ENABLE

RTC_ENABLE

RTC_ENABLE

RTC_ENABLE

Figure 6.21 Stopping RTC Time Count Operation

RZ/A1H Group Example of Using Real Time Clock (Preliminary Version)

R01AN2189EJ0081 Rev.0.81 Page 45 of 62
Sep. 05, 2014

6.8.13 RTC Alarm Time Setting and Transition to Deep Standby Mode
Figure 6.22 to Figure 6.24 show the flowcharts of RTC Alarm Time Setting and Transition to Deep Standby Mode.

This function runs when Command 6 is input during the RTC command wait processing of the sample function
Sample_RTC_Main.

RTC has been set to generate an alarm interrupt at the time input from the terminal. It sets STB so that deep standby
mode may be cancelled by the alarm interrupt and transits to deep standby mode.

This function is executed on the condition that the RTC time counter is in operation.

Sample_RTC_DeepStandby

Store the time obtained from the RTC time counter in time.Obtaining values from
RTC time counter
R_RTC_GetCnt()

Preparation to obtain values for
RTC time counter

Declare time structure variable time in this function and store RTC_ENABLE in
time.xxxx.enable to obtain all values for the RTC time counter.

Obtain deep standby mode
cancel time (hour and minute)

input from terminal

Wait until the deep standby mode cancel time (hour and minute only) is input
from the terminal and store the input values in the time structure variable
alarm_time declared in this function. Upper and lower limit is given to the
values for the time.
Wait for re-enter when the values exceed the limit. Store the values in
alarm_time.xxxx.value and RTC_ENABLE in talarm_time.xxxx.enable when
the input values are within the limit. If "-1" is input, store RTC_DISABLE in
alarm_time.xxxx.enable.

A

time.week.value
time.week.enable

time.month.enable
time.month.value

time.day.enable
time.day.value

time.year.enable
time.year.value

time.hour.enable
time.hour.value

time.minute.enable
time.minute.value

time.second.enable
time.second.value

Day of
week

Month

Day

Year

Hour

Minute

Second

RTC_ENABLE

RTC_ENABLE

RTC_ENABLE

RTC_ENABLE

RTC_ENABLE

RTC_ENABLE

RTC_ENABLE

0 to 23

0 to 59
alarm_time.hour.enable
alarm_time.hour.value

alarm_time.minute.enable
alarm_time.minute.value

Hour

Minute

RTC_DISABLE or RTC_ENABLE

RTC_DISABLE or RTC_ENABLE

Was deep standby
mode cancel time (hour and

minute) inputted?

Cancel time was NOT input (when "-1" is inputted)

Return value
of Function indicates an

error?

Return value indicates error

return (COMMAND_ERROR)

Return value indicates no error

Cancel time was input (hour and minute)

Figure 6.22 RTC Alarm Time Setting and Transition to Deep Standby Mode (1/3)

RZ/A1H Group Example of Using Real Time Clock (Preliminary Version)

R01AN2189EJ0081 Rev.0.81 Page 46 of 62
Sep. 05, 2014

Store ENB bit of the RTC alarm
regster in variable for setting

Set member of structure alarm_enb for setting information of activating of the alarm
time. In this sample code, activate alarm time of hour, minute, and second by storing
"1" in alarm_enb.hour, alarm_enb.minute, and alarm_enb.second.

A

Setting values to
RTC alarm registers
R_RTC_SetAlarm()

Set the alarm setting time for time and set the setting information of activating of the
alarm time for alarm_enb to the RTC alarm register.

Obtaining values from
RTC alarm registers
R_RTC_GetAlarm()

Perform a dummy read of the RTC alarm registers.

B

Store obtained
deep standby mode cancel time
in variable for alarm time setting

Store deep standby mode cancel time in variable to set alarm time. In this sample
code, store obtained time in time.hour.value and time.minute.value, and store "0" in
time.second.value.

Display time set in alarm register
to terminal

Display "Hour : Minute : Second" as the time for deep standby mode cancellation using
the time stored in time.

Set standby_mode_en bit
Power Control Register of PL310 ← H'0000 0001, standby_mode_en bit = 1
After setting the Power Control Register of PL310, perform a readout (dummy read) of
the register.

