mbed library sources

Fork of mbed-src by mbed official

Files at this revision

API Documentation at this revision

Comitter:
mbed_official
Date:
Thu Apr 09 07:00:08 2015 +0100
Parent:
508:4f5903e025e6
Child:
510:bb3effbb3493
Commit message:
Synchronized with git revision c3cd171fc3a484f24e3c7fa3c25928ad3024a341

Full URL: https://github.com/mbedmicro/mbed/commit/c3cd171fc3a484f24e3c7fa3c25928ad3024a341/

LPC82X - Fixed hardcoded MRT_Clock_MHz

Changed in this revision

targets/hal/TARGET_NXP/TARGET_LPC82X/TARGET_LPC824/device.h Show annotated file Show diff for this revision Revisions of this file
targets/hal/TARGET_NXP/TARGET_LPC82X/TARGET_SSCI824/device.h Show annotated file Show diff for this revision Revisions of this file
targets/hal/TARGET_NXP/TARGET_LPC82X/i2c_api.c Show annotated file Show diff for this revision Revisions of this file
targets/hal/TARGET_NXP/TARGET_LPC82X/us_ticker.c Show annotated file Show diff for this revision Revisions of this file
--- a/targets/hal/TARGET_NXP/TARGET_LPC82X/TARGET_LPC824/device.h	Thu Apr 09 06:45:08 2015 +0100
+++ b/targets/hal/TARGET_NXP/TARGET_LPC82X/TARGET_LPC824/device.h	Thu Apr 09 07:00:08 2015 +0100
@@ -29,7 +29,7 @@
 #define DEVICE_SERIAL_FC        0
 
 #define DEVICE_I2C              1
-#define DEVICE_I2CSLAVE         0
+#define DEVICE_I2CSLAVE         1
 
 #define DEVICE_SPI              1
 #define DEVICE_SPISLAVE         1
--- a/targets/hal/TARGET_NXP/TARGET_LPC82X/TARGET_SSCI824/device.h	Thu Apr 09 06:45:08 2015 +0100
+++ b/targets/hal/TARGET_NXP/TARGET_LPC82X/TARGET_SSCI824/device.h	Thu Apr 09 07:00:08 2015 +0100
@@ -29,7 +29,7 @@
 #define DEVICE_SERIAL_FC        0
 
 #define DEVICE_I2C              1
-#define DEVICE_I2CSLAVE         0
+#define DEVICE_I2CSLAVE         1
 
 #define DEVICE_SPI              1
 #define DEVICE_SPISLAVE         1
--- a/targets/hal/TARGET_NXP/TARGET_LPC82X/i2c_api.c	Thu Apr 09 06:45:08 2015 +0100
+++ b/targets/hal/TARGET_NXP/TARGET_LPC82X/i2c_api.c	Thu Apr 09 07:00:08 2015 +0100
@@ -20,30 +20,19 @@
 #include "cmsis.h"
 #include "pinmap.h"
 
-#include "rom_i2c_8xx.h"
+#define LPC824_I2C0_FMPLUS 1
 
 #if DEVICE_I2C
 
-typedef struct ROM_API {
-    const uint32_t    unused[5];
-    const I2CD_API_T  *pI2CD;    /*!< I2C driver routines functions table */
-} LPC_ROM_API_T;
-
-
-/* Pointer to ROM API function address */
-#define LPC_ROM_API_BASE_LOC    0x1FFF1FF8UL
-#define LPC_ROM_API             (*(LPC_ROM_API_T * *) LPC_ROM_API_BASE_LOC)
-
-/* Pointer to @ref I2CD_API_T functions in ROM */
-#define LPC_I2CD_API            ((LPC_ROM_API)->pI2CD)
-
 static const SWM_Map SWM_I2C_SDA[] = {
-    { 9,  8},
+    //PINASSIGN Register ID, Pinselect bitfield position
+    { 9,  8}, 
     { 9, 24},
     {10,  8},
 };
 
 static const SWM_Map SWM_I2C_SCL[] = {
+    //PINASSIGN Register ID, Pinselect bitfield position
     { 9, 16},
     {10,  0},
     {10, 16},
@@ -52,36 +41,15 @@
 
 static int i2c_used = 0;
 static uint8_t repeated_start = 0;
-static uint32_t *i2c_buffer;
 
 #define I2C_DAT(x)          (x->i2c->MSTDAT)
 #define I2C_STAT(x)         ((x->i2c->STAT >> 1) & (0x07))
 
