CyaSSL is an SSL library for devices like mbed.

Dependents:   cyassl-client Sync

Embed: (wiki syntax)

« Back to documentation index

Show/hide line numbers sha.c Source File

sha.c

00001 /* sha.c
00002  *
00003  * Copyright (C) 2006-2009 Sawtooth Consulting Ltd.
00004  *
00005  * This file is part of CyaSSL.
00006  *
00007  * CyaSSL is free software; you can redistribute it and/or modify
00008  * it under the terms of the GNU General Public License as published by
00009  * the Free Software Foundation; either version 2 of the License, or
00010  * (at your option) any later version.
00011  *
00012  * CyaSSL is distributed in the hope that it will be useful,
00013  * but WITHOUT ANY WARRANTY; without even the implied warranty of
00014  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
00015  * GNU General Public License for more details.
00016  *
00017  * You should have received a copy of the GNU General Public License
00018  * along with this program; if not, write to the Free Software
00019  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
00020  */
00021 
00022 
00023 #include "ctc_sha.h"
00024 #ifdef NO_INLINE
00025     #include "misc.h"
00026 #else
00027     #include "misc.c"
00028 #endif
00029 
00030 
00031 #ifndef min
00032 
00033     static INLINE word32 min(word32 a, word32 b)
00034     {
00035         return a > b ? b : a;
00036     }
00037 
00038 #endif /* min */
00039 
00040 
00041 void InitSha(Sha* sha)
00042 {
00043     sha->digest[0] = 0x67452301L;
00044     sha->digest[1] = 0xEFCDAB89L;
00045     sha->digest[2] = 0x98BADCFEL;
00046     sha->digest[3] = 0x10325476L;
00047     sha->digest[4] = 0xC3D2E1F0L;
00048 
00049     sha->buffLen = 0;
00050     sha->loLen   = 0;
00051     sha->hiLen   = 0;
00052 }
00053 
00054 #define blk0(i) (W[i] = sha->buffer[i])
00055 #define blk1(i) (W[i&15] = \
00056                    rotlFixed(W[(i+13)&15]^W[(i+8)&15]^W[(i+2)&15]^W[i&15],1))
00057 
00058 #define f1(x,y,z) (z^(x &(y^z)))
00059 #define f2(x,y,z) (x^y^z)
00060 #define f3(x,y,z) ((x&y)|(z&(x|y)))
00061 #define f4(x,y,z) (x^y^z)
00062 
00063 /* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */
00064 #define R0(v,w,x,y,z,i) z+= f1(w,x,y) + blk0(i) + 0x5A827999+ \
00065                         rotlFixed(v,5); w = rotlFixed(w,30);
00066 #define R1(v,w,x,y,z,i) z+= f1(w,x,y) + blk1(i) + 0x5A827999+ \
00067                         rotlFixed(v,5); w = rotlFixed(w,30);
00068 #define R2(v,w,x,y,z,i) z+= f2(w,x,y) + blk1(i) + 0x6ED9EBA1+ \
00069                         rotlFixed(v,5); w = rotlFixed(w,30);
00070 #define R3(v,w,x,y,z,i) z+= f3(w,x,y) + blk1(i) + 0x8F1BBCDC+ \
00071                         rotlFixed(v,5); w = rotlFixed(w,30);
00072 #define R4(v,w,x,y,z,i) z+= f4(w,x,y) + blk1(i) + 0xCA62C1D6+ \
00073                         rotlFixed(v,5); w = rotlFixed(w,30);
00074 
00075 
00076 static void Transform(Sha* sha)
00077 {
00078     word32 W[SHA_BLOCK_SIZE / sizeof(word32)];
00079 
00080     /* Copy context->state[] to working vars */ 
00081     word32 a = sha->digest[0];
00082     word32 b = sha->digest[1];
00083     word32 c = sha->digest[2];
00084     word32 d = sha->digest[3];
00085     word32 e = sha->digest[4];
00086 
00087     /* nearly 1 K bigger in code size but 25% faster  */
00088     /* 4 rounds of 20 operations each. Loop unrolled. */
00089     R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3);
00090     R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7);
00091     R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11);
00092     R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15);
00093 
00094     R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19);
00095 
00096     R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23);
00097     R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27);
