An input/output controller for virtual pinball machines, with plunger position tracking, accelerometer-based nudge sensing, button input encoding, and feedback device control.

Dependencies:   USBDevice mbed FastAnalogIn FastIO FastPWM SimpleDMA

/media/uploads/mjr/pinscape_no_background_small_L7Miwr6.jpg

The Pinscape Controller is a special-purpose software project that I wrote for my virtual pinball machine.

New version: V2 is now available! The information below is for version 1, which will continue to be available for people who prefer the original setup.

What exactly is a virtual pinball machine? It's basically a video-game pinball emulator built to look like a real pinball machine. (The picture at right is the one I built.) You start with a standard pinball cabinet, either built from scratch or salvaged from a real machine. Inside, you install a PC motherboard to run the software, and install TVs in place of the playfield and backglass. Several Windows pinball programs can take advantage of this setup, including the open-source project Visual Pinball, which has hundreds of tables available. Building one of these makes a great DIY project, and it's a good way to add to your skills at woodworking, computers, and electronics. Check out the Cabinet Builders' Forum on vpforums.org for lots of examples and advice.

This controller project is a key piece in my setup that helps integrate the video game into the pinball cabinet. It handles several input/output tasks that are unique to virtual pinball machines. First, it lets you connect a mechanical plunger to the software, so you can launch the ball like on a real machine. Second, it sends "nudge" data to the software, based on readings from an accelerometer. This lets you interact with the game physically, which makes the playing experience more realistic and immersive. Third, the software can handle button input (for wiring flipper buttons and other cabinet buttons), and fourth, it can control output devices (for tactile feedback, button lights, flashers, and other special effects).

Documentation

The Hardware Build Guide (PDF) has detailed instructions on how to set up a Pinscape Controller for your own virtual pinball cabinet.

Update notes

December 2015 version: This version fully supports the new Expansion Board project, but it'll also run without it. The default configuration settings haven't changed, so existing setups should continue to work as before.

August 2015 version: Be sure to get the latest version of the Config Tool for windows if you're upgrading from an older version of the firmware. This update adds support for TSL1412R sensors (a version of the 1410 sensor with a slightly larger pixel array), and a config option to set the mounting orientation of the board in the firmware rather than in VP (for better support for FP and other pinball programs that don't have VP's flexibility for setting the rotation).

Feb/March 2015 software versions: If you have a CCD plunger that you've been using with the older versions, and the plunger stops working (or doesn't work as well) after you update to the latest version, you might need to increase the brightness of your light source slightly. Check the CCD exposure with the Windows config tool to see if it looks too dark. The new software reads the CCD much more quickly than the old versions did. This makes the "shutter speed" faster, which might require a little more light to get the same readings. The CCD is actually really tolerant of varying light levels, so you probably won't have to change anything for the update - I didn't. But if you do have any trouble, have a look at the exposure meter and try a slightly brighter light source if the exposure looks too dark.

Downloads

  • Config tool for Windows (.exe and C# source): this is a Windows program that lets you view the raw pixel data from the CCD sensor, trigger plunger calibration mode, and configure some of the software options on the controller.
  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP 9.9.1 and VP 10 releases, so you don't need my custom builds if you're using 9.9.1 or 10 or later. I don't think there's any reason to use my 9.9 instead of the official 9.9.1, but I'm leaving it here just in case. In the official VP releases, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. (There's no checkbox in my custom builds, though; the filter is simply always on in those.)
  • Output circuit shopping list: This is a saved shopping cart at mouser.com with the parts needed for each output driver, if you want to use the LedWiz emulator feature. Note that quantities in the cart are for one output channel, so multiply everything by the number of channels you plan to use, except that you only need one of the ULN2803 transistor array chips for each eight output circuits.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an Aliexpress.com seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Features

  • Plunger position sensing, using a TAOS TSL 1410R CCD linear array sensor. This sensor is a 1280 x 1 pixel array at 400 dpi, which makes it about 3" long - almost exactly the travel distance of a standard pinball plunger. The idea is that you install the sensor just above (within a few mm of) the shooter rod on the inside of the cabinet, with the CCD window facing down, aligned with and centered on the long axis of the shooter rod, and positioned so that the rest position of the tip is about 1/2" from one end of the window. As you pull back the plunger, the tip will travel down the length of the window, and the maximum retraction point will put the tip just about at the far end of the window. Put a light source below, facing the sensor - I'm using two typical 20 mA blue LEDs about 8" away (near the floor of the cabinet) with good results. The principle of operation is that the shooter rod casts a shadow on the CCD, so pixels behind the rod will register lower brightness than pixels that aren't in the shadow. We scan down the length of the sensor for the edge between darker and brighter, and this tells us how far back the rod has been pulled. We can read the CCD at about 25-30 ms intervals, so we can get rapid updates. We pass the readings reports to VP via our USB joystick reports.

    The hardware build guide includes schematics showing how to wire the CCD to the KL25Z. It's pretty straightforward - five wires between the two devices, no external components needed. Two GPIO ports are used as outputs to send signals to the device and one is used as an ADC in to read the pixel brightness inputs. The config tool has a feature that lets you display the raw pixel readings across the array, so you can test that the CCD is working and adjust the light source to get the right exposure level.

    Alternatively, you can use a slide potentiometer as the plunger sensor. This is a cheaper and somewhat simpler option that seems to work quite nicely, as you can see in Lemming77's video of this setup in action. This option is also explained more fully in the build guide.
  • Nudge sensing via the KL25Z's on-board accelerometer. Mounting the board in your cabinet makes it feel the same accelerations the cabinet experiences when you nudge it. Visual Pinball already knows how to interpret accelerometer input as nudging, so we simply feed the acceleration readings to VP via the joystick interface.
  • Cabinet button wiring. Up to 24 pushbuttons and switches can be wired to the controller for input controls (for example, flipper buttons, the Start button, the tilt bob, coin slot switches, and service door buttons). These appear to Windows as joystick buttons. VP can map joystick buttons to pinball inputs via its keyboard preferences dialog. (You can raise the 24-button limit by editing the source code, but since all of the GPIO pins are allocated, you'll have to reassign pins currently used for other functions.)
  • LedWiz emulation (limited). In addition to emulating a joystick, the device emulates the LedWiz USB interface, so controllers on the PC side such as DirectOutput Framework can recognize it and send it commands to control lights, solenoids, and other feedback devices. 22 GPIO ports are assigned by default as feedback device outputs. This feature has some limitations. The big one is that the KL25Z hardware only has 10 PWM channels, which isn't enough for a fully decked-out cabinet. You also need to build some external power driver circuitry to use this feature, because of the paltry 4mA output capacity of the KL25Z GPIO ports. The build guide includes instructions for a simple and robust output circuit, including part numbers for the exact components you need. It's not hard if you know your way around a soldering iron, but just be aware that it'll take a little work.

Warning: This is not replacement software for the VirtuaPin plunger kit. If you bought the VirtuaPin kit, please don't try to install this software. The VP kit happens to use the same microcontroller board, but the rest of its hardware is incompatible. The VP kit uses a different type of sensor for its plunger and has completely different button wiring, so the Pinscape software won't work properly with it.