-static inline int i2c_status(i2c_t *obj)
-{
-    return I2C_STAT(obj);
-}
-
-// Wait until the Serial Interrupt (SI) is set
-static int i2c_wait_SI(i2c_t *obj)
-{
-    volatile int timeout = 0;
-    while (!(obj->i2c->STAT & (1 << 0))) {
-        timeout++;
-        if (timeout > 100000) return -1;
-    }
-    return 0;
-}
-
-static inline void i2c_interface_enable(i2c_t *obj)
-{
-    obj->i2c->CFG |= 1;
-}
-
 static inline void i2c_power_enable(int ch)
 {
     switch(ch) {
         case 0:
+            // I2C0, Same as for LPC812
             LPC_SYSCON->SYSAHBCLKCTRL |=  (1 << 5);
             LPC_SYSCON->PRESETCTRL    &= ~(1 << 6);
             LPC_SYSCON->PRESETCTRL    |=  (1 << 6);
@@ -89,6 +57,7 @@
         case 1:
         case 2:
         case 3:
+            // I2C1,I2C2 or I2C3. Not available for LPC812
             LPC_SYSCON->SYSAHBCLKCTRL |=  (1 << (20 + ch));
             LPC_SYSCON->PRESETCTRL    &= ~(1 << (13 + ch));
             LPC_SYSCON->PRESETCTRL    |=  (1 << (13 + ch));
@@ -99,6 +68,12 @@
 }
 
 
+static inline void i2c_interface_enable(i2c_t *obj) {
+  obj->i2c->CFG |=  (1 << 0);  // Enable Master mode
+//  obj->i2c->CFG &= ~(1 << 1);  // Disable Slave mode
+}
+
+
 static int get_available_i2c(void) {
     int i;
     for (i=0; i<3; i++) {
@@ -113,11 +88,23 @@
     const SWM_Map *swm;
     uint32_t regVal;
     int i2c_ch = 0;
-
+    
+    //LPC824
+    //I2C0 can support FM+ but only on P0_11 and P0_10
     if (sda == I2C_SDA && scl == I2C_SCL) {
-        LPC_SWM->PINENABLE0 &= ~(0x3 << 11);
+      //Select I2C mode for P0_11 and P0_10
+      LPC_SWM->PINENABLE0 &= ~(0x3 << 11);
+      
+#if(LPC824_I2C0_FMPLUS == 1)
+      // Enable FM+ mode on P0_11, P0_10    
+      LPC_IOCON->PIO0_10 &= ~(0x3 << 8);
+      LPC_IOCON->PIO0_10 |=  (0x2 << 8); //FM+ mode
+      LPC_IOCON->PIO0_11 &= ~(0x3 << 8);
+      LPC_IOCON->PIO0_11 |=  (0x2 << 8); //FM+ mode      
+#endif
     }
     else {
+        //Select any other pin for I2C1, I2C2 or I2C3
         i2c_ch = get_available_i2c();
         if (i2c_ch == -1)
             return;
@@ -151,127 +138,213 @@
 
     // enable power
     i2c_power_enable(i2c_ch);
-
-    uint32_t size_in_bytes = LPC_I2CD_API->i2c_get_mem_size();
-    i2c_buffer = malloc(size_in_bytes);
-    obj->handler = LPC_I2CD_API->i2c_setup((uint32_t)(obj->i2c), i2c_buffer);
-    LPC_I2CD_API->i2c_set_bitrate(obj->handler, SystemCoreClock, 100000);
-    LPC_I2CD_API->i2c_set_timeout(obj->handler, 100000);
-
+    // set default frequency at 100k
+    i2c_frequency(obj, 100000);   
     i2c_interface_enable(obj);
 }
 
-inline int i2c_start(i2c_t *obj)
-{
+
+static inline int i2c_status(i2c_t *obj) {
+    return I2C_STAT(obj);
+}
+
+// Wait until the Master Serial Interrupt (SI) is set
+// Timeout when it takes too long.
+static int i2c_wait_SI(i2c_t *obj) {
+    int timeout = 0;
+    while (!(obj->i2c->STAT & (1 << 0))) {
+        timeout++;
+        if (timeout > 100000) return -1;
+    }
+    return 0;
+}
+
+
+//Attention. Spec says: First store Address in DAT before setting STA ! 
+//Undefined state when using single byte I2C operations and too much delay
+//between i2c_start and do_i2c_write(Address).
+//Also note that lpc812/824 will immediately continue reading a byte when Address b0 == 1
+inline int i2c_start(i2c_t *obj) {
     int status = 0;
     if (repeated_start) {
-        obj->i2c->MSTCTL = (1 << 1) | (1 << 0);
+        obj->i2c->MSTCTL = (1 << 1) | (1 << 0); // STA bit and Continue bit to complete previous RD or WR
         repeated_start = 0;
     } else {
-        obj->i2c->MSTCTL = (1 << 1);
+        obj->i2c->MSTCTL = (1 << 1); // STA bit
     }
     return status;
 }
 
