
PicoTCP User Documentation

Copyright c©2013 TASS Belgium NV. All right reserved.

April 26, 2013

April 26, 2013

Disclaimer This document is distributed under the terms of Creative Commons CC BY-ND 3.0.
You are free to share unmodified copies of this document, as long as the copyright statement is
kept. The full license text is available here

http://creativecommons.org/licenses/by-nd/3.0/

Contents

1 Overview 3

2 Usage and platform integration 5

2.1 Requirements and Configuration . 5

2.2 Supported features . 5

2.3 Enabling modules . 6

2.4 Target requirements . 8

2.5 Network devices integration . 10

3 API Documentation 13

3.1 IPv4 functions . 13

3.2 Socket calls . 22

3.3 DHCP client . 32

3.4 DHCP server . 34

3.5 DNS client . 34

3.6 IGMP . 36

3.7 IP Filter . 37

4 Examples 40

4.1 Ping example . 40

4.2 UDP echo socket example . 41

4.3 TCP echo socket example . 42

4.4 NAT setup example . 44

4.5 DNS example . 45

A Supported RFC’s 47

2

1. Overview

PicoTCP is a complete TCP/IP stack, intended for embedded devices and designed to run
on different architectures and networking hardware. The architecture of the stack allows easy
selection of the features needed for any particular use, taking into account the sizing and the
performance of the platform on which the code is to run. Even if it is designed to allow for
size and performance constraints, the chosen approach is to comply with the latest standards in
the telecommunications research, including the latest proposals, in order to achieve the highest
standards for today’s inter-networking communications. PicoTCP is distributed as a library to
be integrated with application and form a combination for any hardware-specific firmware.

The main characteristics of the library are the following:

• Modularity Each component of the stack is deployed in a separate module, allowing the
selection at compile time of the components needed to be included for any specific plat-
form, depending on the particular use case. We know that saving memory and resources
is often mission-critical for a project, and therefore PicoTCP is fully focussed on saving
up to the last byte of memory.

• Code Quality Every component added to the stack must pass a complete set of validation
tests. Before new code can be introduced it is scanned and proof-checked by three separate
levels of quality enforcement. The process related to the validation of the code is one of
the major tasks of the engineering team. In the top-down approach of the design, a new
module has to pass the review of our senior architects, to have it comply with the general
guidelines. The development of the smaller components is done in a test-driven way,
providing a specific unit test for each function call. Finally, functional non-regression tests
are performed after the feature development is complete, and all the tests are automatically
scheduled to run several times per day to check for functional regressions.

• Adherence to the standards The protocols included in the stack are done following
stepare designed by following meticulously the guidelines provided by the International
Engineering Task Force (IETF) with regards to inter-networking communication. A strong
adherence to the standards guarantees a smooth integration with all the existing TCP/IP
stacks, when communicating with both other embedded devices and with the PC/server
world.

• Features A fully-featured protocol implementation including all those non-mandatory
features means better data-transfer performances, coverage of rare/unique network sce-
narios and topologies and a better integration with all types of networking hardware
devices.

• Transparency The availability of the source code to the Free Software community is an
important added value of PicoTCP. The constant peer reviews and constructive comments
on the design and the development choices that PicoTCP receives from the academic
world and from several hundreds of hobbyists and professionals who read the code, are an
essential element in the quality build-up of the product.

• Simplicity The APIs provided to access the library facilities, both from the applications
as well as from the device drivers, are small and well documented. This concurs with the

3

goal of the library to facilitate the integration with the surroundings and minimize the
time used to combine the stack with existing code. The support required to port to a new
architecture is so small it is reduced to a set of macros defined in a header file specific for
the platform.

4

2. Usage and platform integration

2.1 Requirements and Configuration

PicoTCP is designed to be portable and versatile. Modules can be activated at compile-time, or
excluded from the compilation in order to reduce the build size or save resources at runtime. This
characteristic allows an embedded application to create different types of appliances, starting
from a small forwarding multi-protocol switch, to fully-featured TCP hosts, supporting internal
applets as well as generic POSIX-compliant socket interfaces.

2.2 Supported features

• Device layer Facilities for device driver are offered in a simple structure and API.

• ARP The stack can use the ”Address Resolution Protocol” to retrieve the MAC addresses
of other hosts in the network.

• IPv4 The network layer supports the IPv4 network layer protocol. An API is provided
in order to access all the addressing and routing related functionalities.

• ICMP Also the ”Internet Control Message Protocol” is implemented. This protocol
provides the system to send error messages, do a ping, ...

• NAT The stack supports ”Network Address Translation” to hide addresses from internal
networks to the outside. The API also supports functions for port forwarding.

• multicast sockets The stack supports multicast (one-to-many) sockets and addresses in
order to send and receive data to/from multicast groups.

• IGMP As an integration for the multicast features above, IGMP version 2 is supported
to manage the membership to multicast groups.

• UDP The stack can use the ”User Datagram Protocol” as a transport protocol for
connection-less communication between sockets.

• TCP The stack supports the connection-oriented ”Transport Control Protocol” for reli-
able communications. The TCP implementation is fully featured and the most commonly
used extensions are included.

• Sockets The user applications on different host use the socket API to communicate.
The socket API is based on the latest POSIX (1-2008) specifications, while not being
fully compliant due to the fact that it is designed to run in a single threading unit.
Blocking functionalities are reproduced via callback triggering as described in the socket
API documentation.

• DNS client A small DNS client is provided to resolve an IP address for a given name.
The API supports setting several DNS servers and a small cache.

5

• DHCP client A DHCP client can request an IP lease from a DHCP server to set the IP
adress of the device.

• DHCP server Also a small DHCP server is included to hand out IP addresses to hosts
in the network.

• Linux development and test facilities The stack is developed entirely on a Linux
system. Several tools are easily available and/or included to develop and test user appli-
cations. (tun/tap devices, vde, tcp benchmark test, ...)

2.3 Enabling modules

Each module, option and feature included in the code base must be explicitly enabled by
defining a specific PICO SUPPORT preprocessor variable. If the default Makefile is used to
compile PicoTCP, this can be done using command line options when running make. The syntax
required to compile the protocol in a library (the default Makefile target) is the following:

make [MAKE ARG=VALUE] [...]

2.3.1 Compile-time options

A few compile-time options can be specified using the command line arguments of make to
modify the result of the build. Global options that affect the build are the following:

Argument Possible values Default value Description

DEBUG 0,1 1 When enabled (=1), the re-
sulting library will contain de-
bug symbols. The size of the
library will be much larger
than the production build,
but it will be possible to run
the stack into a debugger to
inspect its behaviour. When
the option is disabled (=0),
the library will be optimized
for size in flash, resulting in a
smaller binary to be used in
production.

PREFIX any valid path ./build The target directory where
the library and all the objects
will be placed after the com-
pilation.

ENDIAN little, big little Force to build against little-
endian or big-endian architec-
ture.

CROSS COMPILE compiler prefix Use a cross compile pre-
fix when calling the binaries
needed to build.

6

TCP 0,1 1 Enables the support for
Transmission Control Proto-
col by allowing the usage of
stream sockets.

UDP 0,1 1 Enables the support for User
Datagram Protocol by allow-
ing the usage of datagram
sockets.

IPV4 0,1 1 Enables the support for basic
IP networking functionalities.
At least one network proto-
col is required for most of the
features to work, as all types
of sockets depend on the net-
working layer.

NAT 0,1 1 Activates the support for net-
work address translation to
IPv4.

ICMP4 0,1 1 Enables the support for con-
trol messages over IPv4, (not
including the ping functional-
ities).

MCAST 0,1 1 If enabled, the support for
multicast sockets will be in-
cluded in the resulting library.

DEVLOOP 0,1 1 If enabled, a loopback device
will be added to the stack, and
can be configured to run local
traffic.

PING 0,1 1 When activated, the ping
API will be available to test
whether the hosts on the net-
work are reachable. Requires
ICMP4 support.

DNS CLIENT 0,1 1 This feature is required to re-
solve host names into IP ad-
dresses and vice-versa.

DHCP CLIENT 0,1 1 When activated, it will be
possible to get the IP address
for network devices automati-
cally, when a DHCP server is
present on the network.

DHCP SERVER 0,1 1 If activated, it will be possible
to run a small DHCP server
to provide addresses for au-
tomatic configuration to the
other hosts in the network.

