Maniacbug's nRF24L01+ arduino library ported to mbed. Functional with minor issues.

Files at this revision

API Documentation at this revision

Comitter:
Christilut
Date:
Thu Apr 04 11:49:28 2013 +0000
Parent:
0:eb5b89f49c35
Child:
2:a483f426d380
Commit message:
Fixed name

Changed in this revision

nRF24L01P_MANIC.cpp Show diff for this revision Revisions of this file
nRF24L01P_MANIC.h Show diff for this revision Revisions of this file
nRF24L01P_Maniacbug.cpp Show annotated file Show diff for this revision Revisions of this file
nRF24L01P_Maniacbug.h Show annotated file Show diff for this revision Revisions of this file
--- a/nRF24L01P_MANIC.cpp	Thu Apr 04 11:46:12 2013 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,964 +0,0 @@
-/*
- Copyright (C) 2011 J. Coliz <maniacbug@ymail.com>
-
- This program is free software; you can redistribute it and/or
- modify it under the terms of the GNU General Public License
- version 2 as published by the Free Software Foundation.
- */
-
-#include "nRF24L01P_MANIC.h"
-
-/****************************************************************************/
-
-void RF24::csn(int mode)
-{
-//    // Minimum ideal SPI bus speed is 2x data rate
-//    // If we assume 2Mbs data rate and 16Mhz clock, a
-//    // divider of 4 is the minimum we want.
-//    // CLK:BUS 8Mhz:2Mhz, 16Mhz:4Mhz, or 20Mhz:5Mhz
-////#ifdef ARDUINO
-////  spi.setBitOrder(MSBFIRST);
-////  spi.setDataMode(SPI_MODE0);
-////  spi.setClockDivider(SPI_CLOCK_DIV4);
-////#endif
-////  digitalWrite(csn_pin,mode);
-//
-//
-    csn_pin = mode;
-}
-
-/****************************************************************************/
-
-void RF24::ce(int level)
-{
-    //digitalWrite(ce_pin,level);
-    ce_pin = level;
-    wait_us(_NRF24L01P_TIMING_Tpece2csn_us);
-}
-
-/****************************************************************************/
-
-uint8_t RF24::read_register(uint8_t reg, uint8_t* buf, uint8_t len)
-{
-    uint8_t status;
-
-    csn(LOW);
-    status = spi.write( R_REGISTER | ( REGISTER_MASK & reg ) );
-    while ( len-- )
-        *buf++ = spi.write(0xff);
-
-    csn(HIGH);
-
-    return status;
-}
-
-/****************************************************************************/
-
-uint8_t RF24::read_register(uint8_t reg)    //checked
-{
-    csn(LOW);
-    spi.write( R_REGISTER | ( REGISTER_MASK & reg ) );
-    uint8_t result = spi.write(0xff);
-
-    csn(HIGH);
-    return result;
-}
-
-/****************************************************************************/
-
-uint8_t RF24::write_register(uint8_t reg, const uint8_t* buf, uint8_t len)
-{
-    uint8_t status;
-    int originalCe = ce_pin;
-    ce(LOW);
-
-    csn(LOW);
-    status = spi.write( W_REGISTER | ( REGISTER_MASK & reg ) );
-    while ( len-- )
-        spi.write(*buf++);
-
-    csn(HIGH);
-    
-    ce_pin = originalCe;
-    wait_us( _NRF24L01P_TIMING_Tpece2csn_us );
-
-    return status;
-}
-
-/****************************************************************************/
-
-uint8_t RF24::write_register(uint8_t reg, uint8_t value)        //checked
-{
-    uint8_t status;
-
-//    IF_SERIAL_DEBUG(printf(PSTR("write_register(%02x,%02x)\r\n"),reg,value));
-    int originalCe = ce_pin;
-    ce(LOW);
-
-
-    csn(LOW);
-    status = spi.write( W_REGISTER | ( REGISTER_MASK & reg ) );
-    spi.write(value);
-    csn(HIGH);
-
-    ce_pin = originalCe;
-    wait_us( _NRF24L01P_TIMING_Tpece2csn_us );
-
-    return status;
-}
-
-/****************************************************************************/
-
-uint8_t RF24::write_payload(const void* buf, uint8_t len)
-{
-    uint8_t status;
-
-    const uint8_t* current = reinterpret_cast<const uint8_t*>(buf);
-
-    uint8_t data_len = min(len,payload_size);
-    uint8_t blank_len = dynamic_payloads_enabled ? 0 : payload_size - data_len;
-
-    //printf("[Writing %u bytes %u blanks]",data_len,blank_len);
-
-    csn(LOW);
-    status = spi.write( W_TX_PAYLOAD );
-    while ( data_len-- )
-        spi.write(*current++);
-    while ( blank_len-- )
-        spi.write(0);
-    csn(HIGH);
-
-    return status;
-}
-
-/****************************************************************************/
-
-uint8_t RF24::read_payload(void* buf, uint8_t len)
-{
-    uint8_t status;
-    uint8_t* current = reinterpret_cast<uint8_t*>(buf);
-
-    uint8_t data_len = min(len,payload_size);
-    uint8_t blank_len = dynamic_payloads_enabled ? 0 : payload_size - data_len;
-
-    //printf("[Reading %u bytes %u blanks]",data_len,blank_len);
-
-    csn(LOW);
-    status = spi.write( R_RX_PAYLOAD );
-    while ( data_len-- )
-        *current++ = spi.write(0xff);
-    while ( blank_len-- )
-        spi.write(0xff);
-    csn(HIGH);
-
-    return status;
-}
-
-/****************************************************************************/
-
-uint8_t RF24::flush_rx(void)
-{
-    uint8_t status;
-
-    csn(LOW);
-    status = spi.write( FLUSH_RX );
-    csn(HIGH);
-
-    return status;
-}
-
-/****************************************************************************/
-
-uint8_t RF24::flush_tx(void)
-{
-    uint8_t status;
-
-    csn(LOW);
-    status = spi.write( FLUSH_TX );
-    csn(HIGH);
-
-    return status;
-}
-
-/****************************************************************************/
-
-uint8_t RF24::get_status(void)
-{
-    uint8_t status;
-
-    csn(LOW);
-    status = spi.write( NOP );
-    csn(HIGH);
-
-    return status;
-}
-
-/****************************************************************************/
-
-void RF24::print_status(uint8_t status)