-inline int i2c_stop(i2c_t *obj)
-{
-    volatile int timeout = 0;
+//Generate Stop condition and wait until bus is Idle
+//Will also send NAK for previous RD
+inline int i2c_stop(i2c_t *obj) {
+    int timeout = 0;
 
+    // STP bit and Continue bit. Sends NAK to complete previous RD
     obj->i2c->MSTCTL = (1 << 2) | (1 << 0);
-    while ((obj->i2c->STAT & ((1 << 0) | (7 << 1))) != ((1 << 0) | (0 << 1))) {
+    
+    //Spin until Ready (b0 == 1)and Status is Idle (b3..b1 == 000)
+    while ((obj->i2c->STAT & ((7 << 1) | (1 << 0))) != ((0 << 1) | (1 << 0))) {
         timeout ++;
         if (timeout > 100000) return 1;
     }
 
+    // repeated_start = 0; // bus free
     return 0;
 }
 
-static inline int i2c_do_write(i2c_t *obj, int value, uint8_t addr)
-{
+//Spec says: first check Idle and status is Ok
+static inline int i2c_do_write(i2c_t *obj, int value, uint8_t addr) {
     // write the data
     I2C_DAT(obj) = value;
-
+    
     if (!addr)
-        obj->i2c->MSTCTL = (1 << 0);
-
+        obj->i2c->MSTCTL = (1 << 0); //Set continue for data. Should not be set for addr since that uses STA
+    
     // wait and return status
     i2c_wait_SI(obj);
     return i2c_status(obj);
 }
 
-static inline int i2c_do_read(i2c_t *obj, int last)
-{
+
+//Attention, correct Order: wait for data ready, read data, read status, continue, return
+//Dont read DAT or STAT when not ready, so dont read after setting continue.
+//Results may be invalid when next read is underway.
+static inline int i2c_do_read(i2c_t *obj, int last) {
     // wait for it to arrive
     i2c_wait_SI(obj);
     if (!last)
-        obj->i2c->MSTCTL = (1 << 0);
-
+        obj->i2c->MSTCTL = (1 << 0); //ACK and Continue
+    
     // return the data
     return (I2C_DAT(obj) & 0xFF);
 }
 
-void i2c_frequency(i2c_t *obj, int hz)
-{
-    LPC_I2CD_API->i2c_set_bitrate(obj->handler, SystemCoreClock, hz);
+
+void i2c_frequency(i2c_t *obj, int hz) {
+    // No peripheral clock divider on the M0
+    uint32_t PCLK = SystemCoreClock;
+    
+    uint32_t clkdiv = PCLK / (hz * 4) - 1;
+    
+    obj->i2c->CLKDIV = clkdiv;
+    obj->i2c->MSTTIME = 0;
 }
 
-int i2c_read(i2c_t *obj, int address, char *data, int length, int stop)
-{
-    ErrorCode_t err;
-    I2C_PARAM_T i2c_param;
-    I2C_RESULT_T i2c_result;
+// The I2C does a read or a write as a whole operation
+// There are two types of error conditions it can encounter
+//  1) it can not obtain the bus
+//  2) it gets error responses at part of the transmission
+//
+// We tackle them as follows:
+//  1) we retry until we get the bus. we could have a "timeout" if we can not get it
+//      which basically turns it in to a 2)
+//  2) on error, we use the standard error mechanisms to report/debug
+//
+// Therefore an I2C transaction should always complete. If it doesn't it is usually
+// because something is setup wrong (e.g. wiring), and we don't need to programatically
+// check for that
+int i2c_read(i2c_t *obj, int address, char *data, int length, int stop) {
+    int count, status;
+    
+    //Store the address+RD and then generate STA
+    I2C_DAT(obj) = address | 0x01;
+    i2c_start(obj);    
+
+    // Wait for completion of STA and Sending of SlaveAddress+RD and first Read byte
+    i2c_wait_SI(obj);
+    status = i2c_status(obj);    
+    if (status == 0x03) { // NAK on SlaveAddress
+        i2c_stop(obj);
+        return I2C_ERROR_NO_SLAVE;
+    }
 