7

2.3.2 Architecture support

By default, the stack will be compiled to run in a process on a POSIX system, e.g. to be
linked to a Linux application. To change this behavior and produce a library linked to a specific
board-support package (BSP) among those supported, it is sufficient to set the command line
argument variable ARCH to a specific value. The architectures supported by the stack are the
following:

ARCH keyword CPU Reference hardware

stm32 ARM Cortex M4-F ST Microelectronics evalua-
tion board ”STM32f4 Discov-
ery”

stellaris ARM Cortex LM3S-6965 Texas Instrument Evaluation
Kit ”Codesourcery LM3S6965
ETH”

2.4 Target requirements

PicoTCP can run on several different hardware architectures and can be integrated with virtu-
ally any operating system or within a standalone application. It is possible to run PicoTCP on
big-endian as well as little-endian CPU configurations. PicoTCP uses gcc-specific tags that may
not be compatible with other compilers. The amount of resources needed may vary depending
on the modules that are compiled-in. However, adapting to a specific hardware platform or for
a particular use may require some integration effort.

2.4.1 Porting PicoTCP to a target system

Warning: ensure that the Board Support Package provided by your hardware
supplier is distributed under the terms of a license compatible with the PicoTCP

license, described in the Appendix of this document.

PicoTCP relies on a simple set of system-specific calls that must be implemented externally
from the target. Briefly, the interface needed for the stack to run is composed by:

• A mechanism to allocate dynamic memory on the system

• A stable time-source to update its internal counters

For the memory allocation interface, two symbols have to be defined by the system:

void *pico_zalloc(int size) - (memory allocation)

void pico_free(void *ptr) - (memory release)

• pico zalloc Must allocate an object of the given size size in memory and set the content
of the allocated memory to zero. A pointer to the address 0 will indicate an allocation
failure.

• pico free Must release the memory assigned to the object previously allocated at the
address ptr.

8

For the time keeping, the following objects must be defined by the system:

• static inline unsigned long PICO TIME(void)

Returns current time expressed in seconds

• static inline unsigned long PICO TIME MS(void)

Returns current time expressed in milliseconds

• static inline void PICO IDLE(void)

Sleep between two consecutive iterations inside the main protocol loop (e.g. to yield the
CPU to some other functionality on the sytem)

As an alternative to defining the time-keeping procedure in the asynchronous functions PICO TIME()

and PICO TIME MS(), it is possible to use an interrupt handler linked to a fixed interval time
source, increasing the volatile global variable pico tick. If done this way, the two functions
may return the values of (pico tick / 1000) and pico tick, respectively.

Finally, whenever debug information is needed, the system will have to provide a dbg() function
that accepts the same variadic arguments model as a standard printf().

2.4.2 Defining a new architecture support

If all the above requirements are satisfied, PicoTCP expects those functions to be mapped to
existing code in the BSP of the architecture. An easy way to do so is by means of a new
architecture-specific header file under the include/arch subdirectory. Since all the functions
above must already be implemented outside the PicoTCP tree, the library will have to be linked
to the system support library, either during compilation or at at a subsequent stage when the
resulting firmware is being generated. For this reason, a prototype of all the functions used
to implement the functionalities requested by the BSP must be included from the architecture
support header file or incorporated into the file itself.

For instance, if the BSP for an architecture called ”foobar” provides the following functions:

void *custom_allocate_and_zero(int size);

void *custom_free(void *mem);

int print_serial_debug(...);

and an interrupt handler is attached to a time source in order to increment the pico tick vari-
able every millisecond, a possible architecture-specific file (under arch/pico foobar.h) should
look like the following:

/* repeat the prototypes used */

extern void *custom_allocate_and_zero(int size);

extern void *custom_free(void *mem);

extern int print_serial_debug(...);

#define dbg print_serial_debug

#define pico_zalloc(x) custom_allocate_and_zero(x)

#define pico_free(x) custom_free(x)

static inline unsigned long PICO_TIME(void)

9

{

return pico_tick / 1000;

}

static inline unsigned long PICO_TIME_MS(void)

{

return pico_tick;

}

static inline void PICO_IDLE(void)

{

unsigned long tick_now = pico_tick;

while(tick_now == pico_tick);

}

Once the architecture-specific file is created, it is time to add the architecture-specific support
to the pico config.h file, the same way it is done for the existing architectures, using an
additional preprocessor elif block:

#elif defined FOOBAR

#include "arch/pico_foobar.h"

From this point on, it is sufficient to define a preprocessor variable with the keyword chosen
for the architecture, all in capitals (FOOBAR in this example case). The final step is to create a
block in the main PicoTCP makefile that also sets the compiler flags needed to produce objects
that are compatible with and/or optimized for the foobar architecture. Additionally, this block
also contains the definition of the keyword preprocessor macro in order to have the correct
arch-specific header included:

ifeq ($(ARCH),foobar)

CFLAGS+=-mcustom-foobar-code -DFOOBAR

endif

To compile for the foobar architecture, it is now sufficient to run

make ARCH=foobar

2.5 Network devices integration

Every device driver must define its own interface to communicate with the stack. This interface
is accessed via the pico device structure. Every device implements an instance of this structure
by populating the following mandatory fields:

• overhead - A positive integer indicating the amount of bytes required by the device driver
to implement its header. This is used whenever a network layer allocates a new packet
to be sent through this device. If a value is specified here, it will be possible for the

10

device to seek back in the frame scheduled for sending, and subsequently copy any header
information in front of it. Devices dealing with pure stack frames or subparts of it (e.g.
Ethernet) should have overhead set to 0.

• The callback send - must be a pointer to a function internally defined in the device driver
module. This function will be called every time a frame must be injected in the network.
The module can implement a generic send function for all the registered devices, as the
device field will be passed as the first argument. The callback prototype is the following:

int (*send)(struct pico device *self, void *buf, int len);

If the device can immediately inject the frame at address buf of length len, it returns
back to the caller the length of the frame injected. If the device is currently busy, this
function can safely return 0, and the stack will retry the same operation again later.

• The callback poll - must be a pointer to a function internally defined in the device driver
module. This function will be called periodically by the stack, to request a synchronization
on the incoming frames. The prototype is the following:

int (*poll)(struct pico device *self, int loop score);

The poll function must check if the device is ready to receive frames, and for each frame
that is directed to the stack, it will call the library function pico stack recv(). This
function will deliver the received frame to the stack.

The loop score variable represents the maximum amount of frames that the stack can
process during this call, i.e. the maximum amount of calls to pico stack recv() that
can be performed during this iterations. The device driver should loop around the packet
delivery operation and decrease the loop score by one every time a frame is delivered to
the stack. If during the iteration all the score was used, poll will return 0.

NOTE: The poll function must return immediately and must never block on hardware-
specific operations. If the device is interrupt-driven, the integration will have to provide a
mechanism to defer the reception until the next call back to poll. Calling pico stack recv()

is only allowed from inside the poll() callback, thus a two-halves interface interrupt man-
agement design is required, and any memory structure shared between the two halves must
be protected against concurrent access accordingly.

• The callback destroy - a pointer to a function that deallocates the device structure
itself and frees all the structures that were possibly allocated by the driver during device
creation.

A device driver will have a simple two-functions library API exported in a header file using the
same name, in the modules directory. The two functions to export will be:

• A create function, accepting any argument required for the internal device configuration,
that returns a pointer to the newly allocated device. The function must allocate the device
and finally call the library function pico device init() in order to register the device
into the stack. The pico device init() function accepts the following arguments:

– the device allocated just before

– a null-terminated string containing a unique device name for the device to be inserted
in the system (e.g. ”eth0”)

11

– a pointer to an Ethernet address in the form of a previously allocated pico ethdev

structure, containing the hardware address to be used by the stack for datalink
addressing. If no hardware-specific address is provided to pico device init() is
provided (i.e. a NULL pointer is passed), the newly created device will be directly
attached to the network layer and it will have to provide and process valid IP packets
without further encapsulation.

• A destroy routine, accepting the previously allocated device pointer to free all the associ-
ated structures.

The way to expand the device driver interface is by simply creating a new specific structure
that contains it and thus inherits all the capabilities of the standard structure but also holds
the required hardware-specific information. The three callbacks will always receive a pointer
to the beginning of the pico device structure, but the memory area that follows the structure
can be used to keep track of the device hardware-specific context.

Naming conventions must be followed for the two functions exposed to the user interface to cre-
ate and destroy the device. The functions must be named pico X create() and pico X destroy(),
where X is the unique name of the device driver.