Set for operation after deep
standby mode cancellation

DSCTR register ← H'00
 EBUSKEEPE bit = 0 : The state of the external memory control pins is not retained

 when returning from deep standby mode.
 RAMBOOT bit = 0 : Method after returning from deep standby mode

 depends on the boot mode.
After setting the DSCTR register, perform a readout (dummy read) of the register.

Display obtained time to terminal Display "Day of week Month Day, Year at Hour : Minute : Second" as the time to transit
to deep standby mode using the time stored in time.

Disable the FIQ interrupt.Call library function
__disable_fiq()

Disable the IRQ interrupt.Call library function
__disable_irq()

Figure 6.23 RTC Alarm Time Setting and Transition to Deep Standby Mode (2/3)

RZ/A1H Group Example of Using Real Time Clock (Preliminary Version)

R01AN2189EJ0081 Rev.0.81 Page 47 of 62
Sep. 05, 2014

B

Set deep standby mode
cancel source

DSSSR register
 RTCAR bit ← 1 : Deep standby mode is canceled by a realtime clock alarm

 interrupt.
After setting the RTCAR bit, perform a readout (dummy read) of the DSSSR register.

Setting for transition to
deep standby mode

STBCR1 register ← H'C0
 STBY bit = 1
 DEEP bit = 1 : Executing WFI instruction puts RZ/A1H into deep standby mode.
After setting the STBCR1 register, perform a readout (dummy read) of the STBCR1 register.

Clear deep standby mode
cancel source flag

DSFR register
 RTCARF bit ← 0 : Clear the RTCAR flag
After setting the RTCARF bit, perform a readout (dummy read)
of the DSFR register.

Execute the assembler instruction "WFI".

Cancel source
flag (RTCARF) has been

cleared?

Flag cleared
(RTCARF = 0)

Retain state of output pin
in deep standby mode

FRQCR register
 CKOEN bit ← 1 : CKIO pin is fixed at low level during deep standby mode.
After setting the CKOEN bit, perform a readout (dummy read) of the FRQCR register.

STBCR2 register
 HIZ bit ← 0 : The pin state is retained in deep standby mode.
After setting the HIZ bit, perform a readout (dummy read) of the STBCR2 register.

CMNCR register
 HIZMEM bit ← 1 : Set the pins of A25 to A0, BS#, RD/WR#, WEn#/DQMxx/AH#,

 and RD# to drive state in deep standby mode.
 HIZCNT bit ← 1 : Set the pins of CKE, RAS#, and CAS# to drive state in

 deep standby mode.

Setting for interrupt other NMI is
not notified to the CPU

ICCICR register ← H'00000000
After setting the ICCICR register, perform a readout (dummy read) of the register.

Call library function
__wfi()

Figure 6.24 RTC Alarm Time Setting and Transition to Deep Standby Mode (3/3)

RZ/A1H Group Example of Using Real Time Clock (Preliminary Version)

R01AN2189EJ0081 Rev.0.81 Page 48 of 62
Sep. 05, 2014

6.8.14 RTC Initial Setting
Figure 6.25 shows the flowchart of RTC Initial Setting.

R_RTC_Init

return

In the sample code, RTC is initialized by using the user-defined
function Userdef_RTC_Init.

RTC initial setting
Userdef_RTC_Init()

Figure 6.25 RTC Initial Setting

6.8.15 Starting RTC Time Count Operation
Figure 6.26 shows the flowchart of Starting RTC Time Count Operation.

R_RTC_Open

return

Start time count operation
RCR2 register
 START bit ← 1 : Second, minuet, hour, day, day of week, month, and year

 counters run normally.

Figure 6.26 Starting RTC Time Count Operation

6.8.16 Stopping RTC Time Count Operation
Figure 6.27 shows the flowchart of Stopping RTC Time Count Operation.

R_RTC_Close

return

Stop time count operation
RCR2 register
 START bit ← 0 : Second, minute hour, day, day of week, month, and year

 counters halt.

Figure 6.27 Stopping RTC Time Count Operation

RZ/A1H Group Example of Using Real Time Clock (Preliminary Version)

R01AN2189EJ0081 Rev.0.81 Page 49 of 62
Sep. 05, 2014

6.8.17 Setting Values to RTC Time Counter
Figure 6.28 and Figure 6.29 show the flowcharts of Setting Values to RTC Time Counter.