-    uint8_t *buf = malloc(length + 1);
-    buf[0] = (uint8_t)((address | 0x01) & 0xFF);
-    i2c_param.buffer_ptr_rec = buf;
-    i2c_param.num_bytes_rec = length + 1;
-    i2c_param.stop_flag = stop;
-    err = LPC_I2CD_API->i2c_master_receive_poll(obj->handler, &i2c_param, &i2c_result);
-    memcpy(data, buf + 1, i2c_result.n_bytes_recd);
-    free(buf);
-    if (err == 0)
-        return i2c_result.n_bytes_recd - 1;
-    else
-        return -1;
+    // Read in all except last byte
+    for (count = 0; count < (length-1); count++) {
+        
+      // Wait for it to arrive, note that first byte read after address+RD is already waiting
+      i2c_wait_SI(obj);
+      status = i2c_status(obj);
+      if (status != 0x01) { // RX RDY
+        i2c_stop(obj);
+        return count;
+      }
+      data[count] = I2C_DAT(obj) & 0xFF; // Store read byte
+
+      obj->i2c->MSTCTL = (1 << 0); // Send ACK and Continue to read
+    }
+    
+    // Read final byte
+    // Wait for it to arrive
+    i2c_wait_SI(obj);
+
+    status = i2c_status(obj);
+    if (status != 0x01) { // RX RDY
+      i2c_stop(obj);
+      return count;
+    }
+    data[count] = I2C_DAT(obj) & 0xFF; // Store final read byte
+
+    // If not repeated start, send stop.
+    if (stop) {
+        i2c_stop(obj); // Also sends NAK for last read byte
+    } else {
+        repeated_start = 1;
+    }
+   
+    return length;
 }
 
-int i2c_write(i2c_t *obj, int address, const char *data, int length, int stop)
-{
-    ErrorCode_t err;
-    I2C_PARAM_T i2c_param;
-    I2C_RESULT_T i2c_result;
+
+int i2c_write(i2c_t *obj, int address, const char *data, int length, int stop) {
+    int i, status;
 
-    uint8_t *buf = malloc(length + 1);
-    buf[0] = (uint8_t)(address & 0xFE);
-    memcpy(buf + 1, data, length);
-    i2c_param.buffer_ptr_send = buf;
-    i2c_param.num_bytes_send = length + 1;
-    i2c_param.stop_flag = stop;
-    err = LPC_I2CD_API->i2c_master_transmit_poll(obj->handler, &i2c_param, &i2c_result);
-    free(buf);
-    if (err == 0)
-        return i2c_result.n_bytes_sent - 1;
-    else
-        return -1;
+    //Store the address+/WR and then generate STA
+    I2C_DAT(obj) = address & 0xFE;   
+    i2c_start(obj);
+    
+    // Wait for completion of STA and Sending of SlaveAddress+/WR
+    i2c_wait_SI(obj);
+    status = i2c_status(obj);    
+    if (status == 0x03) { // NAK SlaveAddress
+        i2c_stop(obj);
+        return I2C_ERROR_NO_SLAVE;
+    }
+    
+    //Write all bytes
+    for (i=0; i<length; i++) {
+        status = i2c_do_write(obj, data[i], 0);
+        if (status != 0x02) { // TX RDY. Handles a Slave NAK on datawrite
+            i2c_stop(obj);
+            return i;
+        }
+    }
+    
+    // If not repeated start, send stop.
+    if (stop) {
+        i2c_stop(obj);
+    } else {
+        repeated_start = 1;
+    }
+    
+    return length;
 }
 
-void i2c_reset(i2c_t *obj)
-{
+void i2c_reset(i2c_t *obj) {
     i2c_stop(obj);
 }
 
-int i2c_byte_read(i2c_t *obj, int last)
-{
+int i2c_byte_read(i2c_t *obj, int last) {
     return (i2c_do_read(obj, last) & 0xFF);
+//    return (i2c_do_read(obj, last, 0) & 0xFF);    
 }
 
-int i2c_byte_write(i2c_t *obj, int data)
-{
+int i2c_byte_write(i2c_t *obj, int data) {
     int ack;
     int status = i2c_do_write(obj, (data & 0xFF), 0);
-
+    
     switch(status) {
-        case 2:
+        case 2: // TX RDY. Handles a Slave NAK on datawrite
             ack = 1;
             break;
         default:
@@ -282,77 +355,242 @@
     return ack;
 }
 