Files at this revision

API Documentation at this revision

Comitter:
mjr
Date:
Tue Jul 22 04:33:47 2014 +0000
Parent:
1:d913e0afb2ac
Child:
3:3514575d4f86
Commit message:
Before change to ISR for accelerometer

Changed in this revision

CRC32/crc32.cpp Show annotated file Show diff for this revision Revisions of this file
CRC32/crc32.h Show annotated file Show diff for this revision Revisions of this file
FreescaleIAP.cpp Show diff for this revision Revisions of this file
FreescaleIAP.h Show diff for this revision Revisions of this file
FreescaleIAP/FreescaleIAP.cpp Show annotated file Show diff for this revision Revisions of this file
FreescaleIAP/FreescaleIAP.h Show annotated file Show diff for this revision Revisions of this file
MMA8451Q/MMA8451Q.cpp Show annotated file Show diff for this revision Revisions of this file
TSL1410R/tsl1410r.h Show annotated file Show diff for this revision Revisions of this file
TSL1410R/tsl410r.cpp Show annotated file Show diff for this revision Revisions of this file
USBJoystick.cpp Show annotated file Show diff for this revision Revisions of this file
main.cpp Show annotated file Show diff for this revision Revisions of this file
tsl1410r.h Show diff for this revision Revisions of this file
tsl410r.cpp Show diff for this revision Revisions of this file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/CRC32/crc32.cpp	Tue Jul 22 04:33:47 2014 +0000
@@ -0,0 +1,65 @@
+#include "crc32.h"
+
+#define CRC32_POLYNOMIAL 0xEDB88320L
+ 
+void CRC32Value(unsigned long &CRC, unsigned char c)
+{
+    /////////////////////////////////////////////////////////////////////////////////////
+    //CRC must be initialized as zero 
+    //c is a character from the sequence that is used to form the CRC
+    //this code is a modification of the code from the Novatel OEM615 specification
+    /////////////////////////////////////////////////////////////////////////////////////
+    unsigned long ulTemp1 = ( CRC >> 8 ) & 0x00FFFFFFL;
+    unsigned long ulCRC = ((int) CRC ^ c ) & 0xff ;
+    for (int  j = 8 ; j > 0; j-- )
+    {
+        if ( ulCRC & 1 )
+        {
+            ulCRC = ( ulCRC >> 1 ) ^ CRC32_POLYNOMIAL;
+        }
+        else
+        {
+            ulCRC >>= 1;
+        }
+    }
+    CRC = ulTemp1 ^ ulCRC;
+} 
+ 
+/* --------------------------------------------------------------------------
+Calculates the CRC-32 of a block of data all at once
+//the CRC is from the complete message (header plus data) 
+//but excluding (of course) the CRC at the end
+-------------------------------------------------------------------------- */
+unsigned long CRC32(const void *data, int len)
+{
+    //////////////////////////////////////////////////////////////////////
+    //the below code tests the CRC32Value procedure used in a markov form
+    //////////////////////////////////////////////////////////////////////
+    unsigned long CRC = 0;
+    const unsigned char *p = (const unsigned char *)data;
+    for (int i = 0 ; i < len ; i++)
+        CRC32Value(CRC, *p++);
+
+    return CRC;
+}
+ 
+/*
+unsigned long CalculateBlockCRC32(
+        unsigned long ulCount, 
+        unsigned char *ucBuffer )
+{
+////////////////////////////////////////////
+//original code from the OEM615 manual
+////////////////////////////////////////////
+    unsigned long ulTemp1;
+    unsigned long ulTemp2;
+    unsigned long ulCRC = 0;
+    while ( ulCount-- != 0 )
+    {
+        ulTemp1 = ( ulCRC >> 8 ) & 0x00FFFFFFL;
+        ulTemp2 = CRC32Value( ((int) ulCRC ^ *ucBuffer++ ) & 0xff );
+        ulCRC = ulTemp1 ^ ulTemp2;
+    }
+    return( ulCRC );
+}
+*/
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/CRC32/crc32.h	Tue Jul 22 04:33:47 2014 +0000
@@ -0,0 +1,10 @@
+ 
+#ifndef CRC32_H
+#define CRC32_H
+ 
+void CRC32Value(unsigned long &CRC, unsigned char c);
+unsigned long CRC32(const void *data, int len);
+ 
+#endif
+ 
+ 
\ No newline at end of file
--- a/FreescaleIAP.cpp	Wed Jul 16 23:33:12 2014 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,190 +0,0 @@
-#include "FreescaleIAP.h"
- 
-//#define IAPDEBUG
- 
-enum FCMD {
-    Read1s = 0x01,
-    ProgramCheck = 0x02,
-    ReadResource = 0x03,
-    ProgramLongword = 0x06,
-    EraseSector = 0x09,
-    Read1sBlock = 0x40,
-    ReadOnce = 0x41,
-    ProgramOnce = 0x43,
-    EraseAll = 0x44,
-    VerifyBackdoor = 0x45
-    };
- 
-inline void run_command(void);
-bool check_boundary(int address, unsigned int length);
-bool check_align(int address);
-IAPCode verify_erased(int address, unsigned int length);
-IAPCode check_error(void);
-IAPCode program_word(int address, char *data);IAPCode program_word(int address, char *data);
-    
-IAPCode erase_sector(int address) {
-    #ifdef IAPDEBUG
-    printf("IAP: Erasing at %x\r\n", address);
-    #endif
-    if (check_align(address))
-        return AlignError;
-    
-    //Setup command
-    FTFA->FCCOB0 = EraseSector;
-    FTFA->FCCOB1 = (address >> 16) & 0xFF;
-    FTFA->FCCOB2 = (address >> 8) & 0xFF;
-    FTFA->FCCOB3 = address & 0xFF;
-    
-    run_command();
-    
-    return check_error();
-}
- 
-IAPCode program_flash(int address, char *data, unsigned int length) {
-    #ifdef IAPDEBUG
-    printf("IAP: Programming flash at %x with length %d\r\n", address, length);
-    #endif
-    if (check_align(address))
-        return AlignError;
-        
-    IAPCode eraseCheck = verify_erased(address, length);
-    if (eraseCheck != Success)
-        return eraseCheck;
-    
-    IAPCode progResult;
-    for (int i = 0; i < length; i+=4) {
-        progResult = program_word(address + i, data + i);
-        if (progResult != Success)
-            return progResult;
-    }
-    
-    return Success;
-}
- 
-uint32_t flash_size(void) {
-    uint32_t retval = (SIM->FCFG2 & 0x7F000000u) >> (24-13);
-    if (SIM->FCFG2 & (1<<23))           //Possible second flash bank
-        retval += (SIM->FCFG2 & 0x007F0000u) >> (16-13);
-    return retval;
-}
- 
-IAPCode program_word(int address, char *data) {
-    #ifdef IAPDEBUG
-    printf("IAP: Programming word at %x, %d - %d - %d - %d\r\n", address, data[0], data[1], data[2], data[3]);
-    #endif
-    if (check_align(address))
-        return AlignError;
-    
-    //Setup command
-    FTFA->FCCOB0 = ProgramLongword;
-    FTFA->FCCOB1 = (address >> 16) & 0xFF;
-    FTFA->FCCOB2 = (address >> 8) & 0xFF;
-    FTFA->FCCOB3 = address & 0xFF;
-    FTFA->FCCOB4 = data[3];
-    FTFA->FCCOB5 = data[2];
-    FTFA->FCCOB6 = data[1];
-    FTFA->FCCOB7 = data[0];
-    
-    run_command();
-    
-    return check_error();
-}
- 
-/* Clear possible flags which are set, run command, wait until done */
-inline void run_command(void) {
-    //Clear possible old errors, start command, wait until done
-    FTFA->FSTAT = FTFA_FSTAT_FPVIOL_MASK | FTFA_FSTAT_ACCERR_MASK | FTFA_FSTAT_RDCOLERR_MASK;
-    FTFA->FSTAT = FTFA_FSTAT_CCIF_MASK;
-    while (!(FTFA->FSTAT & FTFA_FSTAT_CCIF_MASK));
-}    
-    
-    
- 
-/* Check if no flash boundary is violated
-   Returns true on violation */
-bool check_boundary(int address, unsigned int length) {
