mbed library sources

Dependents:   Encrypted my_mbed lklk CyaSSL_DTLS_Cellular ... more

Superseded

This library was superseded by mbed-dev - https://os.mbed.com/users/mbed_official/code/mbed-dev/.

Development branch of the mbed library sources. This library is kept in synch with the latest changes from the mbed SDK and it is not guaranteed to work.

If you are looking for a stable and tested release, please import one of the official mbed library releases:

Import librarymbed

The official Mbed 2 C/C++ SDK provides the software platform and libraries to build your applications.

targets/hal/TARGET_NXP/TARGET_LPC176X/can_api.c

Committer:
mbed_official
Date:
2014-09-20
Revision:
326:da258e7d377e
Parent:
227:7bd0639b8911
Child:
530:2939f5396008

File content as of revision 326:da258e7d377e:

/* mbed Microcontroller Library
 * Copyright (c) 2006-2013 ARM Limited
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
#include "mbed_assert.h"
#include "can_api.h"

#include "cmsis.h"
#include "pinmap.h"

#include <math.h>
#include <string.h>

#define CAN_NUM    2

/* Acceptance filter mode in AFMR register */
#define ACCF_OFF                0x01
#define ACCF_BYPASS             0x02
#define ACCF_ON                 0x00
#define ACCF_FULLCAN            0x04

/* There are several bit timing calculators on the internet.
http://www.port.de/engl/canprod/sv_req_form.html
http://www.kvaser.com/can/index.htm
*/

static const PinMap PinMap_CAN_RD[] = {
    {P0_0 , CAN_1, 1},
    {P0_4 , CAN_2, 2},
    {P0_21, CAN_1, 3},
    {P2_7 , CAN_2, 1},
    {NC   , NC   , 0}
};

static const PinMap PinMap_CAN_TD[] = {
    {P0_1 , CAN_1, 1},
    {P0_5 , CAN_2, 2},
    {P0_22, CAN_1, 3},
    {P2_8 , CAN_2, 1},
    {NC   , NC   , 0}
};

// Type definition to hold a CAN message
struct CANMsg {
    unsigned int  reserved1 : 16;
    unsigned int  dlc       :  4; // Bits 16..19: DLC - Data Length Counter
    unsigned int  reserved0 : 10;
    unsigned int  rtr       :  1; // Bit 30: Set if this is a RTR message
    unsigned int  type      :  1; // Bit 31: Set if this is a 29-bit ID message
    unsigned int  id;             // CAN Message ID (11-bit or 29-bit)
    unsigned char data[8];        // CAN Message Data Bytes 0-7
};
typedef struct CANMsg CANMsg;

static uint32_t can_irq_ids[CAN_NUM] = {0};
static can_irq_handler irq_handler;

static uint32_t can_disable(can_t *obj) {
    uint32_t sm = obj->dev->MOD;
    obj->dev->MOD |= 1;
    return sm;
}

static inline void can_enable(can_t *obj) {
    if (obj->dev->MOD & 1) {
        obj->dev->MOD &= ~(1);
    }
}

int can_mode(can_t *obj, CanMode mode) {
    return 0; // not implemented
}

int can_filter(can_t *obj, uint32_t id, uint32_t mask, CANFormat format, int32_t handle) {
    return 0; // not implemented
}

static inline void can_irq(uint32_t icr, uint32_t index) {
    uint32_t i;
    
    for(i = 0; i < 8; i++)
    {
        if((can_irq_ids[index] != 0) && (icr & (1 << i)))
        {
            switch (i) {
                case 0: irq_handler(can_irq_ids[index], IRQ_RX);      break;
                case 1: irq_handler(can_irq_ids[index], IRQ_TX);      break;
                case 2: irq_handler(can_irq_ids[index], IRQ_ERROR);   break;
                case 3: irq_handler(can_irq_ids[index], IRQ_OVERRUN); break;
                case 4: irq_handler(can_irq_ids[index], IRQ_WAKEUP);  break;
                case 5: irq_handler(can_irq_ids[index], IRQ_PASSIVE); break;
                case 6: irq_handler(can_irq_ids[index], IRQ_ARB);     break;
                case 7: irq_handler(can_irq_ids[index], IRQ_BUS);     break;
                case 8: irq_handler(can_irq_ids[index], IRQ_READY);   break;
            }
        }
    }
}

// Have to check that the CAN block is active before reading the Interrupt
// Control Register, or the mbed hangs
void can_irq_n() {
    uint32_t icr;

    if(LPC_SC->PCONP & (1 << 13)) {
        icr = LPC_CAN1->ICR & 0x1FF;
        can_irq(icr, 0);
    }

    if(LPC_SC->PCONP & (1 << 14)) {
        icr = LPC_CAN2->ICR & 0x1FF;
        can_irq(icr, 1);
    }
}