-{
-    printf("STATUS = 0x%02x RX_DR=%x TX_DS=%x MAX_RT=%x RX_P_NO=%x TX_FULL=%x\r\n",
-           status,
-           (status & RX_DR)?1:0,
-           (status & TX_DS)?1:0,
-           (status & MAX_RT)?1:0,
-           ((status >> RX_P_NO) & 7),
-           (status & TX_FULL)?1:0
-          );
-}
-
-///****************************************************************************/
-
-void RF24::print_observe_tx(uint8_t value)
-{
-    printf("OBSERVE_TX=%02x: POLS_CNT=%x ARC_CNT=%x\r\n",
-           value,
-           (value >> PLOS_CNT) & 15,
-           (value >> ARC_CNT) & 15
-          );
-}
-
-/****************************************************************************/
-
-void RF24::print_byte_register(const char* name, uint8_t reg, uint8_t qty)
-{
-//    char extra_tab = strlen(name) < 8 ? '\t' : 0;
-    printf("%s =",name);
-    while (qty--)
-        printf(" 0x%02x",read_register(reg++));
-    printf("\r\n");
-}
-
-/****************************************************************************/
-
-void RF24::print_address_register(const char* name, uint8_t reg, uint8_t qty)
-{
-//    char extra_tab = strlen(name) < 8 ? '\t' : 0;
-    printf("%s =",name);
-
-    while (qty--) {
-        uint8_t buffer[5];
-        read_register(reg++,buffer,sizeof buffer);
-
-        printf(" 0x");
-        uint8_t* bufptr = buffer + sizeof buffer;
-        while( --bufptr >= buffer )
-            printf("%02x",*bufptr);
-    }
-
-    printf("\r\n");
-}
-
-/****************************************************************************/
-
-RF24::RF24(PinName mosi, PinName miso, PinName sck, PinName _cspin, PinName _cepin):
-    ce_pin(_cepin), csn_pin(_cspin), wide_band(true), p_variant(false),
-    payload_size(32), ack_payload_available(false), dynamic_payloads_enabled(false),
-    pipe0_reading_address(0), spi(mosi, miso, sck)
-{
-}
-
-/****************************************************************************/
-
-void RF24::setChannel(uint8_t channel)
-{
-    // TODO: This method could take advantage of the 'wide_band' calculation
-    // done in setChannel() to require certain channel spacing.
-
-    const uint8_t max_channel = 127;
-    write_register(RF_CH,min(channel,max_channel));
-}
-
-/****************************************************************************/
-
-void RF24::setPayloadSize(uint8_t size)
-{
-    const uint8_t max_payload_size = 32;
-    payload_size = min(size,max_payload_size);
-}
-
-/****************************************************************************/
-
-uint8_t RF24::getPayloadSize(void)
-{
-    return payload_size;
-}
-
-/****************************************************************************/
-
-static const char rf24_datarate_e_str_0[]  = "1MBPS";
-static const char rf24_datarate_e_str_1[]  = "2MBPS";
-static const char rf24_datarate_e_str_2[]  = "250KBPS";
-static const char * const rf24_datarate_e_str_P[]  = {
-    rf24_datarate_e_str_0,
-    rf24_datarate_e_str_1,
-    rf24_datarate_e_str_2,
-};
-static const char rf24_model_e_str_0[]  = "nRF24L01";
-static const char rf24_model_e_str_1[]  = "nRF24L01+";
-static const char * const rf24_model_e_str_P[]  = {
-    rf24_model_e_str_0,
-    rf24_model_e_str_1,
-};
-static const char rf24_crclength_e_str_0[]  = "Disabled";
-static const char rf24_crclength_e_str_1[]  = "8 bits";
-static const char rf24_crclength_e_str_2[]  = "16 bits" ;
-static const char * const rf24_crclength_e_str_P[]  = {
-    rf24_crclength_e_str_0,
-    rf24_crclength_e_str_1,
-    rf24_crclength_e_str_2,
-};
-static const char rf24_pa_dbm_e_str_0[]  = "PA_MIN";
-static const char rf24_pa_dbm_e_str_1[]  = "PA_LOW";
-static const char rf24_pa_dbm_e_str_2[]  = "PA_MED";
-static const char rf24_pa_dbm_e_str_3[]  = "PA_HIGH";
-static const char * const rf24_pa_dbm_e_str_P[]  = {
-    rf24_pa_dbm_e_str_0,
-    rf24_pa_dbm_e_str_1,
-    rf24_pa_dbm_e_str_2,
-    rf24_pa_dbm_e_str_3,
-};
-
-void RF24::printDetails(void)
-{
-    print_status(get_status());
-
-    print_address_register("RX_ADDR_P0-1",RX_ADDR_P0,2);
-    print_byte_register("RX_ADDR_P2-5", RX_ADDR_P2,4);
-    print_address_register("TX_ADDR",   TX_ADDR);
-
-    print_byte_register("RX_PW_P0-6",   RX_PW_P0,6);
-    print_byte_register("EN_AA",        EN_AA);
-    print_byte_register("EN_RXADDR",    EN_RXADDR);
-    print_byte_register("RF_CH",        RF_CH);
-    print_byte_register("RF_SETUP",     RF_SETUP);
-    print_byte_register("CONFIG",       CONFIG);
-    print_byte_register("DYNPD/FEATURE",DYNPD,2);
-
-    printf("Data Rate\t = %s\r\n",  rf24_datarate_e_str_P[getDataRate()]);
-    printf("Model\t\t = %s\r\n",    rf24_model_e_str_P[isPVariant()]);
-    printf("CRC Length\t = %s\r\n", rf24_crclength_e_str_P[getCRCLength()]);
-    printf("PA Power\t = %s\r\n",   rf24_pa_dbm_e_str_P[getPALevel()]);
-}
-
-/****************************************************************************/
-
-void RF24::begin(void)
-{
-    // Initialize pins
-//    pinMode(ce_pin,OUTPUT);   //ARD
-//    pinMode(csn_pin,OUTPUT);
-
-    mainTimer.start();
-
-
-    spi.frequency(_NRF24L01P_SPI_MAX_DATA_RATE/5);     // 2Mbit, 1/5th the maximum transfer rate for the SPI bus
-    spi.format(8,0);                                   // 8-bit, ClockPhase = 0, ClockPolarity = 0
-
-    wait_us(_NRF24L01P_TIMING_Tundef2pd_us);    // Wait for Power-on reset    //MBED
-
-    // Initialize SPI bus
-//    spi.begin();      //ARD
-
-    ce(LOW);
-    csn(HIGH);
-
-    // Must allow the radio time to settle else configuration bits will not necessarily stick.