-    int temp = (address+length - 1) / SECTOR_SIZE;
-    address /= SECTOR_SIZE;
-    bool retval = (address != temp);
-    #ifdef IAPDEBUG
-    if (retval)
-        printf("IAP: Boundary violation\r\n");
-    #endif
-    return retval;
-}
- 
-/* Check if address is correctly aligned
-   Returns true on violation */
-bool check_align(int address) {
-    bool retval = address & 0x03;
-    #ifdef IAPDEBUG
-    if (retval)
-        printf("IAP: Alignment violation\r\n");
-    #endif
-    return retval;
-}
- 
-/* Check if an area of flash memory is erased
-   Returns error code or Success (in case of fully erased) */
-IAPCode verify_erased(int address, unsigned int length) {
-    #ifdef IAPDEBUG
-    printf("IAP: Verify erased at %x with length %d\r\n", address, length);
-    #endif
-    
-    if (check_align(address))
-        return AlignError;
-    
-    //Setup command
-    FTFA->FCCOB0 = Read1s;
-    FTFA->FCCOB1 = (address >> 16) & 0xFF;
-    FTFA->FCCOB2 = (address >> 8) & 0xFF;
-    FTFA->FCCOB3 = address & 0xFF;
-    FTFA->FCCOB4 = (length >> 10) & 0xFF;
-    FTFA->FCCOB5 = (length >> 2) & 0xFF;
-    FTFA->FCCOB6 = 0;
-    
-    run_command();
-    
-    IAPCode retval = check_error();
-    if (retval == RuntimeError) {
-        #ifdef IAPDEBUG
-        printf("IAP: Flash was not erased\r\n");
-        #endif
-        return EraseError;
-    }
-    return retval;
-        
-}
- 
-/* Check if an error occured 
-   Returns error code or Success*/
-IAPCode check_error(void) {
-    if (FTFA->FSTAT & FTFA_FSTAT_FPVIOL_MASK) {
-        #ifdef IAPDEBUG
-        printf("IAP: Protection violation\r\n");
-        #endif
-        return ProtectionError;
-    }
-    if (FTFA->FSTAT & FTFA_FSTAT_ACCERR_MASK) {
-        #ifdef IAPDEBUG
-        printf("IAP: Flash access error\r\n");
-        #endif
-        return AccessError;
-    }
-    if (FTFA->FSTAT & FTFA_FSTAT_RDCOLERR_MASK) {
-        #ifdef IAPDEBUG
-        printf("IAP: Collision error\r\n");
-        #endif
-        return CollisionError;
-    }
-    if (FTFA->FSTAT & FTFA_FSTAT_MGSTAT0_MASK) {
-        #ifdef IAPDEBUG
-        printf("IAP: Runtime error\r\n");
-        #endif
-        return RuntimeError;
-    }
-    #ifdef IAPDEBUG
-    printf("IAP: No error reported\r\n");
-    #endif
-    return Success;
-}
\ No newline at end of file
--- a/FreescaleIAP.h	Wed Jul 16 23:33:12 2014 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,87 +0,0 @@
-/*
- *  Freescale FTFA Flash Memory programmer
- *
- *  Sample usage:
-
-#include "mbed.h"
-#include "FreescaleIAP.h"
-  
-int main() {
-    int address = flash_size() - SECTOR_SIZE;           //Write in last sector
-    
-    int *data = (int*)address;
-    printf("Starting\r\n"); 
-    erase_sector(address);
-    int numbers[10] = {0, 1, 10, 100, 1000, 10000, 1000000, 10000000, 100000000, 1000000000};
-    program_flash(address, (char*)&numbers, 40);        //10 integers of 4 bytes each: 40 bytes length
-    printf("Resulting flash: \r\n");
-    for (int i = 0; i<10; i++)
-        printf("%d\r\n", data[i]);
-    
-    printf("Done\r\n\n");
-        
- 
-    while (true) {
-    }
-}
-
-*/
-
-#ifndef FREESCALEIAP_H
-#define FREESCALEIAP_H
- 
-#include "mbed.h"
- 
-#ifdef TARGET_KLXX
-#define SECTOR_SIZE     1024
-#elif TARGET_K20D5M
-#define SECTOR_SIZE     2048
-#elif TARGET_K64F
-#define SECTOR_SIZE     4096
-#else
-#define SECTOR_SIZE     1024
-#endif
- 
-enum IAPCode {
-    BoundaryError = -99,    //Commands may not span several sectors
-    AlignError,             //Data must be aligned on longword (two LSBs zero)
-    ProtectionError,        //Flash sector is protected
-    AccessError,            //Something went wrong
-    CollisionError,         //During writing something tried to flash which was written to
-    LengthError,            //The length must be multiples of 4
-    RuntimeError,           
-    EraseError,             //The flash was not erased before writing to it
-    Success = 0
-    };
- 
-/** Erase a flash sector
- *
- * The size erased depends on the used device
- *
- * @param address address in the sector which needs to be erased
- * @param return Success if no errors were encountered, otherwise one of the error states
- */
-IAPCode erase_sector(int address);
- 
-/** Program flash
- *
- * Before programming the used area needs to be erased. The erase state is checked
- * before programming, and will return an error if not erased.
- *
- * @param address starting address where the data needs to be programmed (must be longword alligned: two LSBs must be zero)
- * @param data pointer to array with the data to program
- * @param length number of bytes to program (must be a multiple of 4)
- * @param return Success if no errors were encountered, otherwise one of the error states
- */
-IAPCode program_flash(int address, char *data, unsigned int length);
- 
-/**
- * Returns size of flash memory
- * 
- * This is the first address which is not flash
- *
- * @param return length of flash memory in bytes
- */
-uint32_t flash_size(void);
- 
-#endif
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/FreescaleIAP/FreescaleIAP.cpp	Tue Jul 22 04:33:47 2014 +0000
@@ -0,0 +1,205 @@
+#include "FreescaleIAP.h"
+ 
+//#define IAPDEBUG
+ 
+enum FCMD {
+    Read1s = 0x01,
+    ProgramCheck = 0x02,
+    ReadResource = 0x03,
+    ProgramLongword = 0x06,
+    EraseSector = 0x09,
+    Read1sBlock = 0x40,
+    ReadOnce = 0x41,
+    ProgramOnce = 0x43,
+    EraseAll = 0x44,
+    VerifyBackdoor = 0x45
+};
+
+static inline void run_command(FTFA_Type *);
+bool check_boundary(int address, unsigned int length);
+bool check_align(int address);
+IAPCode check_error(void);
+    
+FreescaleIAP::FreescaleIAP()
+{
+}
+ 
+FreescaleIAP::~FreescaleIAP()
+{
+} 
+
+// execute an FTFA command
+static inline void run_command(FTFA_Type *ftfa) 
+{    
+    // disable interupts
+    __disable_irq();
+    
+    // Clear possible old errors, start command, wait until done
+    ftfa->FSTAT = FTFA_FSTAT_FPVIOL_MASK | FTFA_FSTAT_ACCERR_MASK | FTFA_FSTAT_RDCOLERR_MASK;
+    ftfa->FSTAT = FTFA_FSTAT_CCIF_MASK;
+    while (!(ftfa->FSTAT & FTFA_FSTAT_CCIF_MASK));
+    
+    // re-enable interrupts
+    __enable_irq();
+}    
+
+ 
+IAPCode FreescaleIAP::erase_sector(int address) {
+    #ifdef IAPDEBUG
+    printf("IAP: Erasing at %x\r\n", address);
+    #endif
+    if (check_align(address))
+        return AlignError;
+    
+    //Setup command
+    FTFA->FCCOB0 = EraseSector;
+    FTFA->FCCOB1 = (address >> 16) & 0xFF;
+    FTFA->FCCOB2 = (address >> 8) & 0xFF;
+    FTFA->FCCOB3 = address & 0xFF;
+    
+    run_command(FTFA);
+    
+    return check_error();
+}
+ 
+IAPCode FreescaleIAP::program_flash(int address, const void *vp, unsigned int length) {
+    
+    const char *data = (const char *)vp;
+    
+    #ifdef IAPDEBUG
+    printf("IAP: Programming flash at %x with length %d\r\n", address, length);
+    #endif
+    if (check_align(address))
+        return AlignError;
+        
+    IAPCode eraseCheck = verify_erased(address, length);