// Register CAN object's irq handler
void can_irq_init(can_t *obj, can_irq_handler handler, uint32_t id) {
    irq_handler = handler;
    can_irq_ids[obj->index] = id;
}

// Unregister CAN object's irq handler
void can_irq_free(can_t *obj) {
    obj->dev->IER &= ~(1);
    can_irq_ids[obj->index] = 0;

    if ((can_irq_ids[0] == 0) && (can_irq_ids[1] == 0)) {
        NVIC_DisableIRQ(CAN_IRQn);
    }
}

// Clear or set a irq
void can_irq_set(can_t *obj, CanIrqType type, uint32_t enable) {
    uint32_t ier;
    
    switch (type) {
        case IRQ_RX:      ier = (1 << 0); break;
        case IRQ_TX:      ier = (1 << 1); break;
        case IRQ_ERROR:   ier = (1 << 2); break;
        case IRQ_OVERRUN: ier = (1 << 3); break;
        case IRQ_WAKEUP:  ier = (1 << 4); break;
        case IRQ_PASSIVE: ier = (1 << 5); break;
        case IRQ_ARB:     ier = (1 << 6); break;
        case IRQ_BUS:     ier = (1 << 7); break;
        case IRQ_READY:   ier = (1 << 8); break;
        default: return;
    }
    
    obj->dev->MOD |= 1;
    if(enable == 0) {
        obj->dev->IER &= ~ier;
    }
    else {
        obj->dev->IER |= ier;
    }
    obj->dev->MOD &= ~(1);
    
    // Enable NVIC if at least 1 interrupt is active
    if(((LPC_SC->PCONP & (1 << 13)) && LPC_CAN1->IER) || ((LPC_SC->PCONP & (1 << 14)) && LPC_CAN2->IER)) {
        NVIC_SetVector(CAN_IRQn, (uint32_t) &can_irq_n);
        NVIC_EnableIRQ(CAN_IRQn);
    }
    else {
        NVIC_DisableIRQ(CAN_IRQn);
    }
}

static int can_pclk(can_t *obj) {
    int value = 0;
    switch ((int)obj->dev) {
        case CAN_1: value = (LPC_SC->PCLKSEL0 & (0x3 << 26)) >> 26; break;
        case CAN_2: value = (LPC_SC->PCLKSEL0 & (0x3 << 28)) >> 28; break;
    }

    switch (value) {
        case 1: return 1;
        case 2: return 2;
        case 3: return 6;
        default: return 4;
    }
}

// This table has the sampling points as close to 75% as possible. The first
// value is TSEG1, the second TSEG2.
static const int timing_pts[23][2] = {
    {0x0, 0x0},      // 2,  50%
    {0x1, 0x0},      // 3,  67%
    {0x2, 0x0},      // 4,  75%
    {0x3, 0x0},      // 5,  80%
    {0x3, 0x1},      // 6,  67%
    {0x4, 0x1},      // 7,  71%
    {0x5, 0x1},      // 8,  75%
    {0x6, 0x1},      // 9,  78%
    {0x6, 0x2},      // 10, 70%
    {0x7, 0x2},      // 11, 73%
    {0x8, 0x2},      // 12, 75%
    {0x9, 0x2},      // 13, 77%
    {0x9, 0x3},      // 14, 71%
    {0xA, 0x3},      // 15, 73%
    {0xB, 0x3},      // 16, 75%
    {0xC, 0x3},      // 17, 76%
    {0xD, 0x3},      // 18, 78%
    {0xD, 0x4},      // 19, 74%
    {0xE, 0x4},      // 20, 75%
    {0xF, 0x4},      // 21, 76%
    {0xF, 0x5},      // 22, 73%
    {0xF, 0x6},      // 23, 70%
    {0xF, 0x7},      // 24, 67%
};

static unsigned int can_speed(unsigned int sclk, unsigned int pclk, unsigned int cclk, unsigned char psjw) {
    uint32_t    btr;
    uint16_t    brp = 0;
    uint32_t    calcbit;
    uint32_t    bitwidth;
    int         hit = 0;
    int         bits;
    
    bitwidth = sclk / (pclk * cclk);
    
    brp = bitwidth / 0x18;
    while ((!hit) && (brp < bitwidth / 4)) {
        brp++;
        for (bits = 22; bits > 0; bits--) {
            calcbit = (bits + 3) * (brp + 1);
            if (calcbit == bitwidth) {
                hit = 1;
                break;
            }
        }
    }
    
    if (hit) {
        btr = ((timing_pts[bits][1] << 20) & 0x00700000)
            | ((timing_pts[bits][0] << 16) & 0x000F0000)
            | ((psjw                << 14) & 0x0000C000)
            | ((brp                 <<  0) & 0x000003FF);
    } else {
        btr = 0xFFFFFFFF;
    }
    
    return btr;

