DACFunctionGenerator class is a Function Generator for DAC output

Dependents:   MAX5719BOB_FunctionGen

Files at this revision

API Documentation at this revision

Comitter:
whismanoid
Date:
Sun Jan 03 06:15:34 2021 +0000
Commit message:
Initial commit class DACFunctionGenerator

Changed in this revision

FunctionGenerator.cpp Show annotated file Show diff for this revision Revisions of this file
FunctionGenerator.h Show annotated file Show diff for this revision Revisions of this file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/FunctionGenerator.cpp	Sun Jan 03 06:15:34 2021 +0000
@@ -0,0 +1,3 @@
+#include "FunctionGenerator.h"
+
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/FunctionGenerator.h	Sun Jan 03 06:15:34 2021 +0000
@@ -0,0 +1,457 @@
+// /*******************************************************************************
+// * Copyright (C) 2021 Maxim Integrated Products, Inc., All Rights Reserved.
+// *
+// * Permission is hereby granted, free of charge, to any person obtaining a
+// * copy of this software and associated documentation files (the "Software"),
+// * to deal in the Software without restriction, including without limitation
+// * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+// * and/or sell copies of the Software, and to permit persons to whom the
+// * Software is furnished to do so, subject to the following conditions:
+// *
+// * The above copyright notice and this permission notice shall be included
+// * in all copies or substantial portions of the Software.
+// *
+// * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
+// * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+// * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
+// * IN NO EVENT SHALL MAXIM INTEGRATED BE LIABLE FOR ANY CLAIM, DAMAGES
+// * OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
+// * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
+// * OTHER DEALINGS IN THE SOFTWARE.
+// *
+// * Except as contained in this notice, the name of Maxim Integrated
+// * Products, Inc. shall not be used except as stated in the Maxim Integrated
+// * Products, Inc. Branding Policy.
+// *
+// * The mere transfer of this software does not imply any licenses
+// * of trade secrets, proprietary technology, copyrights, patents,
+// * trademarks, maskwork rights, or any other form of intellectual
+// * property whatsoever. Maxim Integrated Products, Inc. retains all
+// * ownership rights.
+// *******************************************************************************
+// */
+// *********************************************************************
+// @file FunctionGenerator.h
+// *********************************************************************
+
+// Prevent multiple declaration
+#ifndef __FunctionGenerator_H__
+#define __FunctionGenerator_H__
+
+//--------------------------------------------------
+// Option to support Sine waveform; requires floating point
+//
+// Triangle Ramp: Ramp Up then Ramp Down
+#ifndef USE_FunctionGenerator_TriangleRampUpDown
+#define USE_FunctionGenerator_TriangleRampUpDown 0
+#endif // USE_FunctionGenerator_TriangleRampUpDown
+//
+// Ramp Up from m_code_limit_L to m_code_limit_H by m_code_increment
+#ifndef USE_FunctionGenerator_RampUp
+#define USE_FunctionGenerator_RampUp 0
+#endif // USE_FunctionGenerator_RampUp
+//
+// Ramp Down from m_code_limit_H to m_code_limit_L by m_code_increment
+#ifndef USE_FunctionGenerator_RampDown
+#define USE_FunctionGenerator_RampDown 0
+#endif // USE_FunctionGenerator_RampDown
+//
+// Computed Sinusoid (Sine wave) m_code_amplitude * sin(m_phase_accumulator) + m_code_offset; m_phase_increment determines frequency
+#ifndef USE_FunctionGenerator_Sine
+#define USE_FunctionGenerator_Sine 0
+#endif // USE_FunctionGenerator_Sine
+//
+// Arbitrary Waveform Generation by table lookup; m_table_index_increment determines frequency
+#ifndef USE_FunctionGenerator_Table
+#define USE_FunctionGenerator_Table 0
+#endif // USE_FunctionGenerator_Table
+//
+// Sinusoid using Arbitrary Waveform Generation table lookup
+#ifndef USE_FunctionGenerator_Sine_Table
+#define USE_FunctionGenerator_Sine_Table 1