As an example of a very simple device driver, directly attached to the networking layer using
the valid naming convention for the send/poll/create/destroy interfaces are contained in
the source file modules/pico dev null.c and its header modules/pico dev null.h.

12

3. API Documentation

The following sections will describe the API for picoTCP.

3.1 IPv4 functions

3.1.1 pico ipv4 to string

Description

Convert the internet host address IP to a string in IPv4 dotted-decimal notation. The result
is stored in the char array that ipbuf points to. Little endian or big endian is not taken into
account. The worst case memory requirement for ipbuf is 16 bytes (12 digits, 3 periods and
’\0’). For example: 0xC0A80101 becomes 192.168.1.1

Function prototype

int pico_ipv4_to_string(char *ipbuf, const uint32_t ip);

Parameters

• ipbuf - Char array to store the result in.
• ip - Internet host address in integer notation.

Return value

On success, this call returns 0 if the conversion was successful. On error, -1 is returned and
pico err is set appropriately.

Errors

• PICO ERR EINVAL - invalid argument

Example

ret = pico_ipv4_to_string(buf, ip);

3.1.2 pico string to ipv4

Description

Convert the IPv4 dotted-decimal notation into binary form. The result is stored in the int

that IP points to. Little endian or big endian is not taken into account. The address supplied
in ipstr can have one of the following forms: a.b.c.d, a.b.c or a.b.

Function prototype

int pico_string_to_ipv4(const char *ipstr, uint32_t *ip);

Parameters

• ipstr - Pointer to the IP string.
• ip - Int pointer to store the result in.

13

Return value

On success, this call returns 0 if the conversion was successful. On error, -1 is returned and
pico err is set appropriately.

Errors

• PICO ERR EINVAL - invalid argument

Example

ret = pico_string_to_ipv4(buf, *ip);

3.1.3 pico ipv4 valid netmask

Description

Check if the provided mask if valid.

Function prototype

int pico_ipv4_valid_netmask(uint32_t mask);

Parameters

• mask - The netmask in integer notation.

Return value

On success, this call returns the netmask in CIDR notation is returned if the netmask is valid.
On error, -1 is returned and pico err is set appropriately.

Errors

• PICO ERR EINVAL - invalid argument

Example

ret = pico_ipv4_valid_netmask(netmask);

3.1.4 pico ipv4 is unicast

Description

Check if the provided address is unicast or multicast.

Function prototype

int pico_ipv4_is_unicast(uint32_t address);

Parameters

• address - Internet host address in integer notation.

Return value

Returns 1 if unicast, 0 if multicast.

14

Example

ret = pico_ipv4_is_unicast(address);

3.1.5 pico ipv4 source find

Description

Find the source IP belonging to the destination IP dst.

Function prototype

struct pico_ip4 *pico_ipv4_source_find(struct pico_ip4 *dst);

Parameters

• address - Pointer to the destination internet host address as struct pico ip4.

Return value

On success, this call returns the source IP as struct pico ip4. If the source can not be found,
NULL is returned and pico err is set appropriately.

Errors

• PICO ERR EINVAL - invalid argument
• PICO ERR EHOSTUNREACH - host is unreachable

Example

src = pico_ipv4_source_find(dst);

3.1.6 pico ipv4 link add

Description

Add a new local device dev inteface, f.e. eth0, with IP address ’address’ and netmask ’netmask’.

Function prototype

int pico_ipv4_link_add(struct pico_device *dev, struct pico_ip4 address,

struct pico_ip4 netmask);

Parameters

• dev - Local device.
• address - Pointer to the internet host address as struct pico ip4.
• netmask - Netmask of the address.

Return value

On success, this call returns 0. On error, -1 is returned and pico err is set appropriately.

Errors

• PICO ERR EINVAL - invalid argument
• PICO ERR ENOMEM - not enough space
• PICO ERR ENETUNREACH - network unreachable
• PICO ERR EHOSTUNREACH - host is unreachable

15

Example

ret = pico_ipv4_link_add(dev, address, netmask);

3.1.7 pico ipv4 link del

Description

Remove the local device dev interface, f.e. eth0, with IP address ’address’.

Function prototype

int pico_ipv4_link_del(struct pico_device *dev, struct pico_ip4 address);

Parameters

• dev - Local device.
• address - Pointer to the internet host address as struct pico ip4.

Return value

On success, this call returns 0. On error, -1 is returned and pico err is set appropriately.

Errors

• PICO ERR EINVAL - invalid argument

Example

ret = pico_ipv4_link_del(dev, address);

3.1.8 pico ipv4 link find

Description

Find the local device with IP address ’address’.

Function prototype

struct pico_device *pico_ipv4_link_find(struct pico_ip4 *address);

Parameters

• address - Pointer to the internet host address as struct pico ip4.

Return value

On success, this call returns the local device. On error, NULL is returned and pico err is set
appropriately.

Errors

• PICO ERR EINVAL - invalid argument
• PICO ERR ENXIO - no such device or address

Example

dev = pico_ipv4_link_find(address);

16

3.1.9 pico ipv4 nat enable

Description

This function enables NAT functionality on the passed IPv4 link. Forwarded packets from
an internal network will have the public IP address from the passed link and a translated
port number for transmission on the external network. Usual operation requires at least one
additional link for the internal network, which is used as a gateway for the internal hosts.

Function prototype

int pico_ipv4_nat_enable(struct pico_ipv4_link *link)

Parameters

• link - Pointer to a link pico ipv4 link.

Return value

On success, this call returns 0. On error, -1 is returned and pico err is set appropriately.

Errors

• PICO ERR EINVAL - invalid argument

Example

ret = pico_ipv4_nat_enable(&external_link);

3.1.10 pico ipv4 nat disable

Description

Disables the NAT functionality.

Function prototype

int pico_ipv4_nat_disable(void);

Return value

Always returns 0.

3.1.11 pico ipv4 port forward

Description

This function adds or deletes a rule in the IP forwarding table. Internally in the stack, a
one-direction NAT entry will be made.

Function prototype

int pico_ipv4_port_forward(struct pico_ip4 pub_addr, uint16_t pub_port,

struct pico_ip4 priv_addr, uint16_t priv_port, uint8_t proto,

uint8_t persistant)

17

Parameters

• pub addr - Public IP address, must be identical to the address of the external link.
• pub port - Public port to be translated.
• priv addr - Private IP address of the host on the internal network.
• priv port - Private port of the host on the internal network.
• proto - Protocol identifier, see supported list below.
• persistant - Option for function call: create PICO IPV4 FORWARD ADD (= 1)

or delete PICO IPV4 FORWARD DEL (= 0).

Protocol list

• PICO PROTO ICMP4

• PICO PROTO TCP

• PICO PROTO UDP

Return value

On success, this call 0 after a succesfull entry of the forward rule. On error, -1 is returned and
pico err is set appropriately.

Errors

• PICO ERR EINVAL - invalid argument
• PICO ERR ENOMEM - not enough space
• PICO ERR EAGAIN - not succesfull, try again

Example

ret = pico_ipv4_port_forward(ext_link_addr, ext_port, host_addr,

host_port, PICO_PROTO_UDP, 1);

3.1.12 pico ipv4 route add

Description

Add a new route to the destination IP address from the local device link, f.e. eth0.

Function prototype

int pico_ipv4_route_add(struct pico_ip4 address, struct pico_ip4 netmask,

struct pico_ip4 gateway, int metric, struct pico_ipv4_link *link);

Parameters

• address - Pointer to the destination internet host address as struct pico ip4.
• netmask - Netmask of the address.
• gateway - Gateway of the address network.
• metric - Metric of the route.
• link - Local device interface. If a valid gateway is specified, this parameter is not manda-

tory, thus NULL can be used.

Return value

On success, this call returns 0. On error, -1 is returned and pico err is set appropriately.

18

Errors

• PICO ERR EINVAL - invalid argument
• PICO ERR ENOMEM - not enough space
• PICO ERR EHOSTUNREACH - host is unreachable
• PICO ERR ENETUNREACH - network unreachable

Example

ret = pico_ipv4_route_add(dst, netmask, gateway, metric, link);

3.1.13 pico ipv4 route del

Description

Remove the route to the destination IP address from the local device link, f.e. etho0.

Function prototype

int pico_ipv4_route_del(struct pico_ip4 address, struct pico_ip4 netmask,

struct pico_ip4 gateway, int metric, struct pico_ipv4_link *link);

Parameters

• address - Pointer to the destination internet host address as struct pico ip4.
• netmask - Netmask of the address.
• gateway - Gateway of the address network.
• metric - Metric of the route.
• link - Local device interface.

