4 directional EMG control of the XY table. Made during my bachelor end assignment.

Dependencies:   C12832_lcd HIDScope mbed-dsp mbed

Files at this revision

API Documentation at this revision

Comitter:
jessekaiser
Date:
Mon Jun 22 11:07:32 2015 +0000
Parent:
76:627b0537110e
Child:
78:9cae6de48b0e
Commit message:
Motor y 2

Changed in this revision

main.cpp Show annotated file Show diff for this revision Revisions of this file
--- a/main.cpp	Mon Jun 22 10:17:32 2015 +0000
+++ b/main.cpp	Mon Jun 22 11:07:32 2015 +0000
@@ -22,20 +22,20 @@
 #define EMG_tresh3   0.01
 #define EMG_tresh4   0.01
 #define H_Gain  3.5
-#define Pt_x    0.83
-
+#define Pt_x    0.50
+#define Pt_y    0.25
 #define error_tresh 0.01
 
 //Motor control
-DigitalOut Dirx(p25);
-PwmOut Stepx(p26);
+DigitalOut Diry(p23);
+PwmOut Stepy(p24);
 
 //Signal to and from computer
 Serial pc(USBTX, USBRX);
 
 //Position sensors
-AnalogIn Posx(p20);
-DigitalOut Enablex(p30);
+AnalogIn Posy(p20);
+DigitalOut Enabley(p26);
 
 //Microstepping
 DigitalOut MS1(p27);
@@ -43,8 +43,8 @@
 DigitalOut MS3(p29);
 
 //EMG inputs
-AnalogIn emg1(p19);
-AnalogIn emg2(p18);
+AnalogIn emg1(p15);
+AnalogIn emg2(p16);
 
 //HIDScope scope(4);
 //Ticker   scopeTimer;
@@ -54,7 +54,7 @@
 
 //Variables for motor control
 float setpoint = 2000; //Frequentie setpoint
-float step_freq2 = 1;
+float step_freq1 = 1;
 
 
 //EMG filter
@@ -98,6 +98,7 @@
     emg_value1_f32 = emg1.read();
     emg_value2_f32 = emg2.read();
 
+
     //process emg biceps
     arm_biquad_cascade_df1_f32(&highnotch_biceps, &emg_value1_f32, &filtered_biceps, 1 );   //High pass and notch filter
     filtered_biceps = fabs(filtered_biceps);                                                //Rectifier, The Gain is already implemented.
@@ -108,135 +109,141 @@
     filtered_triceps = fabs(filtered_triceps);
     arm_biquad_cascade_df1_f32(&lowpass_triceps, &filtered_triceps, &filtered_triceps, 1 );
 
+
+
     /*send value to PC.
     scope.set(0,filtered_biceps); //Filtered EMG signal
-    scope.set(1,filtered_triceps);
-    scope.set(2,filtered_pect);
-    scope.set(3,filtered_deltoid);*/
+    scope.set(1,filtered_triceps);*/
+
 }
 
-
-void looper_motorx()
+void looper_motory()
 {
 
-    emg_x = (filtered_biceps - filtered_triceps);
-    emg_x_abs = fabs(emg_x);
-    force2 = emg_x_abs*K_Gain;
-    force2 = force2 - damping2;
-    acc2 = force2/Mass;
-    speed2 = speed_old2 + (acc2 * dt);
-    damping2 = speed2 * Damp;
-    step_freq2 = setpoint * speed2;
-    Stepx.period(1.0/step_freq2);
-    speed_old2 = speed2;
+    emg_y = (filtered_biceps - filtered_triceps);
+    emg_y_abs = fabs(emg_y);
+    force1 = emg_y_abs*K_Gain;
+    force1 = force1 - damping1;
+    acc1 = force1/Mass;
+    speed1 = speed_old1 + (acc1 * dt);
+    damping1 = speed1 * Damp;
+    step_freq1 = setpoint * speed1;
+    Stepy.period(1.0/step_freq1);
+    speed_old1 = speed1;
 
-    if (emg_x > 0) {
-        Dirx = 0;
+    if (emg_y > 0) {
+        Diry = 1;
     }
-    if (emg_x < 0) {
-        Dirx = 1;
+
+    if (emg_y < 0) {
+        Diry = 0;
     }
     //Speed limit
-    if (speed2 > 1) {
-        speed2 = 1;
-        step_freq2 = setpoint;
+    if (speed1 > 1) {
+        speed1 = 1;
+        step_freq1 = setpoint;
     }
     //EMG treshold
     if (filtered_biceps < EMG_tresh1 && filtered_triceps < EMG_tresh2) {
-        Enablex = 1; //Enable = 1 turns the motor off.
+        Enabley = 1; //Enable = 1 turns the motor off.
     } else {
-        Enablex = 0;
+        Enabley = 0;
     }
 