-    // This is actually only required following power up but some settling time also appears to
-    // be required after resets too. For full coverage, we'll always assume the worst.
-    // Enabling 16b CRC is by far the most obvious case if the wrong timing is used - or skipped.
-    // Technically we require 4.5ms + 14us as a worst case. We'll just call it 5ms for good measure.
-    // WARNING: Delay is based on P-variant whereby non-P *may* require different timing.
-//    delay( 5 ) ;
-    wait_ms(5);
-
-    // Set 1500uS (minimum for 32B payload in ESB@250KBPS) timeouts, to make testing a little easier
-    // WARNING: If this is ever lowered, either 250KBS mode with AA is broken or maximum packet
-    // sizes must never be used. See documentation for a more complete explanation.
-    write_register(SETUP_RETR,(4 << ARD) | (15 << ARC));
-
-    // Restore our default PA level
-    setPALevel( RF24_PA_MAX ) ;
-
-    // Determine if this is a p or non-p RF24 module and then
-    // reset our data rate back to default value. This works
-    // because a non-P variant won't allow the data rate to
-    // be set to 250Kbps.
-    if( setDataRate( RF24_250KBPS ) ) {
-        p_variant = true ;
-    }
-
-    // Then set the data rate to the slowest (and most reliable) speed supported by all
-    // hardware.
-    setDataRate( RF24_1MBPS ) ;
-
-    // Initialize CRC and request 2-byte (16bit) CRC
-    setCRCLength( RF24_CRC_16 ) ;
-
-    // Disable dynamic payloads, to match dynamic_payloads_enabled setting
-    write_register(DYNPD,0);
-
-    // Reset current status
-    // Notice reset and flush is the last thing we do
-    write_register(STATUS,RX_DR | TX_DS | MAX_RT );
-
-    // Set up default configuration.  Callers can always change it later.
-    // This channel should be universally safe and not bleed over into adjacent
-    // spectrum.
-    setChannel(76);
-
-    // Flush buffers
-    flush_rx();
-    flush_tx();
-}
-
-/****************************************************************************/
-
-void RF24::startListening(void)
-{
-    write_register(CONFIG, read_register(CONFIG) | PWR_UP | PRIM_RX);
-    write_register(STATUS, RX_DR | TX_DS | MAX_RT );
-
-    // Restore the pipe0 adddress, if exists
-    if (pipe0_reading_address)
-        write_register(RX_ADDR_P0, reinterpret_cast<const uint8_t*>(&pipe0_reading_address), 5);
-
-    // Flush buffers
-    flush_rx();
-    flush_tx();
-
-    // Go!
-    ce(HIGH);;
-
-    // wait for the radio to come up (130us actually only needed)
-//    delayMicroseconds(130);
-    wait_us(130);
-}
-
-/****************************************************************************/
-
-void RF24::stopListening(void)
-{
-    ce(LOW);
-    flush_tx();
-    flush_rx();
-}
-
-/****************************************************************************/
-
-void RF24::powerDown(void)
-{
-    write_register(CONFIG,read_register(CONFIG) & ~PWR_UP);
-}
-
-/****************************************************************************/
-
-void RF24::powerUp(void)
-{
-    write_register(CONFIG,read_register(CONFIG) | PWR_UP);
-}
-
-/******************************************************************/
-
-bool RF24::write( const void* buf, uint8_t len )
-{
-    bool result = false;
-
-    // Begin the write
-    startWrite(buf,len);
-
-    // ------------
-    // At this point we could return from a non-blocking write, and then call
-    // the rest after an interrupt
-
-    // Instead, we are going to block here until we get TX_DS (transmission completed and ack'd)
-    // or MAX_RT (maximum retries, transmission failed).  Also, we'll timeout in case the radio
-    // is flaky and we get neither.
-
-    // IN the end, the send should be blocking.  It comes back in 60ms worst case, or much faster
-    // if I tighted up the retry logic.  (Default settings will be 1500us.