+#endif // USE_FunctionGenerator_Sine_Table
+//
+
+// standard include for target platform
+#include "mbed.h"
+// workaround for error 'M_PI' was not declared
+#ifndef M_PI
+#define M_PI           3.14159265358979323846
+#endif
+
+/**
+ @brief DACFunctionGenerator class is a Function Generator for DAC output
+ */
+// 
+class DACFunctionGenerator
+{
+public:
+    enum shape_t {
+        // Constant DC output
+        Constant = 0,
+        //
+#if USE_FunctionGenerator_TriangleRampUpDown
+        // Triangle Ramp: Ramp Up then Ramp Down
+        TriangleRampUpDown,
+#endif // USE_FunctionGenerator_TriangleRampUpDown
+        //
+#if USE_FunctionGenerator_RampUp
+        // Ramp Up from m_code_limit_L to m_code_limit_H by m_code_increment
+        RampUp,
+#endif // USE_FunctionGenerator_RampUp
+        //
+#if USE_FunctionGenerator_RampDown
+        // Ramp Down from m_code_limit_H to m_code_limit_L by m_code_increment
+        RampDown,
+#endif // USE_FunctionGenerator_RampDown
+        //
+#if USE_FunctionGenerator_Sine
+        // Computed Sinusoid (Sine wave) m_code_amplitude * sin(m_phase_accumulator) + m_code_offset; m_phase_increment determines frequency
+        Sine,
+#endif // USE_FunctionGenerator_Sine
+        //
+#if (USE_FunctionGenerator_Table) || (USE_FunctionGenerator_Sine_Table)
+        // Arbitrary Waveform Generation by table lookup; m_table_index_increment determines frequency
+        Table,
+#endif // USE_FunctionGenerator_Table
+        //
+    } m_shape; //!< shape of the generated waveform
+private:
+    uint32_t m_code; //!< DAC output code value (unsigned value)
+public:
+    uint32_t m_code_limit_H; //!< high limit of code (unsigned value)
+    uint32_t m_code_limit_L; //!< low limit of code (unsigned value)
+#if (USE_FunctionGenerator_TriangleRampUpDown) || (USE_FunctionGenerator_RampUp) || (USE_FunctionGenerator_RampDown)
+    int32_t m_code_increment; //!< amount to be added to code (signed value) (Ramp)
+#endif
+#if (USE_FunctionGenerator_Sine) || (USE_FunctionGenerator_Sine_Table)
+    uint32_t m_code_offset; //!< (Sine)
+    uint32_t m_code_amplitude; //!< (Sine)
+#endif // USE_FunctionGenerator_Sine
+#if (USE_FunctionGenerator_Sine)
+    float m_phase_accumulator; //!< phase angle in radians (Sine)
+    float m_phase_increment; //!< increment in phase angle in radians, per sample period (Sine)
+    const float m_phase_accumulator_limit_H = (2 * M_PI); //!< high limit of phase angle in radians (Sine)
+#endif // USE_FunctionGenerator_Sine
+#if (USE_FunctionGenerator_Table) || (USE_FunctionGenerator_Sine_Table)
+    uint32_t* m_table_data; //!< (Table)
+    uint32_t m_table_index; //!< (Table)
+    int32_t m_table_index_increment; //!< (Table)
+    uint32_t m_table_length; //!< (Table)
+#endif // USE_FunctionGenerator_Table
+public:
+    DACFunctionGenerator() //!< #ctor
+    {   // ............0xFFFFF for 20-bit
+        m_code_limit_H = 0xFFFFF;
+        m_code_limit_L = 0x00000;
+#if (USE_FunctionGenerator_TriangleRampUpDown) || (USE_FunctionGenerator_RampUp) || (USE_FunctionGenerator_RampDown)
+        m_code_increment = 0x00001;
+#endif
+        m_code = (m_code_limit_L/4 + m_code_limit_H/4) * 2; // approx (code_limit_H+code_limit_L)/2 but avoid overflow
+#if USE_FunctionGenerator_TriangleRampUpDown
+        m_shape = TriangleRampUpDown;
+#else // USE_FunctionGenerator_TriangleRampUpDown
+        m_shape = Constant;
+#endif // USE_FunctionGenerator_TriangleRampUpDown
+    };
+    void Configure_Constant(uint32_t code = 0x5555)
+    {
+        m_code = code;
+        m_shape = Constant;
+    }
+#if USE_FunctionGenerator_TriangleRampUpDown
+    void Configure_TriangleRampUpDown(
+        uint32_t code_limit_L = 0x00000,
+        uint32_t code_limit_H = 0xFFFFF,
+        int32_t increment = 0x00001
+        )
+    {
+        m_code_limit_H = code_limit_H;
+        m_code_limit_L = code_limit_L;
+        m_code_increment = increment;
+        m_code = (m_code_limit_L/4 + m_code_limit_H/4) * 2; // approx (code_limit_H+code_limit_L)/2 but avoid overflow
+        m_shape = TriangleRampUpDown;
+    }