R_RTC_SetCnt

Argument error in function?

return (DEVDRV_ERROR)

Error in specification by time

Time counter is in operation?

Stop time count operation
RCR2 register
 START bit ← 0 : Stop time counter

In operation

Operation stopped

RTC reset
RCR2 register
 RESET bit ← 1 : Initializes divider curcuit, the R64CNT register, alarm
 registers, the RCR3 register, bits CF and AF in RCR1, and bit

 PEF in RCR2.

BCD-coding for time
Perform BCD-coding for the time specified by the argument time to write to the time
counter and store it in the time structure variable bcd_value declared in this function.

Write to Second counter RSECCNT register ← bcd_value.second.value

Setting instruction
for Second counter?

With setting instruction (time->second.enable = RTC_ENABLE)

Write to Minute counter RMINCNT register ← bcd_value.minute.value

Setting instruction
for Minute counter?

With setting instruction (time->minute.enable = RTC_ENABLE)

A

Write to Hour counter RHRCNT register ← bcd_value.hour.value

Setting instruction
for Hour counter?

With setting instruction (time->hour.enable = RTC_ENABLE)

Figure 6.28 Setting Values to RTC Time Counter (1/2)

RZ/A1H Group Example of Using Real Time Clock (Preliminary Version)

R01AN2189EJ0081 Rev.0.81 Page 50 of 62
Sep. 05, 2014

Start time count operation RCR2 register
 START bit ← 1 : The counter is under

 normal operation

return (DEVDRV_SUCCESS)

A

Write to Day of week counter RWKCNT register ← bcd_value.week.value

Setting instruction for
Day of week counter?

With setting instruction (time->week.enable = RTC_ENABLE)

Write to Day counter RDAYCNT register ← bcd_value.day.value

Setting instruction
for Day counter?

With setting instruction (time->day.enable = RTC_ENABLE)

Write to Month counter RMONCNT register ← bcd_value.month.value

Setting instruction
for Month counter?

With setting instruction (time->month.enable = RTC_ENABLE)

Write to Year counter RYRCNT register ← bcd_value.year.value

Setting instruction
for Year counter?

With setting instruction (time->year.enable = RTC_ENABLE)

Time counter is in operation
when this function is called?

Time counter is in operation

Time counter is NOT in operation

Figure 6.29 Setting Values to RTC Time Counter (2/2)

RZ/A1H Group Example of Using Real Time Clock (Preliminary Version)

R01AN2189EJ0081 Rev.0.81 Page 51 of 62
Sep. 05, 2014

6.8.18 Obtaining Values from RTC Time Counter
Figure 6.30 and Figure 6.31 show the flowcharts of Obtaining Values from RTC Time Counter.

R_RTC_GetCnt

Argument error in function?

return (DEVDRV_ERROR)

Error in specification by time

Clear carry flag RCR1 register
 CF bit ← 0 : Clear carry flag
 AF bit ← 1 : Holds previous value
After setting the RCR1 register, perform a readout (dummy read) for the register.

Read from Second counter Read the RSECCNT register
Store it in bcd_value.second.value

Acquisition instruction
for Second counter?

With acquisition instruction (time->second.enable = RTC_ENABLE)

Read from Minute counter Read the RMINCNT register
Store it in bcd_value.minute.value

Acquisition instruction
for Minute counter?

With acquisition instruction (time->minute.enable = RTC_ENABLE)

A

Read from Hour counter Read the RHRCNT register
Store it in bcd_value.hour.value

Acquisition instruction
for Hour counter?

With acquisition instruction (time->hour.enable = RTC_ENABLE)

B

Read from Day of week counter Read the RWKCNT register
Store it in bcd_value.week.value

Acquisition instruction
for Day of week counter?

With acquisition instruction (time->week.enable = RTC_ENABLE)

Initialize variable for return value Set the variable ret which can be used as return value in this
function to "DEVDRV_ERROR"

Figure 6.30 Obtaining Values from RTC Time Counter (1/2)

RZ/A1H Group Example of Using Real Time Clock (Preliminary Version)

R01AN2189EJ0081 Rev.0.81 Page 52 of 62
Sep. 05, 2014

return (ret)

A

Read from Day counter Read the RDAYCNT register
Store it in bcd_value.day.value

Acquisition instruction
for Day counter?