-    // Monitor the send
-    uint8_t observe_tx;
-    uint8_t status;
-    uint32_t sent_at = mainTimer.read_ms();
-    const uint32_t timeout = 500; //ms to wait for timeout
-    do {
-        status = read_register(OBSERVE_TX,&observe_tx,1);
-//        IF_SERIAL_DEBUG(Serial.print(observe_tx,HEX));
-    } while( ! ( status & ( TX_DS | MAX_RT ) ) && ( mainTimer.read_ms() - sent_at < timeout ) );
-
-    // The part above is what you could recreate with your own interrupt handler,
-    // and then call this when you got an interrupt
-    // ------------
-
-    // Call this when you get an interrupt
-    // The status tells us three things
-    // * The send was successful (TX_DS)
-    // * The send failed, too many retries (MAX_RT)
-    // * There is an ack packet waiting (RX_DR)
-    bool tx_ok, tx_fail;
-    whatHappened(tx_ok,tx_fail,ack_payload_available);
-
-    //printf("%u%u%u\r\n",tx_ok,tx_fail,ack_payload_available);
-
-    result = tx_ok;
-//    IF_SERIAL_DEBUG(Serial.print(result?"...OK.":"...Failed"));
-
-    // Handle the ack packet
-    if ( ack_payload_available ) {
-        ack_payload_length = getDynamicPayloadSize();
-//        IF_SERIAL_DEBUG(Serial.print("[AckPacket]/"));
-//        IF_SERIAL_DEBUG(Serial.println(ack_payload_length,DEC));
-    }
-
-    // Yay, we are done.
-
-    // Power down
-    powerDown();
-
-    // Flush buffers (Is this a relic of past experimentation, and not needed anymore?
-    flush_tx();
-
-    return result;
-}
-/****************************************************************************/
-
-void RF24::startWrite( const void* buf, uint8_t len )
-{
-    // Transmitter power-up
-    write_register(CONFIG, ( read_register(CONFIG) | PWR_UP ) & ~PRIM_RX );
-    //delayMicroseconds(150);
-    wait_us(150);
-
-    // Send the payload
-    write_payload( buf, len );
-
-    // Allons!
-    ce(HIGH);;
-//    delayMicroseconds(15);
-    wait_us(15);
-    ce(LOW);
-}
-
-/****************************************************************************/
-
-uint8_t RF24::getDynamicPayloadSize(void)
-{
-    uint8_t result = 0;
-
-    csn(LOW);
-    spi.write( R_RX_PL_WID );
-    result = spi.write(0xff);
-    csn(HIGH);
-
-    return result;
-}
-
-/****************************************************************************/
-
-bool RF24::available(void)
-{
-    return available(NULL);
-}
-
-/****************************************************************************/
-
-bool RF24::available(uint8_t* pipe_num)
-{
-    uint8_t status = get_status();
-
-    // Too noisy, enable if you really want lots o data!!
-    //IF_SERIAL_DEBUG(print_status(status));
-
-    bool result = ( status & RX_DR );
-
-    if (result) {
-        // If the caller wants the pipe number, include that
-        if ( pipe_num )
-            *pipe_num = ( status >> RX_P_NO ) & 7;
-
-        // Clear the status bit
-
-        // ??? Should this REALLY be cleared now?  Or wait until we
-        // actually READ the payload?
-
-        write_register(STATUS,RX_DR );
-
-        // Handle ack payload receipt
-        if ( status & TX_DS ) {
-            write_register(STATUS,TX_DS);
-        }
-    }
-
-    return result;
-}
-
-/****************************************************************************/
-
-bool RF24::read( void* buf, uint8_t len )
-{
-    // Fetch the payload
-    read_payload( buf, len );
-
-    // was this the last of the data available?
-    return read_register(FIFO_STATUS) & RX_EMPTY;
-}
-
-/****************************************************************************/
-
-void RF24::whatHappened(bool& tx_ok,bool& tx_fail,bool& rx_ready)
-{
-    // Read the status & reset the status in one easy call
-    // Or is that such a good idea?
-    uint8_t status = write_register(STATUS,RX_DR | TX_DS | MAX_RT );
-
-    // Report to the user what happened
-    tx_ok = status & TX_DS;
-    tx_fail = status & MAX_RT;
-    rx_ready = status & RX_DR;
-}
-
-/****************************************************************************/
-
-void RF24::openWritingPipe(uint64_t value)
-{
-    // Note that AVR 8-bit uC's store this LSB first, and the NRF24L01(+)
-    // expects it LSB first too, so we're good.
-
-    write_register(RX_ADDR_P0, reinterpret_cast<uint8_t*>(&value), 5);
-    write_register(TX_ADDR, reinterpret_cast<uint8_t*>(&value), 5);
-
-    const uint8_t max_payload_size = 32;
-    write_register(RX_PW_P0,min(payload_size,max_payload_size));
-}
-
-/****************************************************************************/
-
-static const uint8_t child_pipe[] = {
-    RX_ADDR_P0, RX_ADDR_P1, RX_ADDR_P2, RX_ADDR_P3, RX_ADDR_P4, RX_ADDR_P5
-};
-static const uint8_t child_payload_size[] = {
-    RX_PW_P0, RX_PW_P1, RX_PW_P2, RX_PW_P3, RX_PW_P4, RX_PW_P5
-};
-static const uint8_t child_pipe_enable[] = {
-    ERX_P0, ERX_P1, ERX_P2, ERX_P3, ERX_P4, ERX_P5
-};
-
-void RF24::openReadingPipe(uint8_t child, uint64_t address)
-{
-    // If this is pipe 0, cache the address.  This is needed because
-    // openWritingPipe() will overwrite the pipe 0 address, so
-    // startListening() will have to restore it.
-    if (child == 0)
-        pipe0_reading_address = address;
-
-    if (child <= 6) {
-        // For pipes 2-5, only write the LSB
-        if ( child < 2 )
-            write_register(child_pipe[child], reinterpret_cast<const uint8_t*>(&address), 5);
-        else
-            write_register(child_pipe[child], reinterpret_cast<const uint8_t*>(&address), 1);
-
-        write_register(child_payload_size[child],payload_size);
-
-        // Note it would be more efficient to set all of the bits for all open
-        // pipes at once.  However, I thought it would make the calling code
-        // more simple to do it this way.