+
 #if DEVICE_I2CSLAVE
 
-void i2c_slave_mode(i2c_t *obj, int enable_slave)
-{
-    obj->handler = LPC_I2CD_API->i2c_setup((uint32_t)(obj->i2c), i2c_buffer);
-    if (enable_slave != 0) {
-        obj->i2c->CFG &= ~(1 << 0);
-        obj->i2c->CFG |= (1 << 1);
+#define I2C_SLVDAT(x)        (x->i2c->SLVDAT)
+#define I2C_SLVSTAT(x)      ((x->i2c->STAT >> 9) & (0x03))
+#define I2C_SLVSI(x)        ((x->i2c->STAT >> 8) & (0x01))
+//#define I2C_SLVCNT(x)        (x->i2c->SLVCTL = (1 << 0))
+//#define I2C_SLVNAK(x)        (x->i2c->SLVCTL = (1 << 1))
+
+#if(0)
+// Wait until the Slave Serial Interrupt (SI) is set
+// Timeout when it takes too long.
+static int i2c_wait_slave_SI(i2c_t *obj) {
+    int timeout = 0;
+    while (!(obj->i2c->STAT & (1 << 8))) {
+        timeout++;
+        if (timeout > 100000) return -1;
     }
-    else {
-        obj->i2c->CFG |= (1 << 0);
-        obj->i2c->CFG &= ~(1 << 1);
-    }
+    return 0;
+}
+#endif
+
+void i2c_slave_mode(i2c_t *obj, int enable_slave) {
+
+  if (enable_slave) {
+//    obj->i2c->CFG &= ~(1 << 0); //Disable Master mode    
+    obj->i2c->CFG |=  (1 << 1); //Enable Slave mode
+  }
+  else {
+//    obj->i2c->CFG |=  (1 << 0); //Enable Master mode    
+    obj->i2c->CFG &= ~(1 << 1); //Disable Slave mode
+  } 
+}
 
+// Wait for next I2C event and find out what is going on
+//
+int i2c_slave_receive(i2c_t *obj) {
+  int addr;
+  
+  // Check if there is any data pending
+  if (! I2C_SLVSI(obj)) {
+    return 0; //NoData    
+  };
+  
+  // Check State
+  switch(I2C_SLVSTAT(obj)) {
+    case 0x0: // Slave address plus R/W received 
+              // At least one of the four slave addresses has been matched by hardware.
+              // You can figure out which address by checking Slave address match Index in STAT register.
+               
+              // Get the received address
+              addr = I2C_SLVDAT(obj) & 0xFF;
+              // Send ACK on address and Continue
+              obj->i2c->SLVCTL = (1 << 0); 
+              
+              if (addr == 0x00) {
+                return 2; //WriteGeneral
+              }  
+              //check the RW bit
+              if ((addr & 0x01) == 0x01) {
+                return 1; //ReadAddressed
+              }
+              else {
+                return 3; //WriteAddressed
+              }
+              //break;
+    
+    case 0x1: // Slave receive. Received data is available (Slave Receiver mode).
+              // Oops, should never get here...     
+              obj->i2c->SLVCTL = (1 << 1);  // Send NACK on received data, try to recover...
+              return 0; //NoData        
+              
+    case 0x2: // Slave transmit. Data can be transmitted (Slave Transmitter mode).
+              // Oops, should never get here...         
+              I2C_SLVDAT(obj) = 0xFF;       // Send dummy data for transmission
+              obj->i2c->SLVCTL = (1 << 0);  // Continue and try to recover...
+              return 0; //NoData        
+    
+    case 0x3: // Reserved.
+    default:  // Oops, should never get here... 
+              obj->i2c->SLVCTL = (1 << 0);  // Continue and try to recover...              
+              return 0; //NoData        
+              //break; 
+  } //switch status  
+}
+
+// The dedicated I2C Slave byte read and byte write functions need to be called
+// from 'common' mbed I2CSlave API for devices that have separate Master and 
+// Slave engines such as the lpc812 and lpc1549.
+
+//Called when Slave is addressed for Write, Slave will receive Data in polling mode
+//Parameter last=1 means received byte will be NACKed.
+int i2c_slave_byte_read(i2c_t *obj, int last) {
+  int data;
+  
+  // Wait for data
+  while (!I2C_SLVSI(obj)); // Wait forever
+//if (i2c_wait_slave_SI(obj) != 0) {return -2;} // Wait with timeout
+
+  // Dont bother to check State, were not returning it anyhow..
+//if (I2C_SLVSTAT(obj)) == 0x01) {
+  // Slave receive. Received data is available (Slave Receiver mode).    
+//};
+
+  data = I2C_SLVDAT(obj) & 0xFF; // Get and store the received data
+  if (last) {
+    obj->i2c->SLVCTL = (1 << 1);  // Send NACK on received data and Continue 
+  }    
+  else {  
+    obj->i2c->SLVCTL = (1 << 0);  // Send ACK on data and Continue to read                
+  }
+ 
+  return data; 
 }
 