+    if (eraseCheck != Success)
+        return eraseCheck;
+    
+    IAPCode progResult;
+    for (int i = 0; i < length; i+=4) {
+        progResult = program_word(address + i, data + i);
+        if (progResult != Success)
+            return progResult;
+    }
+    
+    return Success;
+}
+ 
+uint32_t FreescaleIAP::flash_size(void) {
+    uint32_t retval = (SIM->FCFG2 & 0x7F000000u) >> (24-13);
+    if (SIM->FCFG2 & (1<<23))           //Possible second flash bank
+        retval += (SIM->FCFG2 & 0x007F0000u) >> (16-13);
+    return retval;
+}
+ 
+IAPCode FreescaleIAP::program_word(int address, const char *data) {
+    #ifdef IAPDEBUG
+    printf("IAP: Programming word at %x, %d - %d - %d - %d\r\n", address, data[0], data[1], data[2], data[3]);
+    #endif
+    if (check_align(address))
+        return AlignError;
+    
+    //Setup command
+    FTFA->FCCOB0 = ProgramLongword;
+    FTFA->FCCOB1 = (address >> 16) & 0xFF;
+    FTFA->FCCOB2 = (address >> 8) & 0xFF;
+    FTFA->FCCOB3 = address & 0xFF;
+    FTFA->FCCOB4 = data[3];
+    FTFA->FCCOB5 = data[2];
+    FTFA->FCCOB6 = data[1];
+    FTFA->FCCOB7 = data[0];
+    
+    run_command(FTFA);
+    
+    return check_error();
+}
+ 
+/* Check if no flash boundary is violated
+   Returns true on violation */
+bool check_boundary(int address, unsigned int length) {
+    int temp = (address+length - 1) / SECTOR_SIZE;
+    address /= SECTOR_SIZE;
+    bool retval = (address != temp);
+    #ifdef IAPDEBUG
+    if (retval)
+        printf("IAP: Boundary violation\r\n");
+    #endif
+    return retval;
+}
+ 
+/* Check if address is correctly aligned
+   Returns true on violation */
+bool check_align(int address) {
+    bool retval = address & 0x03;
+    #ifdef IAPDEBUG
+    if (retval)
+        printf("IAP: Alignment violation\r\n");
+    #endif
+    return retval;
+}
+ 
+/* Check if an area of flash memory is erased
+   Returns error code or Success (in case of fully erased) */
+IAPCode FreescaleIAP::verify_erased(int address, unsigned int length) {
+    #ifdef IAPDEBUG
+    printf("IAP: Verify erased at %x with length %d\r\n", address, length);
+    #endif
+    
+    if (check_align(address))
+        return AlignError;
+    
+    //Setup command
+    FTFA->FCCOB0 = Read1s;
+    FTFA->FCCOB1 = (address >> 16) & 0xFF;
+    FTFA->FCCOB2 = (address >> 8) & 0xFF;
+    FTFA->FCCOB3 = address & 0xFF;
+    FTFA->FCCOB4 = (length >> 10) & 0xFF;
+    FTFA->FCCOB5 = (length >> 2) & 0xFF;
+    FTFA->FCCOB6 = 0;
+    
+    run_command(FTFA);
+    
+    IAPCode retval = check_error();
+    if (retval == RuntimeError) {
+        #ifdef IAPDEBUG
+        printf("IAP: Flash was not erased\r\n");
+        #endif
+        return EraseError;
+    }
+    return retval;
+        
+}
+ 
+/* Check if an error occured 
+   Returns error code or Success*/
+IAPCode check_error(void) {
+    if (FTFA->FSTAT & FTFA_FSTAT_FPVIOL_MASK) {
+        #ifdef IAPDEBUG
+        printf("IAP: Protection violation\r\n");
+        #endif
+        return ProtectionError;
+    }
+    if (FTFA->FSTAT & FTFA_FSTAT_ACCERR_MASK) {
+        #ifdef IAPDEBUG
+        printf("IAP: Flash access error\r\n");
+        #endif
+        return AccessError;
+    }
+    if (FTFA->FSTAT & FTFA_FSTAT_RDCOLERR_MASK) {
+        #ifdef IAPDEBUG
+        printf("IAP: Collision error\r\n");
+        #endif
+        return CollisionError;
+    }
+    if (FTFA->FSTAT & FTFA_FSTAT_MGSTAT0_MASK) {
+        #ifdef IAPDEBUG
+        printf("IAP: Runtime error\r\n");
+        #endif
+        return RuntimeError;
+    }
+    #ifdef IAPDEBUG
+    printf("IAP: No error reported\r\n");
+    #endif
+    return Success;
+}
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/FreescaleIAP/FreescaleIAP.h	Tue Jul 22 04:33:47 2014 +0000
@@ -0,0 +1,102 @@
+/*
+ *  Freescale FTFA Flash Memory programmer
+ *
+ *  Sample usage:
+
+#include "mbed.h"
+#include "FreescaleIAP.h"
+  
+int main() {
+    int address = flash_size() - SECTOR_SIZE;           //Write in last sector
+    
+    int *data = (int*)address;
+    printf("Starting\r\n"); 
+    erase_sector(address);
+    int numbers[10] = {0, 1, 10, 100, 1000, 10000, 1000000, 10000000, 100000000, 1000000000};
+    program_flash(address, (char*)&numbers, 40);        //10 integers of 4 bytes each: 40 bytes length
+    printf("Resulting flash: \r\n");
+    for (int i = 0; i<10; i++)
+        printf("%d\r\n", data[i]);
+    
+    printf("Done\r\n\n");
+        
+ 
+    while (true) {
+    }
+}
+
+*/
+
+#ifndef FREESCALEIAP_H
+#define FREESCALEIAP_H
+ 
+#include "mbed.h"
+ 
+#ifdef TARGET_KLXX
+#define SECTOR_SIZE     1024
+#elif TARGET_K20D5M
+#define SECTOR_SIZE     2048
+#elif TARGET_K64F
+#define SECTOR_SIZE     4096
+#else
+#define SECTOR_SIZE     1024
+#endif
+
+enum IAPCode {
+    BoundaryError = -99,    //Commands may not span several sectors
+    AlignError,             //Data must be aligned on longword (two LSBs zero)
+    ProtectionError,        //Flash sector is protected
+    AccessError,            //Something went wrong
+    CollisionError,         //During writing something tried to flash which was written to
+    LengthError,            //The length must be multiples of 4
+    RuntimeError,           
+    EraseError,             //The flash was not erased before writing to it
+    Success = 0
+};
+ 
+
+class FreescaleIAP
+{
+public:
+    FreescaleIAP();
+    ~FreescaleIAP();
+ 
+    /** Erase a flash sector
+     *
+     * The size erased depends on the used device
+     *
+     * @param address address in the sector which needs to be erased
+     * @param return Success if no errors were encountered, otherwise one of the error states
+     */
+    IAPCode erase_sector(int address);
+     
+    /** Program flash
+     *
+     * Before programming the used area needs to be erased. The erase state is checked
+     * before programming, and will return an error if not erased.
+     *
+     * @param address starting address where the data needs to be programmed (must be longword alligned: two LSBs must be zero)
+     * @param data pointer to array with the data to program
+     * @param length number of bytes to program (must be a multiple of 4)
+     * @param return Success if no errors were encountered, otherwise one of the error states
+     */
+    IAPCode program_flash(int address, const void *data, unsigned int length);
+     
+    /**
+     * Returns size of flash memory
+     * 
+     * This is the first address which is not flash
+     *
+     * @param return length of flash memory in bytes
+     */
+    uint32_t flash_size(void);
+    
+private:
+    // program a word of flash
+    IAPCode program_word(int address, const char *data);
+    
+    // verify that a flash area has been erased
+    IAPCode verify_erased(int address, unsigned int length);
+};
+ 
+#endif
--- a/MMA8451Q/MMA8451Q.cpp	Wed Jul 16 23:33:12 2014 +0000
+++ b/MMA8451Q/MMA8451Q.cpp	Tue Jul 22 04:33:47 2014 +0000
@@ -79,10 +79,9 @@
     uint8_t d4[2] = {REG_CTRL_REG_2, (d3[0] & ~MODS_MASK) | MODS1_MASK};
     writeRegs(d4, 2);
     