-        write_register(EN_RXADDR,read_register(EN_RXADDR) | child_pipe_enable[child]);
-    }
-}
-
-/****************************************************************************/
-
-void RF24::toggle_features(void)
-{
-    csn(LOW);
-    spi.write( ACTIVATE );
-    spi.write( 0x73 );
-    csn(HIGH);
-}
-
-/****************************************************************************/
-
-void RF24::enableDynamicPayloads(void)
-{
-    // Enable dynamic payload throughout the system
-    write_register(FEATURE,read_register(FEATURE) | EN_DPL );
-
-    // If it didn't work, the features are not enabled
-    if ( ! read_register(FEATURE) ) {
-        // So enable them and try again
-        toggle_features();
-        write_register(FEATURE,read_register(FEATURE) | EN_DPL );
-    }
-
-//    IF_SERIAL_DEBUG(printf("FEATURE=%i\r\n",read_register(FEATURE)));
-
-    // Enable dynamic payload on all pipes
-    //
-    // Not sure the use case of only having dynamic payload on certain
-    // pipes, so the library does not support it.
-    write_register(DYNPD,read_register(DYNPD) | DPL_P5 | DPL_P4 | DPL_P3 | DPL_P2 | DPL_P1 | DPL_P0);
-
-    dynamic_payloads_enabled = true;
-}
-
-/****************************************************************************/
-
-void RF24::enableAckPayload(void)
-{
-    //
-    // enable ack payload and dynamic payload features
-    //
-
-    write_register(FEATURE,read_register(FEATURE) | EN_ACK_PAY | EN_DPL );
-
-    // If it didn't work, the features are not enabled
-    if ( ! read_register(FEATURE) ) {
-        // So enable them and try again
-        toggle_features();
-        write_register(FEATURE,read_register(FEATURE) | EN_ACK_PAY | EN_DPL );
-    }
-
-//    IF_SERIAL_DEBUG(printf("FEATURE=%i\r\n",read_register(FEATURE)));
-
-    //
-    // Enable dynamic payload on pipes 0 & 1
-    //
-
-    write_register(DYNPD,read_register(DYNPD) | DPL_P1 | DPL_P0);
-}
-
-/****************************************************************************/
-
-void RF24::writeAckPayload(uint8_t pipe, const void* buf, uint8_t len)
-{
-    const uint8_t* current = reinterpret_cast<const uint8_t*>(buf);
-
-    csn(LOW);
-    spi.write( W_ACK_PAYLOAD | ( pipe & 7 ) );
-    const uint8_t max_payload_size = 32;
-    uint8_t data_len = min(len,max_payload_size);
-    while ( data_len-- )
-        spi.write(*current++);
-
-    csn(HIGH);
-}
-
-/****************************************************************************/
-
-bool RF24::isAckPayloadAvailable(void)
-{
-    bool result = ack_payload_available;
-    ack_payload_available = false;
-    return result;
-}
-
-/****************************************************************************/
-
-bool RF24::isPVariant(void)
-{
-    return p_variant ;
-}
-
-/****************************************************************************/
-
-void RF24::setAutoAck(bool enable)
-{
-    if ( enable )
-        write_register(EN_AA, 63);
-    else
-        write_register(EN_AA, 0);
-}
-
-/****************************************************************************/
-
-void RF24::setAutoAck( uint8_t pipe, bool enable )
-{
-    if ( pipe <= 6 ) {
-        uint8_t en_aa = read_register( EN_AA ) ;
-        if( enable ) {
-            en_aa |= pipe ;
-        } else {
-            en_aa &= ~pipe ;
-        }
-        write_register( EN_AA, en_aa ) ;
-    }
-}
-
-/****************************************************************************/
-
-bool RF24::testCarrier(void)
-{
-    return ( read_register(CD) & 1 );
-}
-
-/****************************************************************************/
-
-bool RF24::testRPD(void)
-{
-    return ( read_register(RPD) & 1 ) ;
-}
-
-/****************************************************************************/
-
-void RF24::setPALevel(rf24_pa_dbm_e level)
-{
-    uint8_t setup = read_register(RF_SETUP) ;
-    setup &= ~(RF_PWR_LOW | RF_PWR_HIGH) ;
-
-    // switch uses RAM (evil!)
-    if ( level == RF24_PA_MAX ) {
-        setup |= (RF_PWR_LOW | RF_PWR_HIGH) ;
-    } else if ( level == RF24_PA_HIGH ) {
-        setup |= RF_PWR_HIGH ;
-    } else if ( level == RF24_PA_LOW ) {
-        setup |= RF_PWR_LOW;
-    } else if ( level == RF24_PA_MIN ) {
-        // nothing
-    } else if ( level == RF24_PA_ERROR ) {
-        // On error, go to maximum PA
-        setup |= (RF_PWR_LOW | RF_PWR_HIGH) ;
-    }
-
-    write_register( RF_SETUP, setup ) ;
-}
-
-/****************************************************************************/
-
-rf24_pa_dbm_e RF24::getPALevel(void)
-{
-    rf24_pa_dbm_e result = RF24_PA_ERROR ;
-    uint8_t power = read_register(RF_SETUP) & (RF_PWR_LOW | RF_PWR_HIGH) ;
-
-    // switch uses RAM (evil!)