+#endif // USE_FunctionGenerator_TriangleRampUpDown
+#if USE_FunctionGenerator_RampUp
+    void Configure_RampUp(
+        uint32_t code_limit_L = 0x00000,
+        uint32_t code_limit_H = 0xFFFFF,
+        int32_t increment = 0x00001
+        )
+    {
+        m_code_limit_H = code_limit_H;
+        m_code_limit_L = code_limit_L;
+        m_code_increment = increment;
+        m_code = code_limit_L;
+        m_shape = RampUp;
+    }
+#endif // USE_FunctionGenerator_RampUp
+#if USE_FunctionGenerator_RampDown
+    void Configure_RampDown(
+        uint32_t code_limit_L = 0x00000,
+        uint32_t code_limit_H = 0xFFFFF,
+        int32_t increment = 0x00001
+        )
+    {
+        m_code_limit_H = code_limit_H;
+        m_code_limit_L = code_limit_L;
+        m_code_increment = increment;
+        m_code = code_limit_H;
+        m_shape = RampDown;
+    }
+#endif // USE_FunctionGenerator_RampDown
+#if USE_FunctionGenerator_Sine
+    void Configure_Sine( // TODO WIP Sine
+        uint32_t code_limit_L = 0x00000,
+        uint32_t code_limit_H = 0xFFFFF,
+        float num_samples_per_tone_cycle = 10.0
+        )
+    {
+        m_code_limit_H = code_limit_H;
+        m_code_limit_L = code_limit_L;
+        //~ m_code_increment = increment;
+        m_code = (m_code_limit_L/4 + m_code_limit_H/4) * 2; // approx (code_limit_H+code_limit_L)/2 but avoid overflow
+        m_code_offset = (m_code_limit_L/4 + m_code_limit_H/4) * 2; // approx (code_limit_H+code_limit_L)/2 but avoid overflow
+        m_code_amplitude = m_code_limit_H - m_code_offset;
+        m_phase_accumulator = 0;
+        //~ m_phase_accumulator_limit_H = (2 * M_PI);
+        m_phase_increment = m_phase_accumulator_limit_H / num_samples_per_tone_cycle;
+        //~ m_phase_increment = (2 * M_PI) / num_samples_per_tone_cycle;
+        m_shape = Sine;
+    }
+#endif // USE_FunctionGenerator_Sine
+#if USE_FunctionGenerator_Table
+    void Configure_Table( // TODO WIP Table
+        uint32_t* table_data,
+        uint32_t table_length,
+        int32_t increment = 0x00001
+        )
+    {
+        m_table_data = table_data;
+        m_table_length = table_length;
+        m_code = table_data[0];
+        //~ m_phase_accumulator = 0;
+        //~ m_phase_increment = (2 * M_PI) / num_samples_per_tone_cycle;
+        m_table_index_increment = increment;
+        m_shape = Table;
+    }
+#endif // USE_FunctionGenerator_Table
+#if USE_FunctionGenerator_Sine_Table
+    // TODO: implement Configure_Sine_Table(uint32_t code_limit_L, uint32_t code_limit_H, float num_samples_per_tone_cycle, uint32_t* table_data_out, uint32_t table_length)
+    void Configure_Sine_Table(
+        uint32_t* table_data_buffer,
+        uint32_t table_length,
+        uint32_t code_limit_L = 0x00000,
+        uint32_t code_limit_H = 0xFFFFF,
+        float num_tone_cycles_in_table = 7
+        )
+    {
+        m_code_limit_H = code_limit_H;
+        m_code_limit_L = code_limit_L;
+        //~ m_code_increment = increment;
+        m_code = (m_code_limit_L/4 + m_code_limit_H/4) * 2; // approx (code_limit_H+code_limit_L)/2 but avoid overflow
+        m_code_offset = (m_code_limit_L/4 + m_code_limit_H/4) * 2; // approx (code_limit_H+code_limit_L)/2 but avoid overflow
+        m_code_amplitude = m_code_limit_H - m_code_offset;
+        m_table_data = table_data_buffer;
+        m_table_length = table_length;
+        //
+        // DIAGNOSTIC: initialize table to midscale
+        //~ for (m_table_index = 0; m_table_index < m_table_length; m_table_index++)
+        //~ {
+            //~ m_table_data[m_table_index] = m_code_offset - 0.75 * m_code_amplitude;
+        //~ }
+        //~ m_code_amplitude = 0.5 * m_code_amplitude; // DIAGNOSTIC
+        //~ m_table_data[0] = m_code_limit_L; // DIAGNOSTIC
+        //~ m_table_data[1] = m_code_limit_H;
+        //~ m_table_data[3] = m_code_limit_L;
+        //~ m_table_data[m_table_length-1] = m_code_limit_H;
+        //
+        // write a sine wave table into caller-provided buffer table_data_buffer[table_length]
+        // float num_tone_cycles_in_table = 7; // num_samples_per_tone_cycle; // ????