-    // set 50 Hz mode
+    // set 100 Hz mode
     uint8_t d5[1];
     readRegs(REG_CTRL_REG_1, d5, 1);
-    
     uint8_t d6[2] = {REG_CTRL_REG_1, (d5[0] & ~DR_MASK) | DR_100_HZ};
     writeRegs(d6, 2);
     
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/TSL1410R/tsl1410r.h	Tue Jul 22 04:33:47 2014 +0000
@@ -0,0 +1,55 @@
+/*
+ *  TSL1410R interface class.
+ *
+ *  This provides a high-level interface for the Taos TSL1410R linear CCD array sensor.
+ */
+ 
+ #include "mbed.h"
+ 
+ #ifndef TSL1410R_H
+ #define TSL1410R_H
+ 
+class TSL1410R
+{
+public:
+    // set up with the two DigitalOut ports (SI and clock), and the
+    // analog in port for reading the currently selected pixel value
+    TSL1410R(PinName siPort, PinName clockPort, PinName aoPort);
+
+    // Read the pixels.  Fills in pix[] with the pixel values, scaled 0-0xffff.
+    // n is the number of pixels to read; if this is less than the physical
+    // array size (npix), we'll read every mth pixel, where m = npix/n.  E.g.,
+    // if you want 640 pixels out of 1280 on the sensor, we'll read every
+    // other pixel.  If you want 320, we'll read every fourth pixel.
+    //
+    // We clock an SI pulse at the beginning of the read.  This starts the
+    // next integration cycle: the pixel array will reset on the SI, and 
+    // the integration starts 18 clocks later.  So by the time this returns,
+    // the next sample will have been integrating for npix-18 clocks.  In
+    // many cases this is enough time to allow immediately reading the next
+    // sample; if more integration time is required, the caller can simply
+    // sleep/spin for the desired additional time, or can do other work that
+    // takes the desired additional time.  
+    //
+    // If the caller has other work to tend to that takes longer than the
+    // desired maximum integration time, it can call clear() to clock out
+    // the current pixels and start a fresh integration cycle.
+    void read(uint16_t *pix, int n);
+
+    // Clock through all pixels to clear the array.  Pulses SI at the
+    // beginning of the operation, which starts a new integration cycle.
+    // The caller can thus immediately call read() to read the pixels 
+    // integrated while the clear() was taking place.
+    void clear();
+
+    // number of pixels in the array
+    static const int nPix = 1280;
+    
+    
+private:
+    DigitalOut si;
+    DigitalOut clock;
+    AnalogIn ao;
+};
+ 
+#endif /* TSL1410R_H */
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/TSL1410R/tsl410r.cpp	Tue Jul 22 04:33:47 2014 +0000
@@ -0,0 +1,58 @@
+#include "mbed.h"
+#include "tsl1410r.h"
+
+TSL1410R::TSL1410R(PinName siPort, PinName clockPort, PinName aoPort)
+    : si(siPort), clock(clockPort), ao(aoPort)
+{
+    // clear out power-on noise by clocking through all pixels twice
+    clear();
+    clear();
+}
+
+void TSL1410R::clear()
+{
+    // clock in an SI pulse
+    si = 1;
+    clock = 1;
+    clock = 0;
+    si = 0;
+    
+    // clock out all pixels
+    for (int i = 0 ; i < nPix + 1 ; ++i) {
+        clock = 1;
+        clock = 0;
+    }
+}
+
+void TSL1410R::read(uint16_t *pix, int n)
+{
+    // Start the next integration cycle by pulsing SI and one clock.
+    si = 1;
+    clock = 1;
+    clock = 0;
+    si = 0;
+        
+    // figure how many pixels to skip on each read
+    int skip = nPix/n - 1;
+
+    // read the pixels
+    for (int src = 0, dst = 0 ; src < nPix ; ++src)
+    {
+        // read this pixel
+        pix[dst++] = ao.read_u16();
+        
+        // clock in the next pixel
+        clock = 1;
+        clock = 0;
+        
+        // clock skipped pixels
+        for (int i = 0 ; i < skip ; ++i, ++src) {
+            clock = 1;
+            clock = 0;
+        }
+    }
+    
+    // clock out one extra pixel to leave A1 in the high-Z state
+    clock = 1;
+    clock = 0;
+}
--- a/USBJoystick.cpp	Wed Jul 16 23:33:12 2014 +0000
+++ b/USBJoystick.cpp	Tue Jul 22 04:33:47 2014 +0000
@@ -42,7 +42,7 @@
    report.data[4] = _z & 0xff;
    report.length = 5; 
  