-int i2c_slave_receive(i2c_t *obj)
-{
-    CHIP_I2C_MODE_T mode;
-    int ret;
-    
-    mode = LPC_I2CD_API->i2c_get_status(obj->handler);
-    switch(mode) {
-        case SLAVE_SEND:
-            ret = 1;
-            break;
-        case SLAVE_RECEIVE:
-            ret = 3;
-            break;
-        case MASTER_SEND:
-        case MASTER_RECEIVE:
-        default:
-            ret = 0;
-            break;
-    }
-    return ret;
+
+//Called when Slave is addressed for Read, Slave will send Data in polling mode
+//
+int i2c_slave_byte_write(i2c_t *obj, int data) {
+
+  // Wait until Ready 
+  while (!I2C_SLVSI(obj)); // Wait forever
+//  if (i2c_wait_slave_SI(obj) != 0) {return -2;} // Wait with timeout
+
+  // Check State
+  switch(I2C_SLVSTAT(obj)) {
+    case 0x0: // Slave address plus R/W received 
+              // At least one of the four slave addresses has been matched by hardware.
+              // You can figure out which address by checking Slave address match Index in STAT register.                
+              // I2C Restart occurred
+              return -1; 
+              //break;    
+    case 0x1: // Slave receive. Received data is available (Slave Receiver mode).
+              // Should not get here... 
+              return -2;
+              //break;                
+    case 0x2: // Slave transmit. Data can be transmitted (Slave Transmitter mode).
+              I2C_SLVDAT(obj) = data & 0xFF; // Store the data for transmission
+              obj->i2c->SLVCTL = (1 << 0);   // Continue to send
+              
+              return 1;    
+              //break;      
+    case 0x3: // Reserved.
+    default:
+              // Should not get here... 
+              return -3;
+              //break; 
+  } // switch status
 }
 
-int i2c_slave_read(i2c_t *obj, char *data, int length)
-{
-    ErrorCode_t err;
-    I2C_PARAM_T i2c_param;
-    I2C_RESULT_T i2c_result;
+
+//Called when Slave is addressed for Write, Slave will receive Data in polling mode
+//Parameter length (>=1) is the maximum allowable number of bytes. All bytes will be ACKed.
+int i2c_slave_read(i2c_t *obj, char *data, int length) {
+  int count=0;
+  
+  // Read and ACK all expected bytes
+  while (count < length) {
+    // Wait for data
+    while (!I2C_SLVSI(obj)); // Wait forever
+//    if (i2c_wait_slave_SI(obj) != 0) {return -2;} // Wait with timeout
 
-    i2c_param.buffer_ptr_send = (uint8_t *)data;
-    i2c_param.num_bytes_send = length;
-    err = LPC_I2CD_API->i2c_slave_transmit_poll(obj->handler, &i2c_param, &i2c_result);
-    if (err == 0)
-        return i2c_result.n_bytes_sent;
-    else
-        return -1;
+    // Check State
+    switch(I2C_SLVSTAT(obj)) {
+      case 0x0: // Slave address plus R/W received 
+                // At least one of the four slave addresses has been matched by hardware.
+                // You can figure out which address by checking Slave address match Index in STAT register.                
+                // I2C Restart occurred
+                return -1; 
+                //break;
+    
+      case 0x1: // Slave receive. Received data is available (Slave Receiver mode).
+                data[count] = I2C_SLVDAT(obj) & 0xFF; // Get and store the received data
+                obj->i2c->SLVCTL = (1 << 0);          // Send ACK on data and Continue to read                
+                break;
+
+      case 0x2: // Slave transmit. Data can be transmitted (Slave Transmitter mode).
+      case 0x3: // Reserved.
+      default:  // Should never get here... 
+                return -2;
+                //break; 
+    } // switch status
+    
+    count++;
+  } // for all bytes
+    
+  return count; // Received the expected number of bytes
 }
 