-    if ( power == (RF_PWR_LOW | RF_PWR_HIGH) ) {
-        result = RF24_PA_MAX ;
-    } else if ( power == RF_PWR_HIGH) {
-        result = RF24_PA_HIGH ;
-    } else if ( power == RF_PWR_LOW) {
-        result = RF24_PA_LOW ;
-    } else {
-        result = RF24_PA_MIN ;
-    }
-
-    return result ;
-}
-
-/****************************************************************************/
-
-bool RF24::setDataRate(rf24_datarate_e speed)
-{
-    bool result = false;
-    uint8_t setup = read_register(RF_SETUP) ;
-
-    // HIGH and LOW '00' is 1Mbs - our default
-    wide_band = false ;
-    setup &= ~(RF_DR_LOW | RF_DR_HIGH) ;
-    if( speed == RF24_250KBPS ) {
-        // Must set the RF_DR_LOW to 1; RF_DR_HIGH (used to be RF_DR) is already 0
-        // Making it '10'.
-        wide_band = false ;
-        setup |=  RF_DR_LOW  ;
-    } else {
-        // Set 2Mbs, RF_DR (RF_DR_HIGH) is set 1
-        // Making it '01'
-        if ( speed == RF24_2MBPS ) {
-            wide_band = true ;
-            setup |= RF_DR_HIGH;
-        } else {
-            // 1Mbs
-            wide_band = false ;
-        }
-    }
-    write_register(RF_SETUP,setup);
-
-    // Verify our result
-    if ( read_register(RF_SETUP) == setup ) {
-        result = true;
-    } else {
-        wide_band = false;
-    }
-
-    return result;
-}
-
-/****************************************************************************/
-
-rf24_datarate_e RF24::getDataRate( void )
-{
-    rf24_datarate_e result ;
-    uint8_t dr = read_register(RF_SETUP) & (RF_DR_LOW | RF_DR_HIGH);
-
-    // switch uses RAM (evil!)
-    // Order matters in our case below
-    if ( dr == RF_DR_LOW) {
-        // '10' = 250KBPS
-        result = RF24_250KBPS ;
-    } else if ( dr == RF_DR_HIGH) {
-        // '01' = 2MBPS
-        result = RF24_2MBPS ;
-    } else {
-        // '00' = 1MBPS
-        result = RF24_1MBPS ;
-    }
-    return result ;
-}
-
-/****************************************************************************/
-
-void RF24::setCRCLength(rf24_crclength_e length)
-{
-    uint8_t config = read_register(CONFIG) & ~( CRCO | EN_CRC) ;
-
-    if ( length == RF24_CRC_DISABLED ) {
-        // Do nothing, we turned it off above.
-    } else if ( length == RF24_CRC_8 ) {
-        config |= EN_CRC;
-    } else {
-        config |= EN_CRC;
-        config |= CRCO;
-    }
-    write_register( CONFIG, config ) ;
-    
-    printf("CRC SET: %u\n\r", config);
-}
-
-/****************************************************************************/
-
-rf24_crclength_e RF24::getCRCLength(void)
-{
-    rf24_crclength_e result = RF24_CRC_DISABLED;
-    uint8_t config = read_register(CONFIG) & ( CRCO | EN_CRC) ;
-
-    if ( config & EN_CRC) {
-        if ( config & CRCO )
-            result = RF24_CRC_16;
-        else
-            result = RF24_CRC_8;
-    }
-
-    return result;
-}
-
-/****************************************************************************/
-
-void RF24::disableCRC( void )
-{
-    uint8_t disable = read_register(CONFIG) & ~EN_CRC ;
-    write_register( CONFIG, disable ) ;
-}
-
-/****************************************************************************/
-void RF24::setRetries(uint8_t delay, uint8_t count)
-{
-    write_register(SETUP_RETR,(delay&0xf)<<ARD | (count&0xf)<<ARC);
-}
-
-int RF24::min(int a, int b)
-{
-    if(a < b)
-        return a;
-    else
-        return b;
-}
--- a/nRF24L01P_MANIC.h	Thu Apr 04 11:46:12 2013 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,783 +0,0 @@
-/*
-    Copyright (c) 2007 Stefan Engelke <mbox@stefanengelke.de>
-
-    Permission is hereby granted, free of charge, to any person
-    obtaining a copy of this software and associated documentation
-    files (the "Software"), to deal in the Software without
-    restriction, including without limitation the rights to use, copy,
-    modify, merge, publish, distribute, sublicense, and/or sell copies
-    of the Software, and to permit persons to whom the Software is
-    furnished to do so, subject to the following conditions:
-
-    The above copyright notice and this permission notice shall be
-    included in all copies or substantial portions of the Software.
-
-    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
-    EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
-    MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
-    NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
-    HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
-    WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
-    OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
-    DEALINGS IN THE SOFTWARE.