Return value

On success, this call returns 0 if the route is found. On error, -1 is returned and pico err is
set appropriately.

Errors

• PICO ERR EINVAL - invalid argument

Example

ret = pico_ipv4_route_del(dst, netmask, gateway, metric, link);

3.1.14 pico ipv4 route get gateway

Description

This function gets the gateway address for the given destination IP address, if set.

Function prototype

struct pico_ip4 pico_ipv4_route_get_gateway(struct pico_ip4 *addr)

Parameters

• address - Pointer to the destination internet host address as struct pico ip4.

19

Return value

On success the gateway address is returned. On error a null address is returned (0.0.0.0)
and pico err is set appropriately.

Errors

• PICO ERR EINVAL - invalid argument
• PICO ERR EHOSTUNREACH - host is unreachable

Example

gateway_addr = pico_ip4 pico_ipv4_route_get_gateway(&dest_addr)

3.1.15 int pico icmp4 ping

Description

This function sends out a number of ping echo requests and checks if the replies are received
correctly. The information from the replies is passed to the callback function after a succesfull
reception. If a timeout expires before a reply is received, the callback is called with the error
condition.

Function prototype

int pico_icmp4_ping(char *dst, int count, int interval, int timeout, int size,

void (*cb)(struct pico_icmp4_stats *));

Parameters

• dst - Pointer to the destination internet host address as text string
• count - Number of pings going to be send
• interval - Time between two transmissions (in ms)
• timeout - Timeout period untill reply received (in ms)
• size - Size of data buffer in bytes
• cb - Callback for ICMP ping

Data structure struct pico icmp4 stats

struct pico_icmp4_stats

{

struct pico_ip4 dst;

unsigned long size;

unsigned long seq;

unsigned long time;

unsigned long ttl;

int err;

};

With err values:

• PICO PING ERR REPLIED (value 0)
• PICO PING ERR TIMEOUT (value 1)
• PICO PING ERR UNREACH (value 2)
• PICO PING ERR PENDING (value 0xFFFF)

20

Return value

On success, this call returns 0. On error, -1 is returned and pico err is set appropriately.

Errors

• PICO ERR EINVAL - invalid argument
• PICO ERR ENOMEM - not enough space

Example

ret = pico_icmp4_ping(dst_addr, 30, 10, 100, 1000, callback);

3.1.16 pico ipv4 frame push

Description

Add an IP header to the pico frame f (with destination IP dst and protocol proto) and queue
the pico frame to the data link layer.

Function prototype

int pico_ipv4_frame_push(struct pico_frame *f, struct pico_ip4 *dst, uint8_t proto);

Parameters

• f - Pointer to the frame that flows through the stack.
• dst - Pointer to the destination internet host address as struct pico ip4.
• proto - IP protocol to use.

Return value

On success the new queue size is returned. On error, -1 is returned and pico err is set appro-
priately.

Errors

• PICO ERR EINVAL - invalid argument
• PICO ERR EHOSTUNREACH - host is unreachable

Example

ret = pico_ipv4_frame_push(frame, dst, protocol);

3.1.17 pico ipv4 rebound

Description

Rebound the frame f back to the source.

Function prototype

int pico_ipv4_rebound(struct pico_frame *f);

Parameters

• f - Pointer to the frame that flows through the stack

21

Return value

On success, this call returns the frame queue size. On error, -1 is returned and pico err is set
appropriately.

Errors

• PICO ERR EINVAL - invalid argument
• PICO ERR EHOSTUNREACH - host is unreachable

Example

ret = pico_ipv4_rebound(frame);

3.1.18 dbg route

Description

Print the complete routing table.

Function prototype

void dbg_route(void);

3.2 Socket calls

With the socket calls, the user can open, close, bind, . . . sockets and do read or write operations.
The provided transport protocols are UDP and TCP.

3.2.1 pico socket open

Description

This function will be called to open a socket from the application level. The created socket will
be unbound.

Function prototype

struct pico_socket *pico_socket_open(uint16_t net, uint16_t proto,

void (*wakeup)(uint16_t ev, struct pico_socket *s));

Parameters

• net - Network protocol, PICO PROTO IPV4 = 0, PICO PROTO IPV6 = 41
• proto - Transport protocol, PICO PROTO TCP = 6, PICO PROTO UDP = 17
• wakeup - Callback function that accepts 2 parameters:

– ev - Events that apply to that specific socket, see further
– s - Pointer to a socket of type struct pico socket

Possible events for sockets

• PICO SOCK EV RD - trigerred when data arrived on the socket
• PICO SOCK EV WR - trigerred when ready to write to the socket (TCP only)
• PICO SOCK EV CONN - trigerred when connection is established (TCP only)

22

• PICO SOCK EV CLOSE - trigerred when FIN packet received (TCP only)
• PICO SOCK EV FIN - trigerred when the socket is closed (TCP only)
• PICO SOCK EV ERR - trigerred when an error occurs

Return value

On success, this call returns a pointer to the declared socket (struct pico socket *). On
error the socket is not created, NULL is returned, and pico err is set appropriately.

Errors

• PICO ERR EINVAL - invalid argument
• PICO ERR EPROTONOSUPPORT - protocol not supported
• PICO ERR ENETUNREACH - network unreachable

Example

sk_tcp = pico_socket_open(PICO_PROTO_IPV4, PICO_PROTO_TCP, &wakeup);

3.2.2 pico socket read

Description

This function will be called to read a string from a socket from the application level. The
function checks whether or not the socket is bound.

Function prototype

int pico_socket_read(struct pico_socket *s, void *buf, int len);

Parameters

• s - Pointer to socket of type struct pico socket

• buf - Void pointer to the start of a string buffer where the string will be stored
• len - Length of the string that was read from the socket (in bytes)

Return value

On success, this call returns an integer representing the number of bytes read. On error, -1 is
returned, and pico err is set appropriately.

Errors

• PICO ERR EINVAL - invalid argument
• PICO ERR EIO - input/output error
• PICO ERR ESHUTDOWN - cannot read after transport endpoint shutdown

Example

bytesRead = pico_socket_read(sk_tcp, buffer, bufferLength);

3.2.3 pico socket write

Description

This function will be called to write a string to a socket from the application level. This
function also checks if the socket is bound, connected and that it isn’t shutdown locally. This
is the preferred function to use when writing strings from application level.

23

Function prototype

int pico_socket_write(struct pico_socket *s, void *buf, int len);

Parameters

• s - Pointer to socket of type struct pico socket

• buf - Void pointer to the start of a string buffer where the string is stored
• len - Length of the string that is stored in the buffer (in bytes)

Return value

On success, this call returns an integer representing the number of bytes written to the socket.
On error, -1 is returned, and pico err is set appropriately.

Errors

• PICO ERR EINVAL - invalid argument
• PICO ERR EIO - input/output error
• PICO ERR ENOTCONN - the socket is not connected
• PICO ERR ESHUTDOWN - cannot send after transport endpoint shutdown
• PICO ERR EADDRNOTAVAIL - address not available
• PICO ERR EHOSTUNREACH - host is unreachable
• PICO ERR ENOMEM - not enough space
• PICO ERR EAGAIN - resource temporarily unavailable

Example

bytesWritten = pico_socket_write(sk_tcp, buffer, bufLength);

3.2.4 pico socket sendto

Description

This function is be called by the pico socket write and pico socket send functions. This
function sends a string from the local address to the remote address, without checking if the
remote is connected or not.

Function prototype

int pico_socket_sendto(struct pico_socket *s, void *buf, int len,

void *dst, uint16_t remote_port);

Parameters

• s - Pointer to socket of type struct pico socket

• buf - Void pointer to the start of a string buffer where the string is stored
• len - Length of the string that is stored in the buffer (in bytes)
• dst - Pointer to the origin of the IPv4/IPv6 frame header
• remote port - Portnumber of the receiving socket

Return value

On success, this call returns an integer representing the number of bytes written to the socket.
On error, -1 is returned, and pico err is set appropriately.

24

Errors

• PICO ERR EADDRNOTAVAIL - address not available
• PICO ERR EINVAL - invalid argument
• PICO ERR EHOSTUNREACH - host is unreachable
• PICO ERR ENOMEM - not enough space
• PICO ERR EAGAIN - resource temporarily unavailable

Example

bytesWritten = pico_socket_sendto(sk_tcp, buf, len, &sk_tcp->remote_addr,

sk_tcp->remote_port);

3.2.5 pico socket recvfrom

Description

This function is called to receive a string of data from the specified socket. This function also
checks if the socket is bound but not if it is connected or shutdown locally.