-   return send(&report);
+   return sendNB(&report);
 }
  
 bool USBJoystick::move(int16_t x, int16_t y) {
--- a/main.cpp	Wed Jul 16 23:33:12 2014 +0000
+++ b/main.cpp	Tue Jul 22 04:33:47 2014 +0000
@@ -3,6 +3,31 @@
 #include "MMA8451Q.h"
 #include "tsl1410r.h"
 #include "FreescaleIAP.h"
+#include "crc32.h"
+
+// customization of the joystick class to expose connect/suspend status
+class MyUSBJoystick: public USBJoystick
+{
+public:
+    MyUSBJoystick(uint16_t vendor_id, uint16_t product_id, uint16_t product_release) 
+        : USBJoystick(vendor_id, product_id, product_release)
+    {
+        connected_ = false;
+        suspended_ = false;
+    }
+    
+    int isConnected() const { return connected_; }
+    int isSuspended() const { return suspended_; }
+    
+protected:
+    virtual void connectStateChanged(unsigned int connected) 
+        { connected_ = connected; }
+    virtual void suspendStateChanged(unsigned int suspended)
+        { suspended_ = suspended; }
+
+    int connected_;
+    int suspended_; 
+};
 
 // on-board RGB LED elements - we use these for diagnostics
 PwmOut led1(LED1), led2(LED2), led3(LED3);
@@ -62,6 +87,36 @@
     }
 };
 
+// Non-volatile memory structure.  We store persistent a small
+// amount of persistent data in flash memory to retain calibration
+// data between sessions.
+struct NVM
+{
+    // checksum - we use this to determine if the flash record
+    // has been initialized
+    uint32_t checksum;
+
+    // signature value
+    static const uint32_t SIGNATURE = 0x4D4A522A;
+    static const uint16_t VERSION = 0x0002;
+    
+    // stored data (excluding the checksum)
+    struct
+    {
+        // signature and version - further verification that we have valid 
+        // initialized data
+        uint32_t sig;
+        uint16_t vsn;
+        
+        // direction - 0 means unknown, 1 means bright end is pixel 0, 2 means reversed
+        uint8_t dir;
+
+        // plunger calibration min and max
+        int plungerMin;
+        int plungerMax;
+    } d;
+};
+
 int main(void)
 {
     // turn off our on-board indicator LED
@@ -69,9 +124,42 @@
     led2 = 1;
     led3 = 1;
     
-    // plunger calibration data
-    const int npix = 320;
-    int plungerMin = 0, plungerMax = npix;
+    // set up a flash memory controller
+    FreescaleIAP iap;
+    
+    // use the last sector of flash for our non-volatile memory structure
+    int flash_addr = (iap.flash_size() - SECTOR_SIZE);
+    NVM *flash = (NVM *)flash_addr;
+    NVM cfg;
+    
+    // check for valid flash
+    bool flash_valid = (flash->d.sig == flash->SIGNATURE 
+                        && flash->d.vsn == flash->VERSION
+                        && flash->checksum == CRC32(&flash->d, sizeof(flash->d)));
+                      
+    // Number of pixels we read from the sensor on each frame.  This can be
+    // less than the physical pixel count if desired; we'll read every nth
+    // piexl if so.  E.g., with a 1280-pixel physical sensor, if npix is 320,
+    // we'll read every 4th pixel.  VP doesn't seem to have very high
+    // resolution internally for the plunger, so it's probably not necessary
+    // to use the full resolution of the sensor - about 160 pixels seems
+    // perfectly adequate.  We can read the sensor faster (and thus provide
+    // a higher refresh rate) if we read fewer pixels in each frame.
+    const int npix = 160;
+
+    // if the flash is valid, load it; otherwise initialize to defaults
+    if (flash_valid) {
+        memcpy(&cfg, flash, sizeof(cfg));
+        printf("Flash restored: plunger min=%d, max=%d\r\n", 
+            cfg.d.plungerMin, cfg.d.plungerMax);
+    }
+    else {
+        printf("Factory reset\r\n");
+        cfg.d.sig = cfg.SIGNATURE;
+        cfg.d.vsn = cfg.VERSION;
+        cfg.d.plungerMin = 0;
+        cfg.d.plungerMax = npix;
+    }
     
     // plunger calibration button debounce timer
     Timer calBtnTimer;
@@ -97,32 +185,20 @@
     acTimer.start();
     int t0ac = acTimer.read_ms();
     
-    // set up a timer for reading the plunger sensor
-    Timer ccdTimer;
-    ccdTimer.start();
-    int t0ccd = ccdTimer.read_ms();
-    
-#if 0
-    // DEBUG
-    Timer ccdDbgTimer;
-    ccdDbgTimer.start();
-    int t0ccdDbg = ccdDbgTimer.read_ms();
-#endif
-
     // Create the joystick USB client.  Light the on-board indicator LED
     // red while connecting, and change to green after we connect.
-    led1 = 0.75;
-    USBJoystick js(0xFAFA, 0x00F7, 0x0001);
+    led1 = 0;
+    MyUSBJoystick js(0xFAFA, 0x00F7, 0x0001);
     led1 = 1;
-    led2 = 0.75;
-    
+    led2 = 0;
+
     // create the accelerometer object
     const int MMA8451_I2C_ADDRESS = (0x1d<<1);
     MMA8451Q accel(PTE25, PTE24, MMA8451_I2C_ADDRESS);
     
     // create the CCD array object
     TSL1410R ccd(PTE20, PTE21, PTB0);
-
+    
     // recent accelerometer readings, for auto centering
     int iAccPrv = 0, nAccPrv = 0;
     const int maxAccPrv = 5;
@@ -130,9 +206,12 @@
 
     // last accelerometer report, in mouse coordinates
     int x = 127, y = 127, z = 0;
-    
+
     // raw accelerator centerpoint, on the unit interval (-1.0 .. +1.0)
     float xCenter = 0.0, yCenter = 0.0;    
+    
+    // start the first CCD integration cycle
+    ccd.clear();
 
     // we're all set up - now just loop, processing sensor reports and 
     // host requests
@@ -219,21 +298,49 @@
                     calBtnState = 3;
                     