-int i2c_slave_write(i2c_t *obj, const char *data, int length)
-{
-    ErrorCode_t err;
-    I2C_PARAM_T i2c_param;
-    I2C_RESULT_T i2c_result;
+
+//Called when Slave is addressed for Read, Slave will send Data in polling mode
+//Parameter length (>=1) is the maximum number of bytes. Exit when Slave byte is NACKed.
+int i2c_slave_write(i2c_t *obj, const char *data, int length) {
+  int count;
+  
+  // Send and all bytes or Exit on NAK
+  for (count=0; count < length; count++) {
+    // Wait until Ready for data 
+    while (!I2C_SLVSI(obj)); // Wait forever
+//    if (i2c_wait_slave_SI(obj) != 0) {return -2;} // Wait with timeout
 
-    i2c_param.buffer_ptr_rec = (uint8_t *)data;
-    i2c_param.num_bytes_rec = length;
-    err = LPC_I2CD_API->i2c_slave_receive_poll(obj->handler, &i2c_param, &i2c_result);
-    if (err == 0)
-        return i2c_result.n_bytes_recd;
-    else
-        return -1;
+    // Check State
+    switch(I2C_SLVSTAT(obj)) {
+      case 0x0: // Slave address plus R/W received 
+                // At least one of the four slave addresses has been matched by hardware.
+                // You can figure out which address by checking Slave address match Index in STAT register.                
+                // I2C Restart occurred
+                return -1; 
+                //break;    
+      case 0x1: // Slave receive. Received data is available (Slave Receiver mode).
+                // Should not get here... 
+                return -2;
+                //break;                
+      case 0x2: // Slave transmit. Data can be transmitted (Slave Transmitter mode).
+                I2C_SLVDAT(obj) = data[count] & 0xFF; // Store the data for transmission
+                obj->i2c->SLVCTL = (1 << 0);          // Continue to send
+                break;      
+      case 0x3: // Reserved.
+      default:
+              // Should not get here... 
+              return -3;
+              //break; 
+    } // switch status
+  } // for all bytes
+     
+  return length; // Transmitted the max number of bytes
 }
 
-void i2c_slave_address(i2c_t *obj, int idx, uint32_t address, uint32_t mask)
-{
-    LPC_I2CD_API->i2c_set_slave_addr(obj->handler, address, 0);
+
+// Set the four slave addresses. 
+void i2c_slave_address(i2c_t *obj, int idx, uint32_t address, uint32_t mask) {
+  obj->i2c->SLVADR0   = (address & 0xFE); // Store address in address 0 register
+  obj->i2c->SLVADR1   = (0x00    & 0xFE); // Store general call write address in address 1 register
+  obj->i2c->SLVADR2   = (0x01);           // Disable address 2 register
+  obj->i2c->SLVADR3   = (0x01);           // Disable address 3 register
+  obj->i2c->SLVQUAL0  = (mask & 0xFE);    // Qualifier mask for address 0 register. Any maskbit that is 1 will always be a match 
 }
 
 #endif
--- a/targets/hal/TARGET_NXP/TARGET_LPC82X/us_ticker.c	Thu Apr 09 06:45:08 2015 +0100
+++ b/targets/hal/TARGET_NXP/TARGET_LPC82X/us_ticker.c	Thu Apr 09 07:00:08 2015 +0100
@@ -18,72 +18,89 @@
 #include "PeripheralNames.h"
 
 static int us_ticker_inited = 0;
-static int ticker_expired = 0;
+int MRT_Clock_MHz;
+unsigned int ticker_fullcount_us;
+unsigned long int ticker_expired_count_us = 0;
 
 #define US_TICKER_TIMER_IRQn     MRT_IRQn
-#define MRT_CLOCK_MHZ            30
 
-void us_ticker_init(void)
-{
+void us_ticker_init(void) {
+    
     if (us_ticker_inited)
         return;
 
     us_ticker_inited = 1;
 
+    // Calculate MRT clock value (MRT has no prescaler)
+    MRT_Clock_MHz = (SystemCoreClock / 1000000);
+    // Calculate fullcounter value in us (MRT has 31 bits and clock is 30MHz)
+    ticker_fullcount_us = 0x80000000UL/MRT_Clock_MHz;
+
     // Enable the MRT clock
     LPC_SYSCON->SYSAHBCLKCTRL |= (1 << 10);
 