Function prototype

int pico_socket_recvfrom(struct pico_socket *s, void *buf, int len,

void *orig, uint16_t *remote_port);

Parameters

• s - Pointer to socket of type struct pico socket

• buf - Void pointer to the start of a string buffer where the string will be stored
• len - Length of the string that will be stored in the buffer (in bytes)
• orig - Pointer to the origin of the IPv4/IPv6 frame header
• remote port - Portnumber of the sender socket (pointer)

Return value

On success, this call returns an integer representing the number of bytes read from the socket.
Also remote port will contain the portnumber of the sending socket. On error, -1 is returned,
and pico err is set appropriately.

Errors

• PICO ERR EINVAL - invalid argument
• PICO ERR ESHUTDOWN - cannot read after transport endpoint shutdown
• PICO ERR EADDRNOTAVAIL - address not available

Example

bytesRcvd = pico_socket_recvfrom(sk_tcp, buf, bufLen, &peer, &port);

3.2.6 pico socket send

Description

This function is called to send a string of data to the specified socket. This function also checks
if the socket is connected and then calls the pico socket sendto function.

25

Function prototype

int pico_socket_send(struct pico_socket *s, void *buf, int len);

Parameters

• s - Pointer to socket of type struct pico socket

• buf - Void pointer to the start of a string buffer where the string is stored
• len - Length of the string that is stored in the buffer (in bytes)

Return value

On success, this call returns an integer representing the number of bytes written to the socket.
On error, -1 is returned, and pico err is set appropriately.

Errors

• PICO ERR EINVAL - invalid argument
• PICO ERR ENOTCONN - the socket is not connected
• PICO ERR EADDRNOTAVAIL - address not available
• PICO ERR EHOSTUNREACH - host is unreachable
• PICO ERR ENOMEM - not enough space
• PICO ERR EAGAIN - resource temporarily unavailable

Example

bytesRcvd = pico_socket_send(sk_tcp, buf, bufLen);

3.2.7 pico socket recv

Description

This function directly calls the pico socket recvfrom function.

Function prototype

int pico_socket_recv(struct pico_socket *s, void *buf, int len);

Parameters

• s - Pointer to socket of type struct pico socket

• buf - Void pointer to the start of a string buffer where the string will be stored
• len - Length of the string in the socket buffer (in bytes)

Return value

On success, this call returns an integer representing the number of bytes read from the socket.
On error, -1 is returned, and pico err is set appropriately.

Errors

• PICO ERR EINVAL - invalid argument
• PICO ERR ESHUTDOWN - cannot read after transport endpoint shutdown
• PICO ERR EADDRNOTAVAIL - address not available

Example

bytesRcvd = pico_socket_recv(sk_tcp, buf, bufLen);

26

3.2.8 pico socket bind

Description

This function binds a local IP-address and port to the specified socket.

Function prototype

int pico_socket_bind(struct pico_socket *s, void *local_addr, uint16_t *port);

Parameters

• s - Pointer to socket of type struct pico socket

• local addr - Void pointer to the local IP-address
• port - Local portnumber to bind with the socket

Return value

On success, this call returns 0 after a succesfull bind. On error, -1 is returned, and pico err is
set appropriately.

Errors

• PICO ERR EINVAL - invalid argument
• PICO ERR ENOMEM - not enough space
• PICO ERR ENXIO - no such device or address

Example

errMsg = pico_socket_bind(sk_tcp, &sockaddr4->addr, &sockaddr4->port);

3.2.9 pico socket connect

Description

This function connects a local socket to a remote socket of a server that is listening.

Function prototype

int pico_socket_connect(struct pico_socket *s, void *srv_addr,

uint16_t remote_port);

Parameters

• s - Pointer to socket of type struct pico socket

• srv addr - Void pointer to the remote IP-address to connect to
• remote port - Remote port number on which the socket will be connected to

Return value

On success, this call returns 0 after a succesfull connect. On error, -1 is returned, and pico err

is set appropriately.

Errors

• PICO ERR EPROTONOSUPPORT - protocol not supported
• PICO ERR EINVAL - invalid argument
• PICO ERR EHOSTUNREACH - host is unreachable

27

Example

errMsg = pico_socket_connect(sk_tcp, &sockaddr4->addr, sockaddr4->port);

3.2.10 pico socket listen

Description

A server can use this function when a socket is opened and bound to start listening to it.

Function prototype

int pico_socket_listen(struct pico_socket *s, int backlog);

Parameters

• s - Pointer to socket of type struct pico socket

• backlog - Maximum connection requests

Return value

On success, this call returns 0 after a succesfull listen start. On error, -1 is returned, and
pico err is set appropriately.

Errors

• PICO ERR EINVAL - invalid argument
• PICO ERR EISCONN - socket is connected

Example

errMsg = pico_socket_listen(sk_tcp, 3);

3.2.11 pico socket accept

Description

When a server is listening on a socket and the client is trying to connect. The server on his side
will wakeup and acknowledge the connection by calling the this function.

Function prototype

struct pico_socket *pico_socket_accept(struct pico_socket *s, void *orig,

uint16_t *local_port);

Parameters

• s - Pointer to socket of type struct pico socket

• orig - Pointer to the origin of the IPv4/IPv6 frame header
• local port - Portnumber of the local socket (pointer)

Return value

On success, this call returns the pointer to a struct pico socket that represents the client
thas was just connected. Also orig will contain the requesting IP-address and remote port

will contain the portnumber of the requesting socket. On error, NULL is returned, and pico err

is set appropriately.

28

Errors

• PICO ERR EINVAL - invalid argument
• PICO ERR EAGAIN - resource temporarily unavailable

Example

client = pico_socket_accept(sk_tcp, &peer, &port);

3.2.12 pico socket shutdown

Description

Used by the pico socket close function to shutdown read and write mode for the specified
socket. With this function one can close a socket for reading and/or writing.

Function prototype

int pico_socket_shutdown(struct pico_socket *s, int mode);

Parameters

• s - Pointer to socket of type struct pico socket

• mode - PICO SHUT RDWR, PICO SHUT WR, PICO SHUT RD

Return value

On success, this call returns 0 after a succesfull socket shutdown. On error, -1 is returned, and
pico err is set appropriately.

Errors

• PICO ERR EINVAL - invalid argument

Example

errMsg = pico_socket_shutdown(s, PICO_SHUT_RDWR);

3.2.13 pico socket close

Description

Function used on application level to close a socket. Always closes read and write connection.

Function prototype

int pico_socket_close(struct pico_socket *s);

Parameters

• s - Pointer to socket of type struct pico socket

Return value

On success, this call returns 0 after a succesfull socket shutdown. On error, -1 is returned, and
pico err is set appropriately.

29

Errors

• PICO ERR EINVAL - invalid argument

Example

errMsg = pico_socket_close(sk_tcp);

3.2.14 pico socket setoption

Description

Function used to set socket options.

Function prototype

int pico_socket_setoption(struct pico_socket *s, int option, void *value);

Parameters

• s - Pointer to socket of type struct pico socket

• option - Option to be set (see further for all options)
• value - Value of option (void pointer)

Available socket options

• PICO TCP NODELAY - Disables the Nagle algorithm (value not used)
• PICO IP MULTICAST IF - (Not supported) Set link multicast datagrams are sent from,

default is first added link
• PICO IP MULTICAST TTL - Set TTL (0-255) of multicast datagrams, default is 1
• PICO IP MULTICAST LOOP - Specifies if a copy of an outgoing multicast datagram is looped

back as long as it is a member of the multicast group, default is enabled
• PICO IP ADD MEMBERSHIP - Join the multicast group specified
• PICO IP DROP MEMBERSHIP - Leave the multicast group specified

Return value

On success, this call returns 0 after a succesfull setting of socket option. On error, -1 is returned,
and pico err is set appropriately.