                     // reset the calibration limits
-                    plungerMax = 0;
-                    plungerMin = npix;
+                    cfg.d.plungerMax = 0;
+                    cfg.d.plungerMin = npix;
                 }
                 break;
+                
+            case 3:
+                // Already in calibration mode - pushing the button in this
+                // state doesn't change the current state, but we won't leave
+                // this state as long as it's held down.  We can simply do
+                // nothing here.
+                break;
             }
         }
         else
         {
-            // Button released.  If we're not already in calibration mode,
-            // reset the button state.  Once calibration mode starts, it sticks
-            // until the calibration time elapses.
-            if (calBtnState != 3)
+            // Button released.  If we're in calibration mode, and
+            // the calibration time has elapsed, end the calibration
+            // and save the results to flash.
+            //
+            // Otherwise, return to the base state without saving anything.
+            // If the button is released before we make it to calibration
+            // mode, it simply cancels the attempt.
+            if (calBtnState == 3
+                && calBtnTimer.read_ms() - calBtnDownTime > 17500)
+            {
+                // exit calibration mode
                 calBtnState = 0;
-            else if (calBtnTimer.read_ms() - calBtnDownTime > 32500)
+                
+                // Save the current configuration state to flash, so that it
+                // will be preserved through power off.  Update the checksum
+                // first so that we recognize the flash record as valid.
+                cfg.checksum = CRC32(&cfg.d, sizeof(cfg.d));
+                iap.erase_sector(flash_addr);
+                iap.program_flash(flash_addr, &cfg, sizeof(cfg));
+                
+                // the flash state is now valid
+                flash_valid = true;
+            }
+            else if (calBtnState != 3)
+            {
+                // didn't make it to calibration mode - cancel the operation
                 calBtnState = 0;
+            }
         }       
         
         // light/flash the calibration button light, if applicable
@@ -258,89 +365,86 @@
         if (calBtnLit != newCalBtnLit)
         {
             calBtnLit = newCalBtnLit;
-            calBtnLed = (calBtnLit ? 1 : 0);
+            if (calBtnLit) {
+                calBtnLed = 1;
+                led1 = 0;
+                led2 = 0;
+                led3 = 1;
+            }
+            else {
+                calBtnLed = 0;
+                led1 = 1;
+                led2 = 1;
+                led3 = 0;
+            }
         }
         
         // read the plunger sensor
         int znew = z;
-        /* if (ccdTimer.read_ms() - t0ccd > 33) */
+        uint16_t pix[npix];
+        ccd.read(pix, npix);
+
+        // get the average brightness at each end of the sensor
+        long avg1 = (long(pix[0]) + long(pix[1]) + long(pix[2]) + long(pix[3]) + long(pix[4]))/5;
+        long avg2 = (long(pix[npix-1]) + long(pix[npix-2]) + long(pix[npix-3]) + long(pix[npix-4]) + long(pix[npix-5]))/5;
+        
+        // figure the midpoint in the brightness; multiply by 3 so that we can
+        // compare sums of three pixels at a time to smooth out noise
+        long midpt = (avg1 + avg2)/2 * 3;
+        
+        // Work from the bright end to the dark end.  VP interprets the
+        // Z axis value as the amount the plunger is pulled: the minimum
+        // is the rest position, the maximum is fully pulled.  So we 
+        // essentially want to report how much of the sensor is lit,
+        // since this increases as the plunger is pulled back.
+        int si = 1, di = 1;
+        if (avg1 < avg2)
+            si = npix - 2, di = -1;
+
+        // scan for the midpoint     
+        uint16_t *pixp = pix + si;           
+        for (int n = 1 ; n < npix - 1 ; ++n, pixp += di)
         {
-            // read the sensor at reduced resolution
-            uint16_t pix[npix];
-            ccd.read(pix, npix, 0);
-            
-#if 0
-            // debug - send samples every 5 seconds
-            if (ccdDbgTimer.read_ms() - t0ccdDbg > 5000)
-            {
-                for (int i = 0 ; i < npix ; ++i)
-                    printf("%x ", pix[i]);
-                printf("\r\n\r\n");
-            
-                ccdDbgTimer.reset();
-                t0ccdDbg = ccdDbgTimer.read_ms();
-            }
-#endif
-    
-            // check which end is the brighter - this is the "tip" end
-            // of the plunger
-            long avg1 = (long(pix[0]) + long(pix[1]) + long(pix[2]) + long(pix[3]) + long(pix[4]))/5;
-            long avg2 = (long(pix[npix-1]) + long(pix[npix-2]) + long(pix[npix-3]) + long(pix[npix-4]) + long(pix[npix-5]))/5;
-            
-            // figure the midpoint in the brightness
-            long midpt = (avg1 + avg2)/2 * 3;
-            
-            // Work from the bright end to the dark end.  VP interprets the
-            // Z axis value as the amount the plunger is pulled: the minimum
-            // is the rest position, the maximum is fully pulled.  So we 
-            // essentially want to report how much of the sensor is lit,
-            // since this increases as the plunger is pulled back.
-            int si = 1, di = 1;
-            if (avg1 < avg2)
-                si = npix - 1, di = -1;
-
-            // scan for the midpoint                
-            for (int n = 1, i = si ; n < npix - 1 ; ++n, i += di)
+            // if we've crossed the midpoint, report this position
+            if (long(pixp[-1]) + long(pixp[0]) + long(pixp[1]) < midpt)
             {
-                // if we've crossed the midpoint, report this position
-                if (long(pix[i-1]) + long(pix[i]) + long(pix[i+1]) < midpt)
+                // note the new position
+                int pos = n;
+                
+                // if the bright end and dark end don't differ by enough, skip this
+                // reading entirely - we must have an overexposed or underexposed frame
+                if (labs(avg1 - avg2) < 0x3333)
+                    break; 
+                
+                // Calibrate, or apply calibration, depending on the mode.
+                // In either case, normalize to a 0-127 range.  VP appears to
+                // ignore negative Z axis values.
+                if (calBtnState == 3)
                 {
-                    // note the new position
-                    int pos = abs(i - si);
-                    
-                    // Calibrate, or apply calibration, depending on the mode.
-                    // In either case, normalize to a 0-127 range.  VP appears to
-                    // ignore negative Z axis values.
-                    if (calBtnState == 3)
-                    {
-                        // calibrating - note if we're expanding the calibration envelope
-                        if (pos < plungerMin)
-                            plungerMin = pos;   
-                        if (pos > plungerMax)
-                            plungerMax = pos;
-                            
-                        // normalize to the full physical range while calibrating
-                        znew = int(float(pos)/npix * 127);
-                    }
-                    else
-                    {
-                        // running normally - normalize to the calibration range
-                        if (pos < plungerMin)
-                            pos = plungerMin;
-                        if (pos > plungerMax)
-                            pos = plungerMax;
-                        znew = int(float(pos - plungerMin)/(plungerMax - plungerMin + 1) * 127);
-                    }
-                    
-                    // done
-                    break;
+                    // calibrating - note if we're expanding the calibration envelope
+                    if (pos < cfg.d.plungerMin)
+                        cfg.d.plungerMin = pos;   
+                    if (pos > cfg.d.plungerMax)
+                        cfg.d.plungerMax = pos;
+                        
+                    // normalize to the full physical range while calibrating
+                    znew = int(float(pos)/npix * 127);
                 }
+                else
+                {
+                    // running normally - normalize to the calibration range
+                    if (pos < cfg.d.plungerMin)
+                        pos = cfg.d.plungerMin;
+                    if (pos > cfg.d.plungerMax)
+                        pos = cfg.d.plungerMax;
+                    znew = int(float(pos - cfg.d.plungerMin)
+                        / (cfg.d.plungerMax - cfg.d.plungerMin + 1) * 127);
+                }
+                
+                // done
+                break;
             }
-            
-            // reset the timer
-            ccdTimer.reset();
-            t0ccd = ccdTimer.read_ms();
-        } 
+        }
         