+        //      TODO: is m_table_data[m_table_length-1] not being initialized?
+        for (m_table_index = 0; m_table_index < /* DIAGNOSTIC */ m_table_length+0; m_table_index++)
+        {
+            // calculate phase angle from m_table_index
+            // m_table_index = m_table_length * m_phase_accumulator / (2 * M_PI);
+            // m_phase_accumulator = m_phase_accumulator + m_phase_increment
+            // m_phase_increment = m_phase_accumulator_limit_H / num_samples_per_tone_cycle;
+            float phase_accumulator = num_tone_cycles_in_table * ((((float)m_table_index + 0.5) / (float)m_table_length) * (2.0 * M_PI));
+            //
+            // calculate code from sine(phase angle)
+            float code = m_code_amplitude * sin(phase_accumulator) + m_code_offset;
+            m_code = code;
+            if (code > m_code_limit_H) {
+                m_code = m_code_limit_H;
+            }
+            if (code < m_code_limit_L) {
+                m_code = m_code_limit_L;
+            }
+            //~ m_code = m_code_offset - m_code_amplitude + m_table_index * 0.1 * m_code_amplitude; // DIAGNOSITC override sine with a ramp
+            //
+            // store code into table_data[m_table_index]
+            m_table_data[m_table_index] = m_code;
+            //
+        }
+        //
+        m_table_index = 0;
+        m_code = m_table_data[m_table_index];
+        //~ m_phase_accumulator = 0;
+        //~ m_phase_increment = (2 * M_PI) / num_samples_per_tone_cycle;
+        m_table_index_increment = 1;
+        m_shape = Table;
+    }
+#endif // USE_FunctionGenerator_Sine_Table
+public:
+    uint32_t Code() const { return m_code; }; //!< get DAC output code value
+public:
+    uint32_t Next() //!< determine next code value
+    {
+        switch(m_shape)
+        {
+        // Constant DC output
+        case Constant:
+            break;
+#if USE_FunctionGenerator_TriangleRampUpDown
+        // Triangle Ramp: Ramp Up then Ramp Down
+        case TriangleRampUpDown:
+            if (m_code_increment >= 0) {
+                // increment is positive or zero: rising ramp
+                // avoid (code + increment) overflow maxint
+                // avoid (code + increment) > code_limit_H
+                if ((m_code + m_code_increment) < m_code) { // arithmetic overflow
+                    m_code_increment = -m_code_increment; // change the slope
+                    m_code = m_code + m_code_increment; // note: increment is negative
+                }
+                else if ((m_code + m_code_increment) > m_code_limit_H) {
+                    m_code_increment = -m_code_increment; // change the slope
+                    m_code = m_code + m_code_increment; // note: increment is negative
+                }
+                else {
+                    m_code = m_code + m_code_increment; // note: increment is positive
+                }
+            }
+            else {
+                // increment is negative: falling ramp
+                // avoid (code + increment) underflow minint
+                // avoid (code + increment) < code_limit_L which might be 0U
+                if (m_code < (m_code + m_code_increment)) { // arithmetic underflow
+                    m_code_increment = -m_code_increment; // change the slope
+                    m_code = m_code + m_code_increment; // note: increment is positive
+                }
+                else if (m_code_limit_L > (m_code + m_code_increment)) {
+                    m_code_increment = -m_code_increment; // change the slope
+                    m_code = m_code + m_code_increment; // note: increment is positive
+                }
+                else {
+                    m_code = m_code + m_code_increment; // note: increment is negative
+                }
+            }
+            break; // case TriangleRampUpDown
+#endif // TriangleRampUpDown
+#if USE_FunctionGenerator_RampUp
+        // Ramp Up from m_code_limit_L to m_code_limit_H by m_code_increment
+        case RampUp:
+            // increment must be positive or zero: rising ramp
+            if (m_code_increment < 0) {
+                m_code_increment = -m_code_increment; // change the slope
+            }
+            // increment is positive or zero: rising ramp
+            // avoid (code + increment) overflow maxint
+            // avoid (code + increment) > code_limit_H