Errors

• PICO ERR EINVAL - invalid argument

Example

ret = pico_socket_setoption(sk_tcp, PICO_TCP_NODELAY, NULL);

uint8_t ttl = 2;

ret = pico_socket_setoption(sk_udp, PICO_IP_MULTICAST_TTL, &ttl);

uint8_t loop = 0;

ret = pico_socket_setoption(sk_udp, PICO_IP_MULTICAST_LOOP, &loop);

struct pico_ip4 inaddr_dst, inaddr_link;

30

struct pico_ip_mreq mreq = {{0},{0}};

pico_string_to_ipv4("224.7.7.7", &inaddr_dst.addr);

pico_string_to_ipv4("192.168.0.2", &inaddr_link.addr);

mreq.mcast_group_addr = inaddr_dst;

mreq.mcast_link_addr = inaddr_link;

ret = pico_socket_setoption(sk_udp, PICO_IP_ADD_MEMBERSHIP, &mreq);

ret = pico_socket_setoption(sk_udp, PICO_IP_DROP_MEMBERSHIP, &mreq)

3.2.15 pico socket getoption

Description

Function used to get socket options.

Function prototype

int pico_socket_getoption(struct pico_socket *s, int option, void *value);

Parameters

• s - Pointer to socket of type struct pico socket

• option - Option to be set (see further for all options)
• value - Value of option (void pointer)

Available socket options

• PICO TCP NODELAY - Nagle algorithm, value casted to (int *) (0 = disabled, 1 = enabled)
• PICO IP MULTICAST IF - (Not supported) Link multicast datagrams are sent from
• PICO IP MULTICAST TTL - TTL (0-255) of multicast datagrams
• PICO IP MULTICAST LOOP - Loop back a copy of an outgoing multicast datagram, as long

as it is a member of the multicast group, or not.

Return value

On success, this call returns 0 after a succesfull getting of socket option. The value of the option
is written to value. On error, -1 is returned, and pico err is set appropriately.

Errors

• PICO ERR EINVAL - invalid argument

Example

ret = pico_socket_getoption(sk_tcp, PICO_TCP_NODELAY, &stat);

uint8_t ttl = 0;

ret = pico_socket_getoption(sk_udp, PICO_IP_MULTICAST_TTL, &ttl);

uint8_t loop = 0;

ret = pico_socket_getoption(sk_udp, PICO_IP_MULTICAST_LOOP, &loop);

31

3.3 DHCP client

A DHCP client for obtaining a dynamic IP address. When initiating a negotiation the user
is passed an identifier, which must then be passed to all future calls to pico dhcp functions.
(Currently DHCP can only be run on one interface. Future versions may support DHCP on
multiple interfaces, and the functions described here are already prepared for that.)

3.3.1 pico dhcp initiate negotiation

Description

Initiate a DHCP negotiation. The user passes a callback-function, which will be called when
DHCP has succeeded or failed.

Function prototype

void * pico_dhcp_initiate_negotiation(struct pico_device* device,

void (*callback)(void* cli, int code));

Parameters

• device - the device on which a negotiation should be started
• callback - the function which will be called in case of success or failure. Note that this

function can be called multiple times. An example would be if initially DHCP succeeded,
but then the DHCP server was removed from the network long enough for the lease to
expire, and later added again to the network. The callback would be called 3 times in
this example: first with code PICO DHCP SUCCESS, then with PICO DHCP RESET, and finally
again with PICO DHCP SUCCESS. Also note that this callback may already be called before
pico dhcp initiate negotiation has returned, e.g. in case of failure to open a socket.
It accepts two parameters :

– cli - the identifier of the negotiation
– code - the reason the callback occurred, see further

Possible DHCP codes

• PICO DHCP SUCCESS - DHCP succeeded, the user can start using the assigned address,
which can be obtained by calling pico dhcp get address.
• PICO DHCP ERROR - an error occurred. DHCP is unable to recover from this error. pico err

is set appropriately.
• PICO DHCP RESET - DHCP was unable to renew its lease, and the lease expired. The user

must immediately stop using the previously assigned IP, and wait for DHCP to obtain a
new lease. DHCP will automatically start negotiations again.

Return value

A void* identifying the negotiation. This must be passed to all calls related to DHCP. This
is to create the possibility of initiating DHCP negotiations on multiple devices (currently not
supported).

Errors

All errors are reported through the callback-function described above.

• PICO ERR EADDRNOTAVAIL - address not available

32

• PICO ERR EINVAL - invalid argument
• PICO ERR EHOSTUNREACH - host is unreachable
• PICO ERR ENOMEM - not enough space
• PICO ERR EAGAIN - resource temporarily unavailable
• PICO ERR EPROTONOSUPPORT - protocol not supported
• PICO ERR ENETUNREACH - network unreachable
• PICO ERR EINVAL - invalid argument
• PICO ERR ENXIO - no such device or address
• PICO ERR EOPNOTSUPP - operation not supported on socket

Example

void* identifier = pico_dhcp_initiate_negotiation(dev, &callback_dhcpclient);

3.3.2 pico dhcp get address

Description

Get the address that was assigned through DHCP. This function should only be called after a
callback occurred with code PICO DHCP SUCCESS.

Function prototype

struct pico ip4 pico dhcp get address(void* cli);

Parameters

• cli - the negotiation identifier that was returned from pico dhcp initiate negotiations.

Return value

struct pico ip4 - the address that was assigned

Example

struct pico_ip4 address = pico_dhcp_get_address(identifier);

3.3.3 pico dhcp get gateway

Description

Get the address of the gateway that was assigned through DHCP. This function should only be
called after a callback occurred with code PICO DHCP SUCCESS.

Function prototype

struct pico ip4 pico dhcp get gateway(void* cli);

Parameters

• cli : the negotiation identifier that was returned from pico dhcp initiate negotiations.

Return value

• struct pico ip4 - the address of the gateway that should be used.

Example

struct pico_ip4 gateway = pico_dhcp_get_gateway(identifier);

33

3.4 DHCP server

3.4.1 pico dhcp server initiate

Description

This function starts a simple DHCP server.

Function prototype

int pico dhcp server initiate(struct pico dhcpd settings* settings);

Parameters

• settings - a pointer to a struct pico dhcpd settings, in which the following members
matter to the user :

– struct pico device *dev - a pointer to the device on which the dhcp server must
operate

– struct pico ip4 my ip - the IP assigned to the server
– struct pico ip4 netmask - the netmask the server must advertise
– uint32 t pool start - the first IP address that may be assigned
– uint32 t pool end - the last IP address that may be assigned
– uint32 t lease time - the advertised lease time in seconds

Return value

On successful startup of the dhcp server, 0 is returned. On error, -1 is returned, and pico err

is set appropriately.

Errors

• PICO ERR EPROTONOSUPPORT - protocol not supported
• PICO ERR ENETUNREACH - network unreachable
• PICO ERR EINVAL - invalid argument
• PICO ERR ENXIO - no such device or address

Example

struct pico_dhcpd_settings s = {0};

s.dev = ethernet;

s.my_ip.addr = long_be(0x0a280003);

s.netmask.addr = long_be(0xffffff00);

s.pool_start = (s.my_ip.addr & long_be(0xffffff00)) | long_be(0x00000064);

s.pool_end = (s.my_ip.addr & long_be(0xffffff00)) | long_be(0x000000ff);

pico_dhcp_server_initiate(&s);

3.5 DNS client

3.5.1 pico dns client nameserver

Description

Function to add or remove nameservers.

34

Function prototype

int pico_dns_client_nameserver(struct pico_ip4 *ns, uint8_t flag);

Parameters

• ns - Pointer to the address of the name server.
• flag - Flag to indicate addition or removal (see further).

Flags

• PICO DNS NS ADD - to add a nameserver
• PICO DNS NS DEL - to remove a nameserver

Return value

On success, this call returns 0 if the nameserver operation has succeeded. On error, -1 is
returned and pico err is set appropriately.

Errors

• PICO ERR EINVAL - invalid argument
• PICO ERR ENOMEM - not enough space
• PICO ERR EAGAIN - resource temporarily unavailable

Example

ret = pico_dns_client_nameserver(&addr_ns, PICO_DNS_NS_ADD);

ret = pico_dns_client_nameserver(&addr_ns, PICO_DNS_NS_DEL);

3.5.2 pico dns client getaddr

Description

Function to translate an url text string to an internet host address IP.

Function prototype

int pico_dns_client_getaddr(const char *url, void (*callback)(char *ip));

Parameters

• url - Pointer to text string containing url text string (e.g. www.google.com)
• calback - Callback function, receiving the internet host address IP. Note: the returned

string has to be freed by the user.

Return value

On success, this call returns 0 if the request is sent. On error, -1 is returned and pico err is
set appropriately.

Errors

• PICO ERR EINVAL - invalid argument
• PICO ERR ENOMEM - not enough space
• PICO ERR EAGAIN - resource temporarily unavailable

35

Example

int ret = pico_dns_client_getaddr("www.google.com", cb_getaddr);

3.5.3 pico dns client getname

Description

Function to translate an internet host address IP to an url text string.