}

void can_init(can_t *obj, PinName rd, PinName td) {
    CANName can_rd = (CANName)pinmap_peripheral(rd, PinMap_CAN_RD);
    CANName can_td = (CANName)pinmap_peripheral(td, PinMap_CAN_TD);
    obj->dev = (LPC_CAN_TypeDef *)pinmap_merge(can_rd, can_td);
    MBED_ASSERT((int)obj->dev != NC);

    switch ((int)obj->dev) {
        case CAN_1: LPC_SC->PCONP |= 1 << 13; break;
        case CAN_2: LPC_SC->PCONP |= 1 << 14; break;
    }

    pinmap_pinout(rd, PinMap_CAN_RD);
    pinmap_pinout(td, PinMap_CAN_TD);
    
    switch ((int)obj->dev) {
        case CAN_1: obj->index = 0; break;
        case CAN_2: obj->index = 1; break;
    }
    
    can_reset(obj);
    obj->dev->IER = 0;             // Disable Interrupts
    can_frequency(obj, 100000);

    LPC_CANAF->AFMR = ACCF_BYPASS; // Bypass Filter
}

void can_free(can_t *obj) {
    switch ((int)obj->dev) {
        case CAN_1: LPC_SC->PCONP &= ~(1 << 13); break;
        case CAN_2: LPC_SC->PCONP &= ~(1 << 14); break;
    }
}

int can_frequency(can_t *obj, int f) {
    int pclk = can_pclk(obj);
    
    int btr = can_speed(SystemCoreClock, pclk, (unsigned int)f, 1);

    if (btr > 0) {
        uint32_t modmask = can_disable(obj);
        obj->dev->BTR = btr;
        obj->dev->MOD = modmask;
        return 1;
    } else {
        return 0;
    }
}

int can_write(can_t *obj, CAN_Message msg, int cc) {
    unsigned int CANStatus;
    CANMsg m;

    can_enable(obj);

    m.id   = msg.id ;
    m.dlc  = msg.len & 0xF;
    m.rtr  = msg.type;
    m.type = msg.format;
    memcpy(m.data, msg.data, msg.len);
    const unsigned int *buf = (const unsigned int *)&m;

    CANStatus = obj->dev->SR;
    if (CANStatus & 0x00000004) {
        obj->dev->TFI1 = buf[0] & 0xC00F0000;
        obj->dev->TID1 = buf[1];
        obj->dev->TDA1 = buf[2];
        obj->dev->TDB1 = buf[3];
        if(cc) {
            obj->dev->CMR = 0x30;
        } else {
            obj->dev->CMR = 0x21;
        }
        return 1;

    } else if (CANStatus & 0x00000400) {
        obj->dev->TFI2 = buf[0] & 0xC00F0000;
        obj->dev->TID2 = buf[1];
        obj->dev->TDA2 = buf[2];
        obj->dev->TDB2 = buf[3];
        if (cc) {
            obj->dev->CMR = 0x50;
        } else {
            obj->dev->CMR = 0x41;
        }
        return 1;

    } else if (CANStatus & 0x00040000) {
        obj->dev->TFI3 = buf[0] & 0xC00F0000;
        obj->dev->TID3 = buf[1];
        obj->dev->TDA3 = buf[2];
        obj->dev->TDB3 = buf[3];
        if (cc) {
            obj->dev->CMR = 0x90;
        } else {
            obj->dev->CMR = 0x81;
        }
        return 1;
    }

    return 0;
}

int can_read(can_t *obj, CAN_Message *msg, int handle) {
    CANMsg x;
    unsigned int *i = (unsigned int *)&x;

    can_enable(obj);

    if (obj->dev->GSR & 0x1) {
        *i++ = obj->dev->RFS;  // Frame
        *i++ = obj->dev->RID;  // ID
        *i++ = obj->dev->RDA;  // Data A
        *i++ = obj->dev->RDB;  // Data B
        obj->dev->CMR = 0x04;  // release receive buffer

        msg->id     = x.id;
        msg->len    = x.dlc;
        msg->format = (x.type)? CANExtended : CANStandard;
        msg->type   = (x.rtr)?  CANRemote:    CANData;
        memcpy(msg->data,x.data,x.dlc);
        return 1;
    }

    return 0;
}

void can_reset(can_t *obj) {
    can_disable(obj);
    obj->dev->GSR = 0; // Reset error counter when CAN1MOD is in reset
}

unsigned char can_rderror(can_t *obj) {
    return (obj->dev->GSR >> 16) & 0xFF;
}

unsigned char can_tderror(can_t *obj) {
    return (obj->dev->GSR >> 24) & 0xFF;
}

void can_monitor(can_t *obj, int silent) {
    uint32_t mod_mask = can_disable(obj);
    if (silent) {
        obj->dev->MOD |= (1 << 1);
    } else {
        obj->dev->MOD &= ~(1 << 1);
    }
    if (!(mod_mask & 1)) {
        can_enable(obj);
    }
}