+
+
 }
 
 int main()
 {
     // Attach the HIDScope::send method from the scope object to the timer at 500Hz. Hier wordt de sample freq aangegeven.
     // scopeTimer.attach_us(&scope, &HIDScope::send, 2e3);
-    
-        MS1 = 1;
-        MS2 = 0;
-        MS3 = 0;
-
-        Stepx.write(0.5); // Duty cycle of 50%
- 
-        Enablex = 1;
-        wait(1);
-        pc.printf("Start homing");
-        wait(2);
-        
-        wait(1);
-        Enablex = 0;
- 
-        //Homing of the motor, so you start from the same position every time.
-        while(errorx > error_tresh) {
-
-            Ps_x = Posx.read();
-            errorx = fabs(Pt_x - Ps_x);
-            pc.printf("%.2f  \n", Stepx.read());
-
-
-            if (Ps_x < Pt_x && errorx > error_tresh) {
-                Dirx = 0;
-                cx = errorx * H_Gain;
-                float hnew_step_freqx;
-                hnew_step_freqx = ((1-P_Gain)*setpoint*cx) + (P_Gain*hstep_freqx);
-                hstep_freqx = hnew_step_freqx;
-                Stepx.period(1.0/hstep_freqx);
-                wait(0.01);
-            }
-
-            if (Ps_x > Pt_x && errorx > error_tresh) {
-                Dirx = 1;
-                cx = errorx * H_Gain;
-                float hnew_step_freqx;
-                hnew_step_freqx = ((1-P_Gain)*setpoint*cx) + (P_Gain*hstep_freqx);
-                hstep_freqx = hnew_step_freqx;
-                Stepx.period(1.0/hstep_freqx);
-                wait(0.01);
-            }
-        }
-        pc.printf("Done");
-        wait(5);
-        
-        wait(1);
-        Enablex = 1;
-        wait(3);
-        pc.printf("Start EMG Control");
-        wait(2);
-        
-        wait(1);
-        Enablex = 0;
-        
+/*
     MS1 = 1;
     MS2 = 0;
     MS3 = 0;
-    Stepx.write(0.5); // Duty cycle of 50%
-    
-    Ticker emgtimer;    //biceps
-    arm_biquad_cascade_df1_init_f32(&lowpass_biceps, 1 , lowpass_const, lowpass_biceps_states);
-    arm_biquad_cascade_df1_init_f32(&highnotch_biceps, 2 , highnotch_const, highnotch_biceps_states);
-    //triceps
-    arm_biquad_cascade_df1_init_f32(&lowpass_triceps, 1 , lowpass_const, lowpass_triceps_states);
-    arm_biquad_cascade_df1_init_f32(&highnotch_triceps, 2 , highnotch_const, highnotch_triceps_states);
-    emgtimer.attach(looper_emg, 0.01);
+
+   
+    Stepy.write(0.5);
+
+
+    Enabley = 1;
+    wait(1);
+    lcd.printf("Start homing");
+    wait(2);
+    lcd.cls();
+    wait(1);
+    Enabley = 0;
+
+    //Homing of the motor, so you start from the same position every time.
+    while(errory > error_tresh) {
+
+        Ps_y = Posy.read();
+        errory = fabs(Ps_y - Pt_y);
+        lcd.printf("%.2f \n",  Stepy.read());
+
+                   if (Ps_y > Pt_y && errory > error_tresh) {
+                   Diry = 0;
+                   cy = errory * H_Gain;
+                   float hnew_step_freqy;
+                   hnew_step_freqy = ((1-P_Gain)*setpoint*cy) + (P_Gain*hstep_freqy);
+                   hstep_freqy = hnew_step_freqy;
+                   Stepy.period(1.0/hstep_freqy);
+                   wait(0.01);
+               }
+
 
-    Ticker looptimer1;
-    looptimer1.attach(looper_motorx, 0.01); //X-Spindle motor, why this freq?
+                   if (Ps_y < 0.25 && errory > error_tresh) {
+                   Diry = 1;
+                   cy = errory * H_Gain;
+                   float hnew_step_freqy;
+                   hnew_step_freqy = ((1-P_Gain)*setpoint*cy) + (P_Gain*hstep_freqy);
+                   hstep_freqy = hnew_step_freqy;
+                   Stepy.period(1.0/hstep_freqy);
+                   wait(0.01);
+               }
 
-    //Ticker looptimer2;
-    //looptimer2.attach(looper_motory, 0.01); //Y-Spindle motor
+               }
+                   lcd.printf("Done");
+                   wait(5);
+                   lcd.cls();
+                   wait(1);
+                   
+                   Enabley = 1;
+                   wait(3);
+                   lcd.printf("Start EMG Control");
+                   wait(2);
+                   lcd.cls();
+                   wait(1);
+                   
+                   Enabley = 0;
+*/
+                   MS1 = 1;
+                   MS2 = 0;
+                   MS3 = 0;
 
-    //Microstepping control, now configured as half stepping (MS1=1,MS2=0,MS3=0)
+                   Stepy.write(0.5);
+
+                   Ticker emgtimer;    //biceps
+                   arm_biquad_cascade_df1_init_f32(&lowpass_biceps, 1 , lowpass_const, lowpass_biceps_states);
+                   arm_biquad_cascade_df1_init_f32(&highnotch_biceps, 2 , highnotch_const, highnotch_biceps_states);
+                   //triceps
+                   arm_biquad_cascade_df1_init_f32(&lowpass_triceps, 1 , lowpass_const, lowpass_triceps_states);
+                   arm_biquad_cascade_df1_init_f32(&highnotch_triceps, 2 , highnotch_const, highnotch_triceps_states);
+                   emgtimer.attach(looper_emg, 0.01);
+
+                   Ticker looptimer2;
+                   looptimer2.attach(looper_motory, 0.01); //Y-Spindle motor
+
+                   //Microstepping control, now configured as half stepping (MS1=1,MS2=0,MS3=0)
 
 
 
-    while (1) {
+                   while (1) {
 
-        //pc.printf("x %.2f, y %.2f \n", Posx.read(), Posy.read());
-//        pc.printf("%.2f %.2f  \n", Stepx.read(), step_freq2);
-        wait(0.01);
+                   //lcd.printf("x %.2f, y %.2f \n", Posx.read(), Posy.read());
+                   lcd.printf("%.2f %.2f %.2f %.2f  \n", Stepy.read(), step_freq1);
+                   wait(0.01);
 
-    }
-}
+               }
+               }