Function prototype

int pico_dns_client_getname(const char *ip, void (*callback)(char *url));

Parameters

• ip - Pointer to text string containing an internet host address IP (e.g. 8.8.4.4)
• callback - Callback function, receiving the url text string. Note: the returned string has

to be freed by the user.

Return value

On success, this call returns 0 if the request is sent. On error, -1 is returned and pico err is
set appropriately.

Errors

• PICO ERR EINVAL - invalid argument
• PICO ERR ENOMEM - not enough space
• PICO ERR EAGAIN - resource temporarily unavailable

Example

int ret = pico_dns_client_getname("8.8.4.4", cb_getname);

3.6 IGMP

This module allows the user to join and leave IGMP multicast groups. Currently only IGMP2
is supported.

3.6.1 pico igmp2 join group

Description

Join an IGMP2 multicast group.

Function prototype

int pico_igmp2_join_group(struct pico_ip4 *group_address,

struct pico_ipv4_link *link);

Parameters

• group address - the address of the multicast group you want to join.
• link - the link on which that multicast group should be joined.

36

Errors

In case of failure, -1 is returned, and the value of pico err is set as follows:

• PICO ERR EINVAL - Invalid argument provided
• PICO ERR EFAULT - Internal error
• PICO ERR EEXIST - Attempted to join a group that was already joined before

3.6.2 pico igmp2 leave group

Description

leave an IGMP2 multicast group.

Function prototype

int pico igmp2 leave group(struct pico ip4 *group address, struct pico ipv4 link *link);

Parameters

• group address - the address of the multicast group you want to leave.
• link - the link on which that multicast group should be left.

Return value

In case of success, 0. In case of failure, -1 is returned and pico err is set accordingly.

Errors

In case of success, zero is returned. In case of failure, -1 is returned, and the value of pico err
is set as follows:

• PICO ERR EINVAL - Invalid argument provided
• PICO ERR EFAULT - Internal error
• PICO ERR ENOENT - Attempted to leave a group which has never been joined

3.7 IP Filter

This module allows the user to add and remove filters. The user can filter packets based
on interface, protocol, outgoing address, outgoing netmask, incomming address, incomming
netmask, outgoing port, incomming port, priority and type of service. There are four types
of filters: ACCEPT, PRIORITY, REJECT, DROP. When creating a PRIORITY filter, it is
necessary to give a priority value in a range between ’-10’ and ’10’, ’0’ as default priority.

3.7.1 pico ipv4 filter add

Description

Function to add a filter.

37

Function prototype

int pico_ipv4_filter_add(struct pico_device *dev, uint8_t proto,

struct pico_ip4 out_addr, struct pico_ip4 out_addr_netmask,

struct pico_ip4 in_addr, struct pico_ip4 in_addr_netmask, uint16_t out_port,

uint16_t in_port, int8_t priority, uint8_t tos, enum filter_action action);

Parameters

• dev - interface to be filtered
• proto - protocol to be filtered
• out addr - outgoing address to be filtered
• out addr netmask - outgoing address-netmask to be filtered
• in addr - incomming address to be filtered
• in addr netmask - incomming address-netmask to be filtered
• out port - outgoing port to be filtered
• in port - incomming port to be filtered
• priority - priority to be filtered
• tos - type of service to be filtered
• action - type of action for the filter: ACCEPT, PRIORITY, REJECT and DROP. AC-

CEPT, filters all packets selected by the filter. PRIORITY is not yet implemented. RE-
JECT drops all packets and send an ICMP message ’Packet Filtered’ (Communication
Administratively Prohibited). DROP will discard the packet silently.

Return value

On success, this call returns the filter id from the generated filter. This id must be used when
deleting the filter. On error, -1 is returned and pico err is set appropriately.

Example

/* block all incoming traffic on port 5555 */

filter_id = pico_ipv4_filter_add(NULL, 6, NULL, NULL, NULL, NULL, 0, 5555,

0, 0, FILTER_REJECT);

Errors

• PICO ERR EINVAL - invalid argument

3.7.2 pico ipv4 filter del

Description

Function to delete a filter.

Function prototype

int pico_ipv4_filter_del(int filter_id)

Parameters

• filter id - the id of the filter you want to delete.

Return value

On success, this call returns 0. On error, -1 is returned and pico err is set appropriately.

38

Errors

• PICO ERR EINVAL - invalid argument
• PICO ERR EPERM - operation not permitted

Example

ret = pico_ipv4_filter_del(filter_id);

39

4. Examples

The following sections will give code examples of PicoTCP. It is assumed that all examples
include the appropriate header files and a main routine that calls the app x functions to initialize
the example.

The most common header files are:

#include "pico_stack.h"

#include "pico_config.h"

#include "pico_dev_vde.h"

#include "pico_ipv4.h"

#include "pico_socket.h"

#include "pico_dev_tun.h"

#include "pico_nat.h"

#include "pico_icmp4.h"

#include "pico_dns_client.h"

#include "pico_dev_loop.h"

#include "pico_dhcp_client.h"

#include "pico_dhcp_server.h"

#include "pico_ipfilter.h"

4.1 Ping example

#define NUM_PING 10

/* callback function for receiving ping reply */

void cb_ping(struct pico_icmp4_stats *s)

{

char host[30];

int time_sec = 0;

int time_msec = 0;

/* convert ip address from icmp4_stats structure to string */

pico_ipv4_to_string(host, s->dst.addr);

/* get time information from icmp4_stats structure */

time_sec = s->time / 1000;

time_msec = s->time % 1000;

if (s->err == PICO_PING_ERR_REPLIED) {

/* print info if no error reported in icmp4_stats structure */

dbg("%lu bytes from %s: icmp_req=%lu ttl=%lu time=%lu ms\n", \

s->size, host, s->seq, s->ttl, s->time);

if (s->seq >= NUM_PING)

exit(0);

40

} else {

/* else, print error info */

dbg("PING %lu to %s: Error %d\n", s->seq, host, s->err);

exit(1);

}

}

/* initialize the ping command */

void app_ping(char *dest)

{

pico_icmp4_ping(dest, NUM_PING, 1000, 5000, 48, cb_ping);

}

4.2 UDP echo socket example

struct pico_ip4 inaddr_any = { };

/* callback for UDP echo socket events */

void cb_udpecho(uint16_t ev, struct pico_socket *s)

{

char recvbuf[1400];

int read = 0;

uint32_t peer;

uint16_t port;

/* process read event, data available */

if (ev == PICO_SOCK_EV_RD) {

/* while data available in socket buffer, echo data to peer */

do {

read = pico_socket_recvfrom(s, recvbuf, 1400, &peer, &port);

if (read > 0)

pico_socket_sendto(s, recvbuf, r, &peer, port);

} while(read > 0);

}

/* process error event, socket error occured */

if (ev == PICO_SOCK_EV_ERR) {

printf("Socket Error received. Bailing out.\n");

exit(1);

}

printf("Received data from %08X:%u\n", peer, port);

}

/* initialize the UDP echo socket */

void app_udpecho(uint16_t source_port)

{

struct pico_socket *s;

41

uint16_t port_be = 0;

/* set the source port for the socket */

if (source_port == 0)

port_be = short_be(5555);

else

port_be = short_be(source_port);

/* open a UDP socket with the appropriate callback */

s = pico_socket_open(PICO_PROTO_IPV4, PICO_PROTO_UDP, &cb_udpecho);

if (!s)

exit(1);

/* bind the socket to port_be */

if (pico_socket_bind(s, &inaddr_any, &port_be) != 0)

exit(1);

}

4.3 TCP echo socket example

#define BSIZE 1460

/* callback for TCP echo socket events */

void cb_tcpecho(uint16_t ev, struct pico_socket *s)

{

char recvbuf[BSIZE];

int read = 0, written = 0;

int pos = 0, len = 0;

struct pico_socket *sock_a;

struct pico_ip4 orig;

uint16_t port;

char peer[30];

/* process read event, data available */

if (ev & PICO_SOCK_EV_RD) {

do {

read = pico_socket_read(s, recvbuf + len, BSIZE - len);

if (read > 0)

len += r;

} while(read > 0);

}

/* process connect event, syn received */

if (ev & PICO_SOCK_EV_CONN) {

/* accept new connection request */

sock_a = pico_socket_accept(s, &orig, &port);