With acquisition instruction (time->day.enable = RTC_ENABLE)

Read from Month counter Read the RMONCNT register
Store it in bcd_value.month.value

Acquisition instruction
for Month counter?

With acquisition instruction (time->month.enable = RTC_ENABLE)

Read from Year counter Read the RYRCNT register
Store it in bcd_value.year.value

Acquisition instruction
for Year counter?

With acquisition instruction (time->year.enable = RTC_ENABLE)

Convert BCD-coded values for
time counter into integer values

Convert the BCD-coded values for time
counter stored in the time structure variable
bcd_value into integer values and store
them in the area specified by the argument
time.

Read carry flag Read the RCR1 register
 CF bit : 0: NO carry

1: With carry

Carry occurred?

B

Carry occurred

Carry NOT occurred

Set value to variable
for return value

Set the variable ret which is used as return
value in this function to
"DEVDRV_SUCCESS"

First time
(Read time again)

Second time
(Time obtained from the time counter
is invalid)

Second verification of carry?

Figure 6.31 Obtaining Values from RTC Time Counter (2/2)

RZ/A1H Group Example of Using Real Time Clock (Preliminary Version)

R01AN2189EJ0081 Rev.0.81 Page 53 of 62
Sep. 05, 2014

6.8.19 Setting Values to RTC Alarm Registers
Figure 6.32 to Figure 6.34show the flowchart of Setting Values to RTC Alarm Registers.

R_RTC_SetAlarm

Argument error in function?

return (DEVDRV_ERROR)

Error in specification by time

BCD-coding for alarm time Perform BCD-coding for the alarm time specified by the
argument time to write to the alarm registers and store it in the
time structure variable bcd_value declared in this function.

Write to Second alarm register RSECAR register ← bcd_value.second.value

Setting instruction for
Second alarm register?

With setting instruction (time->second.enable = RTC_ENABLE)

Write to Minute alarm register RMINAR register ← bcd_value.minute.value

Setting instruction for
Minute alarm register?

With setting instruction (time->minute.enable = RTC_ENABLE)

A

Write to Hour alarm register RHRAR register ← bcd_value.hour.value

Setting instruction for
Hour alarm register?

With setting instruction (time->hour.enable = RTC_ENABLE)

Is the alarm interrupt
disable?

Disable alarm interrupt RCR1 register
 AIE bit ← 0 : Disable the alarm interrupt

Disabled

Enabled

Figure 6.32 Setting Values to RTC Alarm Registers (1/3)

RZ/A1H Group Example of Using Real Time Clock (Preliminary Version)

R01AN2189EJ0081 Rev.0.81 Page 54 of 62
Sep. 05, 2014

A

Write to Day of week alarm register RWKAR register ← bcd_value.week.value

Setting instruction for
Day of week alarm register?

With setting instruction (time->week.enable = RTC_ENABLE)

Write to Day alarm register RDAYAR register ← bcd_value.day.value

Setting instruction for
Day alarm register?

With setting instruction (time->day.enable = RTC_ENABLE)

Write to Month alarm register RMONAR register ← bcd_value.month.value

Setting instruction for
Month alarm register?

With setting instruction (time->month.enable = RTC_ENABLE)

Write to Year alarm register RYRAR register ← bcd_value.year.value

Setting instruction for
Year alarm register?

With setting instruction (time->year.enable = RTC_ENABLE)

B

Figure 6.33 Setting Values to RTC Alarm Registers (2/3)

RZ/A1H Group Example of Using Real Time Clock (Preliminary Version)

R01AN2189EJ0081 Rev.0.81 Page 55 of 62
Sep. 05, 2014

return (DEVDRV_SUCCESS)

B

Write to ENB bit of
Second alarm register

RSECAR register
 ENB bit ← alarm_enb->second

Write to ENB bit of
Minute alarm register

RMINAR register
 ENB bit ← alarm_enb->minute

Write to ENB bit of
Hour alarm register

RHRAR register
 ENB bit ← alarm_enb->hour

Write to ENB bit of
Day of week alarm register

RWKAR register
 ENB bit ← alarm_enb->week

Write to ENB bit of
Day alarm register

RDAYAR register
 ENB bit ← alarm_enb->day

Write to ENB bit of
Month alarm register

RMONAR register
 ENB bit ← alarm_enb->month

Write to ENB bit of
Year alarm register

RCR3 register
 ENB bit ← alarm_enb->year

Clear alarm flag
RCR1 register
 AF bit ← 0
After setting the AF bit, perform a readout (dummy read)
for the RCR1 register.

