mbed library sources

Dependents:   Encrypted my_mbed lklk CyaSSL_DTLS_Cellular ... more

Superseded

This library was superseded by mbed-dev - https://os.mbed.com/users/mbed_official/code/mbed-dev/.

Development branch of the mbed library sources. This library is kept in synch with the latest changes from the mbed SDK and it is not guaranteed to work.

If you are looking for a stable and tested release, please import one of the official mbed library releases:

Import librarymbed

The official Mbed 2 C/C++ SDK provides the software platform and libraries to build your applications.

vendor/Freescale/KL25Z/hal/i2c_api.c

Committer:
emimon01
Date:
2013-07-24
Revision:
12:5fa2273de5db
Parent:
10:3bc89ef62ce7

File content as of revision 12:5fa2273de5db:

/* mbed Microcontroller Library
 * Copyright (c) 2006-2013 ARM Limited
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
#include "i2c_api.h"

#include "cmsis.h"
#include "pinmap.h"
#include "error.h"

static const PinMap PinMap_I2C_SDA[] = {
    {PTE25, I2C_0, 5},
    {PTC9,  I2C_0, 2},
    {PTE0,  I2C_1, 6},
    {PTB1,  I2C_0, 2},
    {PTB3,  I2C_0, 2},
    {NC  ,  NC   , 0}
};

static const PinMap PinMap_I2C_SCL[] = {
    {PTE24, I2C_0, 5},
    {PTC8,  I2C_0, 2},
    {PTE1,  I2C_1, 6},
    {PTB0,  I2C_0, 2},
    {PTB2,  I2C_0, 2},
    {NC  ,  NC,    0}
};

static const uint16_t ICR[0x40] = {
      20,   22,   24,   26,   28,
      30,   34,   40,   28,   32,
      36,   40,   44,   48,   56,
      68,   48,   56,   64,   72,
      80,   88,  104,  128,   80,
      96,  112,  128,  144,  160,
      192,  240,  160,  192,  224,
      256,  288,  320,  384,  480,
      320,  384,  448,  512,  576,
      640,  768,  960,  640,  768,
      896, 1024, 1152, 1280, 1536,
      1920, 1280, 1536, 1792, 2048,
      2304, 2560, 3072, 3840
};

static uint8_t first_read;


void i2c_init(i2c_t *obj, PinName sda, PinName scl) {
    // determine the I2C to use
    I2CName i2c_sda = (I2CName)pinmap_peripheral(sda, PinMap_I2C_SDA);
    I2CName i2c_scl = (I2CName)pinmap_peripheral(scl, PinMap_I2C_SCL);
    obj->i2c = (I2C_Type*)pinmap_merge(i2c_sda, i2c_scl);
    if ((int)obj->i2c == NC) {
        error("I2C pin mapping failed");
    }

    // enable power
    switch ((int)obj->i2c) {
        case I2C_0: SIM->SCGC5 |= 1 << 13; SIM->SCGC4 |= 1 << 6; break;
        case I2C_1: SIM->SCGC5 |= 1 << 11; SIM->SCGC4 |= 1 << 7; break;
    }

    // set default frequency at 100k
    i2c_frequency(obj, 100000);

    // enable I2C interface
    obj->i2c->C1 |= 0x80;

    pinmap_pinout(sda, PinMap_I2C_SDA);
    pinmap_pinout(scl, PinMap_I2C_SCL);
    
    first_read = 1;
}

int i2c_start(i2c_t *obj) {
    // if we are in the middle of a transaction
    // activate the repeat_start flag
    if (obj->i2c->S & I2C_S_BUSY_MASK) {
        obj->i2c->C1 |= 0x04;
    } else {
        obj->i2c->C1 |= I2C_C1_MST_MASK;
        obj->i2c->C1 |= I2C_C1_TX_MASK;
    }
    first_read = 1;
    return 0;
}

void i2c_stop(i2c_t *obj) {
    volatile uint32_t n = 0;
    obj->i2c->C1 &= ~I2C_C1_MST_MASK;
    obj->i2c->C1 &= ~I2C_C1_TX_MASK;