/* convert peer IP to string */

42

pico_ipv4_to_string(peer, orig.addr);

/* print info */

printf("Connection established with %s:%d.\n", peer, short_be(port));

}

/* process fin event, receiving socket closed */

if (ev & PICO_SOCK_EV_FIN) {

printf("Socket closed. Exit normally. \n");

}

/* process error event, socket error occured */

if (ev & PICO_SOCK_EV_ERR) {

printf("Socket Error received: %s. Bailing out.\n", strerror(pico_err));

exit(1);

}

/* process close event, receiving socket received close from peer */

if (ev & PICO_SOCK_EV_CLOSE) {

printf("Socket received close from peer.\n");

/* shutdown write side of socket */

pico_socket_shutdown(s, PICO_SHUT_WR);

}

/* if data read, echo back */

if (len > pos) {

do {

/* echo data back to peer */

written = pico_socket_write(s, recvbuf + pos, len - pos);

if (written > 0) {

pos += written;

if (pos >= len) {

pos = 0;

len = 0;

written = 0;

}

} else {

printf("SOCKET> ECHO write failed, dropped %d bytes\n",(len-pos));

}

} while(written > 0);

}

}

/* initialize the TCP echo socket */

void app_tcpecho(uint16_t source_port)

{

struct pico_socket *s;

uint16_t port_be = 0;

int backlog = 40; /* max number of accepting connections */

43

int ret;

/* set the source port for the socket */

if (source_port == 0)

port_be = short_be(5555);

else

port_be = short_be(source_port);

/* open a TCP socket with the appropriate callback */

s = pico_socket_open(PICO_PROTO_IPV4, PICO_PROTO_TCP, &cb_tcpecho);

if (!s)

exit(1);

/* bind the socket to port_be */

ret = pico_socket_bind(s, &inaddr_any, &port_be);

if (ret != 0)

exit(1);

/* start listening on socket */

ret = pico_socket_listen(s, backlog);

if (ret != 0)

exit(1);

}

4.4 NAT setup example

/* initialize NAT functionality and add port forward rule */

void app_nat(char *dest)

{

char *dest = NULL;

struct pico_ip4 ipdst, pub_addr, priv_addr;

struct pico_ipv4_link *link;

/* convert IP address of link where to enable NAT */

pico_string_to_ipv4(dest, &ipdst.addr);

/* get link pointer */

link = pico_ipv4_link_get(&ipdst);

if (!link) {

printf("destination not found\n");

exit(1);

}

/* enable NAT on link */

pico_ipv4_nat_enable(link);

/* add port forward rule */

pico_string_to_ipv4("10.50.0.10", &pub_addr.addr);

44

pico_string_to_ipv4("10.40.0.08", &priv_addr.addr);

pico_ipv4_port_forward(pub_addr, short_be(5555), priv_addr, short_be(6667),

PICO_PROTO_UDP, PICO_IPV4_FORWARD_ADD);

printf("nat started\n");

}

4.5 DNS example

/* callback function for receiving URL translation */

void cb_getaddr(char *ip)

{

/* NULL indicates an error condition */

if (!ip) {

printf("DNS error occured: %s\n", strerror(pico_err));

return;

}

printf("DNS translation to ip %s\n", ip);

/* important: free the received pointer! */

pico_free(ip);

}

/* callback function for receiving IP translation */

void cb_getname(char *url)

{

/* NULL indicates an error condition */

if (!url) {

printf("DNS error occured: %s\n", strerror(pico_err));

return;

}

printf("DNS translation to url %s\n", url);

/* important: free the received pointer! */

pico_free(url);

}

/* initialize the dns */

void app_dns(char *url, char *ip)

{

struct pico_ip4 nameserver;

/* optional: add custom dns nameserver */

pico_string_to_ipv4("8.8.4.4", &nameserver.addr);

pico_dns_client_nameserver(&nameserver, PICO_DNS_NS_ADD);

/* request translation of URL f.e. www.google.com */

pico_dns_client_getaddr(url, &cb_getaddr);

45

/* request translation of IP f.e. 8.8.8.8 */

pico_dns_client_getname(ip, &cb_getname);

}

46

A. Supported RFC’s

RFC Description

RFC 793 This RFC describes the TCP standard. The following requirements are facil-
itated: (1) Basic Data Transfer, (2) Reliability, (3) Flow Control, (4) Multi-
plexing, (5) Connection Management.

RFC 813 This RFC describes the implementation of (1) the acknowledgement mecha-
nism and (2) window mechanism (flow control).

RFC 817 This RFC will discuss some of the commonly encountered reasons why protocol
implementations seem to run slowly. Two aspects to achieve good protocol
performance are described: (1) how the implementation of the protocol is
integrated in an OS (scheduling, resources, interrupts, ...) and (2) how the
protocol package itself is organized internally (packet size, unneeded packets,
...)

RFC 872 This RFC discusses the position that the usage of TCP and IP on LAN’s is
inappropriate. The conclusion is that the sometimes-expressed fear that using
TCP on a local net is a bad idea is unfounded.

RFC 879 This RFC discusses the TCP Maximum Segment Size Option. The TCP
maximum segment size (MSS) can be calculated depending on the network
MTU, or it can be communicated by a TCP option.

RFC 896 This RFC discusses some aspects of congestion control in IP/TCP Internet-
works. The Nagle algorithm suggests that the sending of new data should
inhibited when there remain unacknowledged packets. When packets are ac-
knowledged, new packets in the buffer can be transmitted (until the window
size). This scheme reduces the amount of small packets transmitted.

RFC 964 This note points out three errors with the specification of the Military Stan-
dard Transmission Control Protocol (MIL-STD-1778). The following problems
are discussed: (1) data accompanying a SYN can not be accepted because of
errors in the acceptance policy, (2) no retransmission timer is set for a SYN
packet, and therefore the SYN will not be retransmitted if it is lost, (3) when
the connection has been established, neither entity takes the proper steps to
accept incoming data.

RFC 1071 This RFC gives an overview of methods for efficiently computing the Internet
checksum that is used by the standard Internet protocols (1) IP, (2) UDP, and
TCP.

RFC 1106 This RFC discusses two extensions to the TCP protocol to provide a more
efficient operation over a network with a high bandwidth*delay product: (1)
NAK Option, (2) Big Windows.

RFC 1122 Requirements for Internet Hosts – Communication Layers

RFC 1180 This RFC is a tutorial on the TCP/IP protocol suite, focusing particularly on
the steps in forwarding an IP datagram from source host to destination host
through a router.

47

RFC 1263 This RFC comments on recent proposals to extend TCP (see RFC 1072 and
RFC 1185). The costs and benefits of three approaches to making these
changes are compared: (1) the creation of new protocols, (2) backward com-
patible protocol extensions and (3) protocol evolution.

RFC 1323 This memo presents a set of TCP extensions to improve performance over large
bandwidth*delay product paths and to provide reliable operation over very
high-speed paths. It defines new TCP options for scaled windows and times-
tamps, which are designed to provide compatible interworking with TCP’s that
do not implement the extensions. The timestamps are used for two distinct
mechanisms: RTTM (Round Trip Time Measurement) and PAWS (Protect
Against Wrapped Sequences). Selective acknowledgments are not included in
this memo. This memo combines and supersedes RFC 1072 and RFC 1185,
adding additional clarification and more detailed specification.

RFC 1337 This note describes some theoretically-possible failure modes for TCP connec-
tions and discusses possible remedies. Especially the TIME-WAIT Assassina-
tion” (TWA) problem and solution are discussed.

RFC 2018 TCP Selective Acknowledgment Options

RFC 2131 Dynamic Host Configuration Protocol

RFC 2132 DHCP Options and BOOTP Vendor Extensions

RFC 2236 IGMPv2: Host functionality implemented, Router functionality NOT imple-
mented

RFC 2581 This RFC defines TCP’s four intertwined congestion control algorithms: (1)
slow start, (2) congestion avoidance, (3) fast retransmit and (4) fast recovery.

RFC 2663 This RFC describes NAT. The implemented NAT method is NAPT.

48

	Overview
	Usage and platform integration
	Requirements and Configuration
	Supported features
	Enabling modules
	Target requirements
	Network devices integration

	API Documentation
	IPv4 functions
	Socket calls
	DHCP client
	DHCP server
	DNS client
	IGMP
	IP Filter

	Examples
	Ping example
	UDP echo socket example
	TCP echo socket example
	NAT setup example
	DNS example

	Supported RFC's