The alarm interrupt enable
when this function called?

Enable alarm interrupt
RCR1 register
 AIE bit ← 1 : Enable the alarm interrupt

Disables the alarm interrupt

Enables the alarm interrupt

Figure 6.34 Setting Values to RTC Alarm Registers (3/3)

RZ/A1H Group Example of Using Real Time Clock (Preliminary Version)

R01AN2189EJ0081 Rev.0.81 Page 56 of 62
Sep. 05, 2014

6.8.20 Obtaining Values from RTC Alarm Registers
Figure 6.35 to Figure 6.37show the flowcharts of Obtaining Values from RTC Alarm Registers.

R_RTC_GetAlarm

Argument error in function?

return (DEVDRV_ERROR)

Error in specification by time

Read from Second alarm register Read the RSECAR register
Store it in bcd_value.second.value

Acquisition instruction for
Second alarm register?

With acquisition instruction (time->second.enable = RTC_ENABLE)

Read from Minute alarm register Read the RMINAR register
Store it in bcd_value.minute.value

Acquisition instruction for
Minute alarm register?

With acquisition instruction (time->minute.enable = RTC_ENABLE)

A

Read from Hour alarm register Read the RHRAR register
Store it in bcd_value.hour.value

Acquisition instruction for
Hour alarm register?

With acquisition instruction (time->hour.enable = RTC_ENABLE)

Figure 6.35 Obtaining Values from RTC Alarm Registers (1/3)

RZ/A1H Group Example of Using Real Time Clock (Preliminary Version)

R01AN2189EJ0081 Rev.0.81 Page 57 of 62
Sep. 05, 2014

A

Read from Day alarm register Read the RDAYAR register
Store it in bcd_value.day.value

Acquisition instruction for
Day alarm register?

With acquisition instruction (time->day.enable = RTC_ENABLE)

Read from Month alarm register Read the RMONAR register
Store it in bcd_value.month.value

Acquisition instruction for
Month alarm register?

With acquisition instruction (time->month.enable = RTC_ENABLE)

Read from Year alarm register Read the RYRAR register
Store it in bcd_value.year.value

Acquisition instruction for
Year alarm register?

With acquisition instruction (time->year.enable = RTC_ENABLE)

Convert BCD-coded values for
alarm registers into integer values

Convert BCD-coded values for the alarm registers stored in
the time structure variable bcd_value into integer values and
store them in the area specified by the argument time.

Read from Day of week
alarm register

Read the RWKAR register
Store it in bcd_value.week.value

Acquisition instruction for
Day of week alarm register?

With acquisition instruction (time->week.enable = RTC_ENABLE)

B

Figure 6.36 Obtaining Values from RTC Alarm Registers (2/3)

RZ/A1H Group Example of Using Real Time Clock (Preliminary Version)

R01AN2189EJ0081 Rev.0.81 Page 58 of 62
Sep. 05, 2014

return (DEVDRV_SUCCESS)

B

Read ENB bit in
Second alarm register

Read the RSECAR register.
Store the value of the ENB bit in alarm_enb->second.

Read ENB bit in
Minute alarm register

Read the RMINAR register.
Store the value of the ENB bit in alarm_enb->minute.

Read ENB bit in
Hour alarm register

Read the RHRAR register.
Store the value of the ENB bit in alarm_enb->hour.

Read ENB bit in
Day of week alarm register

Read the RWKAR register.
Store the value of the ENB bit in alarm_enb->week.

Read ENB bit in
Day alarm register

Read the RDAYAR register.
Store the value of the ENB bit in alarm_enb->day.

Read ENB bit in
Month alarm register

Read the RMONAR register.
Store the value of the ENB bit in alarm_enb->month.