    // It seems that there are timing problems
    // when there is no waiting time after a STOP.
    // This wait is also included on the samples
    // code provided with the freedom board
    for (n = 0; n < 100; n++) __NOP();
    first_read = 1;
}

static int timeout_status_poll(i2c_t *obj, uint32_t mask) {
    uint32_t i, timeout = 1000;
    
    for (i = 0; i < timeout; i++) {
        if (obj->i2c->S & mask)
            return 0;
    }
    
    return 1;
}

// this function waits the end of a tx transfer and return the status of the transaction:
//    0: OK ack received
//    1: OK ack not received
//    2: failure
static int i2c_wait_end_tx_transfer(i2c_t *obj) {
    
    // wait for the interrupt flag
    if (timeout_status_poll(obj, I2C_S_IICIF_MASK)) {
        return 2;
    }
    
    obj->i2c->S |= I2C_S_IICIF_MASK;
    
    // wait transfer complete
    if (timeout_status_poll(obj, I2C_S_TCF_MASK)) {
        return 2;
    }

    // check if we received the ACK or not
    return obj->i2c->S & I2C_S_RXAK_MASK ? 1 : 0;
}

// this function waits the end of a rx transfer and return the status of the transaction:
//    0: OK
//    1: failure
static int i2c_wait_end_rx_transfer(i2c_t *obj) {
    // wait for the end of the rx transfer
    if (timeout_status_poll(obj, I2C_S_IICIF_MASK)) {
        return 1;
    }
    
    obj->i2c->S |= I2C_S_IICIF_MASK;
    
    return 0;
}

static void i2c_send_nack(i2c_t *obj) {
    obj->i2c->C1 |= I2C_C1_TXAK_MASK; // NACK
}

static void i2c_send_ack(i2c_t *obj) {
    obj->i2c->C1 &= ~I2C_C1_TXAK_MASK; // ACK
}

static int i2c_do_write(i2c_t *obj, int value) {
    // write the data
    obj->i2c->D = value;

    // init and wait the end of the transfer
    return i2c_wait_end_tx_transfer(obj);
}

static int i2c_do_read(i2c_t *obj, char * data, int last) {
    if (last)
        i2c_send_nack(obj);
    else
        i2c_send_ack(obj);

    *data = (obj->i2c->D & 0xFF);

    // start rx transfer and wait the end of the transfer
    return i2c_wait_end_rx_transfer(obj);
}

void i2c_frequency(i2c_t *obj, int hz) {
    uint8_t icr = 0;
    uint8_t mult = 0;
    uint32_t error = 0;
    uint32_t p_error = 0xffffffff;
    uint32_t ref = 0;
    uint8_t i, j;
    // bus clk
    uint32_t PCLK = 24000000u;
    uint32_t pulse = PCLK / (hz * 2);

    // we look for the values that minimize the error

    // test all the MULT values
    for (i = 1; i < 5; i*=2) {
        for (j = 0; j < 0x40; j++) {
            ref = PCLK / (i*ICR[j]);
            error = (ref > hz) ? ref - hz : hz - ref;
            if (error < p_error) {
                icr = j;
                mult = i/2;
                p_error = error;
            }
        }
    }
    pulse = icr | (mult << 6);

    // I2C Rate
    obj->i2c->F = pulse;
}

int i2c_read(i2c_t *obj, int address, char *data, int length, int stop) {
    uint8_t count;
    char dummy_read, *ptr;

    if (i2c_start(obj)) {
        i2c_stop(obj);
        return 1;
    }

    if (i2c_do_write(obj, (address | 0x01))) {
        i2c_stop(obj);
        return 1;
    }

    // set rx mode
    obj->i2c->C1 &= ~I2C_C1_TX_MASK;

    // Read in bytes
    for (count = 0; count < (length); count++) {
        ptr = (count == 0) ? &dummy_read : &data[count - 1];
        uint8_t stop_ = (count == (length - 1)) ? 1 : 0;
        if (i2c_do_read(obj, ptr, stop_)) {
            i2c_stop(obj);
            return 1;
        }
    }