-*/
-
-/* Memory Map */
-#define CONFIG      0x00
-#define EN_AA       0x01
-#define EN_RXADDR   0x02
-#define SETUP_AW    0x03
-#define SETUP_RETR  0x04
-#define RF_CH       0x05
-#define RF_SETUP    0x06
-#define STATUS      0x07
-#define OBSERVE_TX  0x08
-#define CD          0x09
-#define RX_ADDR_P0  0x0A
-#define RX_ADDR_P1  0x0B
-#define RX_ADDR_P2  0x0C
-#define RX_ADDR_P3  0x0D
-#define RX_ADDR_P4  0x0E
-#define RX_ADDR_P5  0x0F
-#define TX_ADDR     0x10
-#define RX_PW_P0    0x11
-#define RX_PW_P1    0x12
-#define RX_PW_P2    0x13
-#define RX_PW_P3    0x14
-#define RX_PW_P4    0x15
-#define RX_PW_P5    0x16
-#define FIFO_STATUS 0x17
-#define DYNPD       0x1C
-#define FEATURE     0x1D
-
-/* Bit Mnemonics */
-#define MASK_RX_DR  6
-#define MASK_TX_DS  5
-#define MASK_MAX_RT 4
-#define EN_CRC      3
-#define CRCO        2
-#define PWR_UP      1
-#define PRIM_RX     0
-#define ENAA_P5     5
-#define ENAA_P4     4
-#define ENAA_P3     3
-#define ENAA_P2     2
-#define ENAA_P1     1
-#define ENAA_P0     0
-#define ERX_P5      5
-#define ERX_P4      4
-#define ERX_P3      3
-#define ERX_P2      2
-#define ERX_P1      1
-#define ERX_P0      0
-#define AW          0
-#define ARD         4
-#define ARC         0
-#define PLL_LOCK    4
-#define RF_DR       3
-#define RF_PWR      6
-#define RX_DR       6
-#define TX_DS       5
-#define MAX_RT      4
-#define RX_P_NO     1
-#define TX_FULL     0
-#define PLOS_CNT    4
-#define ARC_CNT     0
-#define TX_REUSE    6
-#define FIFO_FULL   5
-#define TX_EMPTY    4
-#define RX_FULL     1
-#define RX_EMPTY    0
-#define DPL_P5      5
-#define DPL_P4      4
-#define DPL_P3      3
-#define DPL_P2      2
-#define DPL_P1      1
-#define DPL_P0      0
-#define EN_DPL      2
-#define EN_ACK_PAY  1
-#define EN_DYN_ACK  0
-
-/* Instruction Mnemonics */
-#define R_REGISTER    0x00
-#define W_REGISTER    0x20
-#define REGISTER_MASK 0x1F
-#define ACTIVATE      0x50
-#define R_RX_PL_WID   0x60
-#define R_RX_PAYLOAD  0x61
-#define W_TX_PAYLOAD  0xA0
-#define W_ACK_PAYLOAD 0xA8
-#define FLUSH_TX      0xE1
-#define FLUSH_RX      0xE2
-#define REUSE_TX_PL   0xE3
-#define NOP           0xFF
-
-/* Non-P omissions */
-#define LNA_HCURR   0
-
-/* P model memory Map */
-#define RPD         0x09
-
-/* P model bit Mnemonics */
-#define RF_DR_LOW   5
-#define RF_DR_HIGH  3
-#define RF_PWR_LOW  1
-#define RF_PWR_HIGH 2
-
-#define LOW         0
-#define HIGH        1
-#define _NRF24L01P_SPI_MAX_DATA_RATE     10000000
-#define _NRF24L01P_TIMING_Tundef2pd_us     100000   // 100mS
-#define _NRF24L01P_TIMING_Tpece2csn_us          4
-
-
-
-
-/*
- Copyright (C) 2011 J. Coliz <maniacbug@ymail.com>
-
- This program is free software; you can redistribute it and/or
- modify it under the terms of the GNU General Public License
- version 2 as published by the Free Software Foundation.
- */
-
-/**
- * @file RF24.h
- *
- * Class declaration for RF24 and helper enums
- */
-
-#ifndef __RF24_H__
-#define __RF24_H__
-
-#include "mbed.h"
-
-
-/**
- * Power Amplifier level.
- *
- * For use with setPALevel()
- */
-typedef enum { RF24_PA_MIN = 0,RF24_PA_LOW, RF24_PA_HIGH, RF24_PA_MAX, RF24_PA_ERROR } rf24_pa_dbm_e ;
-
-/**
- * Data rate.  How fast data moves through the air.
- *
- * For use with setDataRate()
- */
-typedef enum { RF24_1MBPS = 0, RF24_2MBPS, RF24_250KBPS } rf24_datarate_e;
-
-/**
- * CRC Length.  How big (if any) of a CRC is included.
- *
- * For use with setCRCLength()
- */
-typedef enum { RF24_CRC_DISABLED = 0, RF24_CRC_8, RF24_CRC_16 } rf24_crclength_e;
-
-/**
- * Driver for nRF24L01(+) 2.4GHz Wireless Transceiver
- */
-
-class RF24
-{
-private:
-  DigitalOut ce_pin; /**< "Chip Enable" pin, activates the RX or TX role */
-  DigitalOut csn_pin; /**< SPI Chip select */
-  bool wide_band; /* 2Mbs data rate in use? */
-  bool p_variant; /* False for RF24L01 and true for RF24L01P */
-  uint8_t payload_size; /**< Fixed size of payloads */
-  bool ack_payload_available; /**< Whether there is an ack payload waiting */
-  bool dynamic_payloads_enabled; /**< Whether dynamic payloads are enabled. */ 
-  uint8_t ack_payload_length; /**< Dynamic size of pending ack payload. */
-  uint64_t pipe0_reading_address; /**< Last address set on pipe 0 for reading. */
-  SPI spi;
-  Timer mainTimer;
-
-protected:
-  /**
-   * @name Low-level internal interface.
-   *
-   *  Protected methods that address the chip directly.  Regular users cannot
-   *  ever call these.  They are documented for completeness and for developers who
-   *  may want to extend this class.
-   */
-  /**@{*/
-
-  /**
-   * Set chip select pin
-   *
-   * Running SPI bus at PI_CLOCK_DIV2 so we don't waste time transferring data
-   * and best of all, we make use of the radio's FIFO buffers. A lower speed
-   * means we're less likely to effectively leverage our FIFOs and pay a higher
-   * AVR runtime cost as toll.
-   *
-   * @param mode HIGH to take this unit off the SPI bus, LOW to put it on
-   */
-  void csn(int mode);
-
-  /**
-   * Set chip enable
-   *
-   * @param level HIGH to actively begin transmission or LOW to put in standby.  Please see data sheet
-   * for a much more detailed description of this pin.