Read ENB bit in
Year alarm register

Read the RCR3 register.
Store the value of the ENB bit in alarm_enb->year.

Figure 6.37 Obtaining Values from RTC Alarm Registers (3/3)

RZ/A1H Group Example of Using Real Time Clock (Preliminary Version)

R01AN2189EJ0081 Rev.0.81 Page 59 of 62
Sep. 05, 2014

6.8.21 RTC Initial Setting
Figure 6.38 shows the flowchart of RTC Initial Setting.

Userdef_RTC_Init

STBCR6 register
 MSTP60 bit ← 0 : Supply a clock to RTC
After setting the MSTP60 bit, perform a readout (dummy read) for the bit.

Cancel RTC module standby mode

Run on-chip crystal oscillator
and enable operating clock input

RCR2 register
 RTCEN bit ← 1 : Runs the on-chip crystal oscillator / Enables the RTC_X1

Select operating clock of time counter RCR5 register
 RCKSEL bit ← 0 : Select 32.768kHz from RTC_X1

return

Stop time count operation RCR2 register
 START bit ← 0 : Stop time counter

Disable carry interrupt, alarm interrupt,
and periodic interrupt, and

clear interrupt flags

RCR1 register
 CIE bit ← 0 : Disable the carry interrupt generation
 CF bit ← 0 : Clear the carry flag
 AIE bit ← 0 : Disable the alarm interrupt generation
 AF bit ← 0 : Clear the alarm flag
RCR2 register
 PES bit ← 0 : Disable the periodic interrupt generation
 PEF bit ← 0 : Clear the periodic interrupt

RTC Reset RCR2 register
 RESET bit ← 1 : Initializes the divider circuit, the R64CNT register, the alarm register,

 the RCR3 register, bits CF and AF in RCR1, and bit REF in RCR2.

Figure 6.38 RTC Initial Setting

RZ/A1H Group Example of Using Real Time Clock (Preliminary Version)

R01AN2189EJ0081 Rev.0.81 Page 60 of 62
Sep. 05, 2014

6.9 Running Sample Code
The sample code is operated by entering commands in the terminal program running on the host PC connected to the
GENMAI board via the serial interface.

After supplying power to the GENMAI board, the message (1) in Figure 6.39 is output. To run the RTC sample code,
input "RTC" + "Enter" key subsequent to the "SAMPLE>" prompt. When the message (2) in Figure 6.39 is output.
Input "1" to "6" + "Enter" key subsequent to the "RTC SAMPLE>" prompt to run the RTC sample code.

By inputting "HELP" + "Enter" key, the sample code information (3) is displayed. "EXIT" + "Enter" key terminates the
RTC sample code operation.

Ver.X.XX and Ver.Y.YY shows in Figure 6.39 indicates the main processing version of the sample code and the RTC
sample code version respectively.

Display messages

RZ/A1H CPU Board Sample Program. Ver.X.XX
Copyright (C) 2014 Renesas Electronics Corporation. All rights
reserved.

select sample program.

SAMPLE>

(1)

RZ/A1H Realtime Clock(RTC) Sample Program. Ver.Y.YY
Copyright (C) 2014 Renesas Electronics Corporation. All rights
reserved.

select sample program.

RTC SAMPLE>

(2)

RTC SAMPLE> help

 1 : Initialize RTC
 2 : Set time
 3 : Get time
 4 : Start RTC
 5 : Stop RTC
 6 : Transition to Deep Standby Mode
 : -> Canceled by RTC alarm interrupt
 EXIT : Exit RTC sample

RTC SAMPLE>

(3)

Figure 6.39 Terminal Display at RTC Sample Code Startup

RZ/A1H Group Example of Using Real Time Clock (Preliminary Version)

R01AN2189EJ0081 Rev.0.81 Page 61 of 62
Sep. 05, 2014

7. Sample Code
Sample code can be downloaded from the Renesas Electronics website.

8. Reference Documents
User's Manual: Hardware

RZ/A1H Group User's Manual: Hardware
The latest version can be downloaded from the Renesas Electronics website.

R7S72100 RTK772100BC00000BR (GENMAI) User's Manual
The latest version can be downloaded from the Renesas Electronics website.