    // If not repeated start, send stop.
    if (stop) {
        i2c_stop(obj);
    }

    // last read
    data[count-1] = obj->i2c->D;

    return 0;
}
int i2c_write(i2c_t *obj, int address, const char *data, int length, int stop) {
    int i;

    if (i2c_start(obj)) {
        i2c_stop(obj);
        return 1;
    }

    if (i2c_do_write(obj, (address & 0xFE))) {
        i2c_stop(obj);
        return 1;
    }

    for (i = 0; i < length; i++) {
        if(i2c_do_write(obj, data[i])) {
            i2c_stop(obj);
            return 1;
        }
    }

    if (stop) {
        i2c_stop(obj);
    }

    return 0;
}

void i2c_reset(i2c_t *obj) {
    i2c_stop(obj);
}

int i2c_byte_read(i2c_t *obj, int last) {
    char data;
    
    // set rx mode
    obj->i2c->C1 &= ~I2C_C1_TX_MASK;
    
    if(first_read) {
        // first dummy read
        i2c_do_read(obj, &data, 0);
        first_read = 0;
    }
    
    if (last) {
        // set tx mode
        obj->i2c->C1 |= I2C_C1_TX_MASK;
        return obj->i2c->D;
    }
        
    i2c_do_read(obj, &data, last);
    
    return data;
}

int i2c_byte_write(i2c_t *obj, int data) {
    first_read = 1;
    
    // set tx mode
    obj->i2c->C1 |= I2C_C1_TX_MASK;
    
    return !i2c_do_write(obj, (data & 0xFF));
}


#if DEVICE_I2CSLAVE
void i2c_slave_mode(i2c_t *obj, int enable_slave) {
    if (enable_slave) {
        // set slave mode
        obj->i2c->C1 &= ~I2C_C1_MST_MASK;
        obj->i2c->C1 |= I2C_C1_IICIE_MASK;
    } else {
        // set master mode
        obj->i2c->C1 |= I2C_C1_MST_MASK;
    }
}

int i2c_slave_receive(i2c_t *obj) {
    switch(obj->i2c->S) {
        // read addressed
        case 0xE6: return 1;
        
        // write addressed
        case 0xE2: return 3;
        
        default: return 0;
    }
}

int i2c_slave_read(i2c_t *obj, char *data, int length) {
    uint8_t dummy_read, count;
    uint8_t * ptr;
    
    // set rx mode
    obj->i2c->C1 &= ~I2C_C1_TX_MASK;
    
    // first dummy read
    dummy_read = obj->i2c->D;
    if(i2c_wait_end_rx_transfer(obj)) {
        return 0;
    }
    
    // read address
    dummy_read = obj->i2c->D;
    if(i2c_wait_end_rx_transfer(obj)) {
        return 0;
    }
    
    // read (length - 1) bytes
    for (count = 0; count < (length - 1); count++) {
        data[count] = obj->i2c->D;
        if(i2c_wait_end_rx_transfer(obj)) {
            return 0;
        }
    }

    // read last byte
    ptr = (length == 0) ? &dummy_read : (uint8_t *)&data[count];
    *ptr = obj->i2c->D;
    
    return (length) ? (count + 1) : 0;
}

int i2c_slave_write(i2c_t *obj, const char *data, int length) {
    uint32_t i, count = 0;
    
    // set tx mode
    obj->i2c->C1 |= I2C_C1_TX_MASK;
    
    for (i = 0; i < length; i++) {
        if(i2c_do_write(obj, data[count++]) == 2) {
            return 0;
        }
    }
    
    // set rx mode
    obj->i2c->C1 &= ~I2C_C1_TX_MASK;
    
    // dummy rx transfer needed
    // otherwise the master cannot generate a stop bit
    obj->i2c->D;
    if(i2c_wait_end_rx_transfer(obj) == 2) {
        return 0;
    }
    
    return count;
}

void i2c_slave_address(i2c_t *obj, int idx, uint32_t address, uint32_t mask) {
    obj->i2c->A1 = address & 0xfe;
}
#endif