     // Clear peripheral reset the MRT
     LPC_SYSCON->PRESETCTRL |= (1 << 7);
 
-    // Force load interval value
+    // Force load interval value (Bit 0-30 is interval value, Bit 31 is Force Load bit)     
     LPC_MRT->INTVAL0 = 0xFFFFFFFFUL;
-    // Enable ch0 interrupt
-    LPC_MRT->CTRL0 = 1;
+    // Enable Ch0 interrupt, Mode 0 is Repeat Interrupt
+    LPC_MRT->CTRL0 = (0x0 << 1) | (0x1 << 0);
 
-    // Force load interval value
+    // Force load interval value (Bit 0-30 is interval value, Bit 31 is Force Load bit)     
     LPC_MRT->INTVAL1 = 0x80000000UL;
-    // Disable ch1 interrupt
-    LPC_MRT->CTRL1 = 0;
-
+    // Disable ch1 interrupt, Mode 0 is Repeat Interrupt
+    LPC_MRT->CTRL1 = (0x0 << 1) | (0x0 << 0);
+    
     // Set MRT interrupt vector
     NVIC_SetVector(US_TICKER_TIMER_IRQn, (uint32_t)us_ticker_irq_handler);
     NVIC_EnableIRQ(US_TICKER_TIMER_IRQn);
 }
 
-uint32_t us_ticker_read()
-{
+//TIMER0 is used for us ticker and timers (Timer, wait(), wait_us() etc)
+uint32_t us_ticker_read() {
+    
     if (!us_ticker_inited)
         us_ticker_init();
 
     // Generate ticker value
-    // MRT source clock is SystemCoreClock (30MHz) and 31-bit down count timer
-    // Calculate expected value using number of expired times
-    return (0x7FFFFFFFUL - LPC_MRT->TIMER0)/MRT_CLOCK_MHZ + (ticker_expired * (0x80000000UL/MRT_CLOCK_MHZ));
+    // MRT source clock is SystemCoreClock (30MHz) and MRT is a 31-bit countdown timer
+    // Calculate expected value using number of expired times to mimic a 32bit timer @ 1 MHz
+    return (0x7FFFFFFFUL - LPC_MRT->TIMER0)/MRT_Clock_MHz + ticker_expired_count_us;        
 }
 
-
-void us_ticker_set_interrupt(timestamp_t timestamp)
-{
-    // Force load interval value
-    LPC_MRT->INTVAL1 = (((timestamp - us_ticker_read()) * MRT_CLOCK_MHZ) | 0x80000000UL);
-
+//TIMER1 is used for Timestamped interrupts (Ticker(), Timeout())
+void us_ticker_set_interrupt(timestamp_t timestamp) {
+    
+    // MRT source clock is SystemCoreClock (30MHz) and MRT is a 31-bit countdown timer    
+    // Force load interval value (Bit 0-30 is interval value, Bit 31 is Force Load bit)
+    // Note: The MRT has less counter headroom available than the typical mbed 32bit timer @ 1 MHz.
+    //       The calculated counter interval until the next timestamp will be truncated and an
+    //       'early' interrupt will be generated in case the max required count interval exceeds
+    //       the available 31 bits space. However, the mbed us_ticker interrupt handler will 
+    //       check current time against the next scheduled timestamp and simply re-issue the
+    //       same interrupt again when needed. The calculated counter interval will now be smaller.
+    LPC_MRT->INTVAL1 = (((timestamp - us_ticker_read()) * MRT_Clock_MHz) | 0x80000000UL);
+    
     // Enable interrupt 
     LPC_MRT->CTRL1 |= 1;
 }
 
-void us_ticker_disable_interrupt()
-{
+//Disable Timestamped interrupts triggered by TIMER1
+void us_ticker_disable_interrupt() {
+    //Timer1 for Timestamped interrupts (31 bits downcounter @ SystemCoreClock)    
     LPC_MRT->CTRL1 &= ~1;
 }
 
-void us_ticker_clear_interrupt()
-{
+void us_ticker_clear_interrupt() {
+    
+    //Timer1 for Timestamped interrupts (31 bits downcounter @ SystemCoreClock)
     if (LPC_MRT->STAT1 & 1)
         LPC_MRT->STAT1 = 1;
     
+    //Timer0 for us counter (31 bits downcounter @ SystemCoreClock)
     if (LPC_MRT->STAT0 & 1) {
         LPC_MRT->STAT0 = 1;
-        ticker_expired++;
+          ticker_expired_count_us += ticker_fullcount_us;
     }
 }