ARM Architecture Reference Manual ARMv7-A and ARMv7-R edition Issue C
The latest version can be downloaded from the ARM website.

ARM Generic Interrupt Controller Architecture Specification Architecture version 1.0
The latest version can be downloaded from the ARM website.

Technical Update/Technical News

The latest information can be downloaded from the Renesas Electronics website.

User's Manual: Development Tools

ARM software development tools (ARM Compiler toolchain, ARM DS-5 etc.) are available on the ARM website.
The latest version can be downloaded from the ARM website.

RZ/A1H Group Example of Using Real Time Clock (Preliminary Version)

R01AN2189EJ0081 Rev.0.81 Page 62 of 62
Sep. 05, 2014

Website and Support

Renesas Electronics Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/
http://www.renesas.com/contact/

A-1

Revision History

Rev. Date
Description

Page Summary
Rev.0.81 Sep. 05, 2014 - First edition issued

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that
have been issued for the products.

1. Handling of Unused Pins
Handle unused pins in accordance with the directions given under Handling of Unused Pins in the
manual.
 The input pins of CMOS products are generally in the high-impedance state. In operation with an

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.
 The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
 The reserved addresses are provided for the possible future expansion of functions. Do not access

these addresses; the correct operation of LSI is not guaranteed if they are accessed.
4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.
When switching the clock signal during program execution, wait until the target clock signal has
stabilized.
 When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
Before changing from one product to another, i.e. to a product with a different part number, confirm
that the change will not lead to problems.
 The characteristics of an MPU or MCU in the same group but having a different part number may

differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect
the ranges of electrical characteristics, such as characteristic values, operating margins, immunity
to noise, and amount of radiated noise. When changing to a product with a different part number,
implement a system-evaluation test for the given product.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the

use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or

third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on

the product's quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical

implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it

in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses

incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or

regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the

development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and

regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the

contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics

products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022/9044
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Ku, Seoul, 135-920, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2014 Renesas Electronics Corporation. All rights reserved.
Colophon 4.0

	1. Specifications
	2. Operation Confirmation Conditions
	3. Reference Application Notes
	4. Peripheral Functions
	5. Hardware
	5.1 Pins Used

	6. Software
	6.1 Operation Overview
	6.1.1 RTC Initial Setting (Command 1)
	6.1.2 RTC Time Setting (Command 2)
	6.1.3 RTC Time Display (Command 3)
	6.1.4 Starting RTC Time Count Operation (Command 4)
	6.1.5 Stopping RTC Time Count Operation (Command 5)
	6.1.6 RTC Alarm Time Setting and Transition to Deep Standby Mode (Command 6)

	6.2 Peripheral Functions and Memory Allocation in Sample Code
	6.2.1 Setting for Peripheral Functions
	6.2.2 Section Assignment in Sample Code

	6.3 Fixed-Width Integers
	6.4 Constants
	6.5 Structure List
	6.6 Functions
	6.7 Function Specifications
	6.8 Flowcharts
	6.8.1 Initialization of Peripheral Functions ($Sub$$main Function)
	6.8.2 Processing Corresponding to Deep Standby Mode Cancel Source
	6.8.3 Acquisition Processing for Deep Standby Mode Cancel Time
	6.8.4 Main Processing
	6.8.5 Processing for Deep Standby Mode Cancel Time Display
	6.8.6 Sample Code Main Processing
	6.8.7 RTC Sample Code Main Processing
	6.8.8 RTC Initial Setting
	6.8.9 RTC Time Setting
	6.8.10 RTC Time Display
	6.8.11 Starting RTC Time Count Operation
	6.8.12 Stopping RTC Time Count Operation
	6.8.13 RTC Alarm Time Setting and Transition to Deep Standby Mode
	6.8.14 RTC Initial Setting
	6.8.15 Starting RTC Time Count Operation
	6.8.16 Stopping RTC Time Count Operation
	6.8.17 Setting Values to RTC Time Counter
	6.8.18 Obtaining Values from RTC Time Counter
	6.8.19 Setting Values to RTC Alarm Registers
	6.8.20 Obtaining Values from RTC Alarm Registers
	6.8.21 RTC Initial Setting

	6.9 Running Sample Code

	7. Sample Code
	8. Reference Documents