00098     R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31);
00099     R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35);
00100     R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39);
00101 
00102     R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43);
00103     R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47);
00104     R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51);
00105     R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55);
00106     R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59);
00107 
00108     R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63);
00109     R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67);
00110     R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71);
00111     R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75);
00112     R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79);
00113 
00114     /* Add the working vars back into digest state[] */
00115     sha->digest[0] += a;
00116     sha->digest[1] += b;
00117     sha->digest[2] += c;
00118     sha->digest[3] += d;
00119     sha->digest[4] += e;
00120 }
00121 
00122 
00123 static INLINE void AddLength(Sha* sha, word32 len)
00124 {
00125     word32 tmp = sha->loLen;
00126     if ( (sha->loLen += len) < tmp)
00127         sha->hiLen++;                       /* carry low to high */
00128 }
00129 
00130 
00131 void ShaUpdate(Sha* sha, const byte* data, word32 len)
00132 {
00133     /* do block size increments */
00134     byte* local = (byte*)sha->buffer;
00135 
00136     while (len) {
00137         word32 add = min(len, SHA_BLOCK_SIZE - sha->buffLen);
00138         XMEMCPY(&local[sha->buffLen], data, add);
00139 
00140         sha->buffLen += add;
00141         data         += add;
00142         len          -= add;
00143 
00144         if (sha->buffLen == SHA_BLOCK_SIZE) {
00145             #ifdef LITTLE_ENDIAN_ORDER
00146                 ByteReverseBytes(local, local, SHA_BLOCK_SIZE);
00147             #endif
00148             Transform(sha);
00149             AddLength(sha, SHA_BLOCK_SIZE);
00150             sha->buffLen = 0;
00151         }
00152     }
00153 }
00154 
00155 
00156 void ShaFinal(Sha* sha, byte* hash)
00157 {
00158     byte* local = (byte*)sha->buffer;
00159 
00160     AddLength(sha, sha->buffLen);               /* before adding pads */
00161 
00162     local[sha->buffLen++] = 0x80;  /* add 1 */
00163 
00164     /* pad with zeros */
00165     if (sha->buffLen > SHA_PAD_SIZE) {
00166         XMEMSET(&local[sha->buffLen], 0, SHA_BLOCK_SIZE - sha->buffLen);
00167         sha->buffLen += SHA_BLOCK_SIZE - sha->buffLen;
00168 
00169         #ifdef LITTLE_ENDIAN_ORDER
00170             ByteReverseBytes(local, local, SHA_BLOCK_SIZE);
00171         #endif
00172         Transform(sha);
00173         sha->buffLen = 0;
00174     }
00175     XMEMSET(&local[sha->buffLen], 0, SHA_PAD_SIZE - sha->buffLen);
00176    
00177     /* put lengths in bits */
00178     sha->loLen = sha->loLen << 3;
00179     sha->hiLen = (sha->loLen >> (8*sizeof(sha->loLen) - 3)) + 
00180                  (sha->hiLen << 3);
00181 
00182     /* store lengths */
00183     #ifdef LITTLE_ENDIAN_ORDER
00184         ByteReverseBytes(local, local, SHA_BLOCK_SIZE);
00185     #endif
00186     /* ! length ordering dependent on digest endian type ! */
00187     XMEMCPY(&local[SHA_PAD_SIZE], &sha->hiLen, sizeof(word32));
00188     XMEMCPY(&local[SHA_PAD_SIZE + sizeof(word32)], &sha->loLen, sizeof(word32));
00189 
00190     Transform(sha);
00191     #ifdef LITTLE_ENDIAN_ORDER
00192         ByteReverseWords(sha->digest, sha->digest, SHA_DIGEST_SIZE);
00193     #endif
00194     XMEMCPY(hash, sha->digest, SHA_DIGEST_SIZE);
00195 
00196     InitSha(sha);  /* reset state */
00197 }
00198