+            if ((m_code + m_code_increment) < m_code) { // arithmetic overflow
+                m_code = m_code + m_code_increment; // note: increment is negative
+            }
+            else if ((m_code + m_code_increment) > m_code_limit_H) {
+                m_code = m_code_limit_L;
+            }
+            else {
+                m_code = m_code + m_code_increment; // note: increment is positive
+            }
+            break; // case RampUp
+#endif // USE_FunctionGenerator_RampUp
+#if USE_FunctionGenerator_RampDown
+        // Ramp Down from m_code_limit_H to m_code_limit_L by m_code_increment
+        case RampDown:
+            // increment must be negative: falling ramp
+            if (m_code_increment >= 0) {
+                m_code_increment = -m_code_increment; // change the slope
+            }
+            // increment is negative: falling ramp
+            // avoid (code + increment) underflow minint
+            // avoid (code + increment) < code_limit_L which might be 0U
+            if (m_code < (m_code + m_code_increment)) { // arithmetic underflow
+                m_code = m_code + m_code_increment; // note: increment is positive
+            }
+            else if (m_code_limit_L > (m_code + m_code_increment)) {
+                m_code = m_code_limit_H;
+            }
+            else {
+                m_code = m_code + m_code_increment; // note: increment is negative
+            }
+            break; // case RampDown
+#endif // RampDown
+#if USE_FunctionGenerator_Sine
+        // Computed Sinusoid (Sine wave) m_code_amplitude * sin(m_phase_accumulator) + m_code_offset; m_phase_increment determines frequency
+        case Sine:
+            {
+                //
+                // DIAGNOSTIC: scope trigger
+                // ARDUINO
+                //~ pinMode (8, OUTPUT);
+                //~ digitalWrite(8, 0); // output logic low
+                // ARDUINO
+                //
+                // DIAGNOSTIC: this line is likely compute heavy on soft float systems
+                // ARDUINO UNO 16MHz: this line takes 132.0 to 154.0us, limiting sample update rate
+                float code = m_code_amplitude * sin(m_phase_accumulator) + m_code_offset;
+                //
+                // DIAGNOSTIC: scope trigger
+                // ARDUINO
+                //~ pinMode (8, OUTPUT);
+                //~ digitalWrite(8, 1); // output logic high -- initial value in constructor
+                // ARDUINO
+                //
+                m_code = code;
+                if (code > m_code_limit_H) {
+                    m_code = m_code_limit_H;
+                }
+                if (code < m_code_limit_L) {
+                    m_code = m_code_limit_L;
+                }
+                m_phase_accumulator = m_phase_accumulator + m_phase_increment;
+                if (m_phase_accumulator > m_phase_accumulator_limit_H) {
+                    m_phase_accumulator = m_phase_accumulator - m_phase_accumulator_limit_H;
+                }
+            }
+            break; // case Sine
+#endif // USE_FunctionGenerator_Sine
+#if (USE_FunctionGenerator_Table) || (USE_FunctionGenerator_Sine_Table)
+        // Arbitrary Waveform Generation by table lookup; m_phase_increment determines frequency
+        case Table:
+            if (m_table_index >= m_table_length) {
+                m_table_index = m_table_length;
+            }
+            m_code = m_table_data[m_table_index];
+            //~ m_phase_accumulator = m_phase_accumulator + m_phase_increment;
+            //~ if (m_phase_accumulator > m_phase_accumulator_limit_H) {
+                //~ m_phase_accumulator = m_phase_accumulator - m_phase_accumulator_limit_H;
+            //~ }
+            //~ m_table_index = m_table_length * m_phase_accumulator / m_phase_accumulator_limit_H;
+            m_table_index = m_table_index + m_table_index_increment;
+            // if (m_table_index < 0) { // m_table_index is unsigned so no underflow
+            //     m_table_index = 0;
+            // }
+            if (m_table_index >= m_table_length) {
+                m_table_index = 0; // wrap to 0, assuming increment is 1
+            }
+            break; // case Table
+#endif // USE_FunctionGenerator_Table
+        } // switch(shape)
+        return m_code;
+    };
+};
+
+#endif // __FunctionGenerator_H__
+
+// End of file