         // read the accelerometer
         float xa, ya;
@@ -391,26 +495,79 @@
         // figure the new mouse report data
         int xnew = (int)(127 * xa);
         int ynew = (int)(127 * ya);
+
+        // store the updated joystick coordinates
+        x = xnew;
+        y = ynew;
+        z = znew;
         
-        // send an update if the position has changed
-        // if (xnew != x || ynew != y || znew != z)
+        // if we're in USB suspend or disconnect mode, spin
+        if (js.isSuspended() || !js.isConnected())
         {
-            x = xnew;
-            y = ynew;
-            z = znew;
+            // go dark (turn off the indicator LEDs)
+            led2 = 1;
+            led3 = 1;
+            led1 = 1;
+            
+            // wait until we're connected and come out of suspend mode
+            while (js.isSuspended() || !js.isConnected())
+            {
+                // spin for a bit
+                wait(1);
+                
+                // if we're not suspended, flash red; otherwise stay dark
+                if (!js.isSuspended())
+                    led1 = !led1;
+            }
+        }
 
-            // Send the status report.  Note that the X axis needs to be
-            // reversed, becasue the native accelerometer reports seem to
-            // assume that the card is component side down.
-            js.update(x, -y, z, 0);
-        }
+        // Send the status report.  Note one of the axes needs to be
+        // reversed, because the native accelerometer reports seem to
+        // assume that the card is component side down; we have to
+        // reverse one or the other axis to account for the reversed
+        // coordinate system.  It doesn't really matter which one,
+        // but reversing Y seems to give intuitive results when viewed
+        // in the Windows joystick control panel.  Note that the 
+        // coordinate system we report is ultimately arbitrary, since
+        // Visual Pinball has preference settings that let us set up
+        // axis reversals and a global rotation for the joystick.
+        js.update(x, -y, z, 0);
         
-        // show a heartbeat flash in blue every so often
-        if (hbTimer.read_ms() - t0Hb > 1000) 
+        // show a heartbeat flash in blue every so often if not in 
+        // calibration mode
+        if (calBtnState < 2 && hbTimer.read_ms() - t0Hb > 1000) 
         {
-            // invert the blue LED state
-            hb = !hb;
-            led3 = (hb ? .5 : 1);
+            if (js.isSuspended())
+            {
+                // suspended - turn off the LEDs entirely
+                led1 = 1;
+                led2 = 1;
+                led3 = 1;
+            }
+            else if (!js.isConnected())
+            {
+                // not connected - flash red
+                hb = !hb;
+                led1 = (hb ? 0 : 1);
+                led2 = 1;
+                led3 = 1;
+            }
+            else if (flash_valid)
+            {
+                // connected, NVM valid - flash blue/green
+                hb = !hb;
+                led1 = 1;
+                led2 = (hb ? 0 : 1);
+                led3 = (hb ? 1 : 0);
+            }
+            else
+            {
+                // connected, factory reset - flash yellow/green
+                hb = !hb;
+                led1 = (hb ? 0 : 1);
+                led2 = 0;
+                led3 = 0;
+            }
             
             // reset the heartbeat timer
             hbTimer.reset();
--- a/tsl1410r.h	Wed Jul 16 23:33:12 2014 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,41 +0,0 @@
-/*
- *  TSL1410R interface class.
- *
- *  This provides a high-level interface for the Taos TSL1410R linear CCD array sensor.
- */
- 
- #include "mbed.h"
- 
- #ifndef TSL1410R_H
- #define TSL1410R_H
- 
-class TSL1410R
-{
-public:
-    // set up with the two DigitalOut ports (SI and clock), and the
-    // analog in port for reading the currently selected pixel value
-    TSL1410R(PinName siPort, PinName clockPort, PinName aoPort);
-
-    // Integrate light and read the pixels.  Fills in pix[] with the pixel values,
-    // scaled 0-0xffff.  n is the number of pixels to read; if this is less than
-    // the total number of pixels npix, we'll read every mth pixel, where m = npix/n.
-    // E.g., if you want 640 pixels out of 1280 on the sensor, we'll read every
-    // other pixel.  If you want 320, we'll read every fourth pixel.
-    // Before reading, we'll pause for integrate_us additional microseconds during
-    // the integration phase; use 0 for no additional integration time. 
-    void read(uint16_t *pix, int n, int integrate_us);
-
-    // clock through all pixels to clear the array
-    void clear();
-
-    // number of pixels in the array
-    static const int nPix = 1280;
-    
-    
-private:
-    DigitalOut si;
-    DigitalOut clock;
-    AnalogIn ao;
-};
- 
-#endif /* TSL1410R_H */
--- a/tsl410r.cpp	Wed Jul 16 23:33:12 2014 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,74 +0,0 @@
-#include "mbed.h"
-#include "tsl1410r.h"
-
-TSL1410R::TSL1410R(PinName siPort, PinName clockPort, PinName aoPort)
-    : si(siPort), clock(clockPort), ao(aoPort)
-{
-    // clear out power-on noise by clocking through all pixels twice
-    clear();
-    clear();
-}
-
-void TSL1410R::clear()
-{
-    // clock in an SI pulse
-    si = 1;
-    clock = 1;
-    clock = 0;
-    si = 0;
-    
-    // clock out all pixels
-    for (int i = 0 ; i < nPix+1 ; ++i) {
-        clock = 1;
-        clock = 0;
-    }
-}
-
-void TSL1410R::read(uint16_t *pix, int n, int integrate_us)
-{
-    // Start an integration cycle - pulse SI, then clock all pixels.  The
-    // CCD will integrate light starting 18 clocks after the SI pulse, and
-    // continues integrating until the next SI pulse, which cannot occur
-    // until all pixels have been clocked.
-    si = 1;
-    clock = 1;
-    clock = 0;
-    si = 0;
-    for (int i = 0 ; i < nPix+1 ; ++i) {
-        clock = 1;
-        clock = 0;
-    }
-        
-    // delay by the specified additional integration time
-    wait_us(integrate_us);
-    
-    // end the current integration cycle and hold the integrated values
-    si = 1;
-    clock = 1;
-    clock = 0;
-    si = 0;
-    
-    // figure how many pixels to skip on each read
-    int skip = nPix/n - 1;
-
-    // read the pixels
-    for (int src = 0, dst = 0 ; src < nPix ; ++src)
-    {
-        // read this pixel
-        pix[dst++] = ao.read_u16();
-        
-        // clock in the next pixel
-        clock = 1;
-        clock = 0;
-        
-        // clock skipped pixels
-        for (int i = 0 ; i < skip ; ++i, ++src) {
-            clock = 1;
-            clock = 0;
-        }
-    }
-    
-    // clock out one extra pixel to make sure the device is ready for another go
-    clock = 1;
-    clock = 0;
-}