-   */
-  void ce(int level);
-
-  /**
-   * Read a chunk of data in from a register
-   *
-   * @param reg Which register. Use constants from nRF24L01.h
-   * @param buf Where to put the data
-   * @param len How many bytes of data to transfer
-   * @return Current value of status register
-   */
-  uint8_t read_register(uint8_t reg, uint8_t* buf, uint8_t len);
-
-  /**
-   * Read single byte from a register
-   *
-   * @param reg Which register. Use constants from nRF24L01.h
-   * @return Current value of register @p reg
-   */
-  uint8_t read_register(uint8_t reg);
-
-  /**
-   * Write a chunk of data to a register
-   *
-   * @param reg Which register. Use constants from nRF24L01.h
-   * @param buf Where to get the data
-   * @param len How many bytes of data to transfer
-   * @return Current value of status register
-   */
-  uint8_t write_register(uint8_t reg, const uint8_t* buf, uint8_t len);
-
-  /**
-   * Write a single byte to a register
-   *
-   * @param reg Which register. Use constants from nRF24L01.h
-   * @param value The new value to write
-   * @return Current value of status register
-   */
-  uint8_t write_register(uint8_t reg, uint8_t value);
-
-  /**
-   * Write the transmit payload
-   *
-   * The size of data written is the fixed payload size, see getPayloadSize()
-   *
-   * @param buf Where to get the data
-   * @param len Number of bytes to be sent
-   * @return Current value of status register
-   */
-  uint8_t write_payload(const void* buf, uint8_t len);
-
-  /**
-   * Read the receive payload
-   *
-   * The size of data read is the fixed payload size, see getPayloadSize()
-   *
-   * @param buf Where to put the data
-   * @param len Maximum number of bytes to read
-   * @return Current value of status register
-   */
-  uint8_t read_payload(void* buf, uint8_t len);
-
-  /**
-   * Empty the receive buffer
-   *
-   * @return Current value of status register
-   */
-  uint8_t flush_rx(void);
-
-  /**
-   * Empty the transmit buffer
-   *
-   * @return Current value of status register
-   */
-  uint8_t flush_tx(void);
-
-  /**
-   * Retrieve the current status of the chip
-   *
-   * @return Current value of status register
-   */
-  uint8_t get_status(void);
-
-  /**
-   * Decode and print the given status to stdout
-   *
-   * @param status Status value to print
-   *
-   * @warning Does nothing if stdout is not defined.  See fdevopen in stdio.h
-   */
-  void print_status(uint8_t status);
-
-  /**
-   * Decode and print the given 'observe_tx' value to stdout
-   *
-   * @param value The observe_tx value to print
-   *
-   * @warning Does nothing if stdout is not defined.  See fdevopen in stdio.h
-   */
-  void print_observe_tx(uint8_t value);
-
-  /**
-   * Print the name and value of an 8-bit register to stdout
-   *
-   * Optionally it can print some quantity of successive
-   * registers on the same line.  This is useful for printing a group
-   * of related registers on one line.
-   *
-   * @param name Name of the register
-   * @param reg Which register. Use constants from nRF24L01.h
-   * @param qty How many successive registers to print
-   */
-  void print_byte_register(const char* name, uint8_t reg, uint8_t qty = 1);
-
-  /**
-   * Print the name and value of a 40-bit address register to stdout
-   *
-   * Optionally it can print some quantity of successive
-   * registers on the same line.  This is useful for printing a group
-   * of related registers on one line.
-   *
-   * @param name Name of the register
-   * @param reg Which register. Use constants from nRF24L01.h
-   * @param qty How many successive registers to print
-   */
-  void print_address_register(const char* name, uint8_t reg, uint8_t qty = 1);
-
-  /**
-   * Turn on or off the special features of the chip
-   *
-   * The chip has certain 'features' which are only available when the 'features'
-   * are enabled.  See the datasheet for details.
-   */
-  void toggle_features(void);
-  /**@}*/
-
-public:
-  /**
-   * @name Primary public interface
-   *
-   *  These are the main methods you need to operate the chip
-   */
-  /**@{*/
-
-  /**
-   * Constructor
-   *
-   * Creates a new instance of this driver.  Before using, you create an instance
-   * and send in the unique pins that this chip is connected to.
-   *
-   * @param _cepin The pin attached to Chip Enable on the RF module
-   * @param _cspin The pin attached to Chip Select
-   */
-  RF24(PinName, PinName, PinName, PinName, PinName); //mosi miso sck ce cs
-
-  /**
-   * Begin operation of the chip
-   *
-   * Call this in setup(), before calling any other methods.
-   */
-  void begin(void);
-
-  /**
-   * Start listening on the pipes opened for reading.
-   *
-   * Be sure to call openReadingPipe() first.  Do not call write() while
-   * in this mode, without first calling stopListening().  Call
-   * isAvailable() to check for incoming traffic, and read() to get it.
-   */
-  void startListening(void);
-
-  /**
-   * Stop listening for incoming messages
-   *
-   * Do this before calling write().
-   */
-  void stopListening(void);
-
-  /**
-   * Write to the open writing pipe
-   *
-   * Be sure to call openWritingPipe() first to set the destination
-   * of where to write to.
-   *
-   * This blocks until the message is successfully acknowledged by
-   * the receiver or the timeout/retransmit maxima are reached.  In
-   * the current configuration, the max delay here is 60ms.
-   *
-   * The maximum size of data written is the fixed payload size, see
-   * getPayloadSize().  However, you can write less, and the remainder
-   * will just be filled with zeroes.
-   *
-   * @param buf Pointer to the data to be sent
-   * @param len Number of bytes to be sent
-   * @return True if the payload was delivered successfully false if not
-   */
-  bool write( const void* buf, uint8_t len );
-
-  /**
-   * Test whether there are bytes available to be read
-   *
-   * @return True if there is a payload available, false if none is
-   */
-  bool available(void);
-
-  /**
-   * Read the payload
-   *
-   * Return the last payload received
-   *
-   * The size of data read is the fixed payload size, see getPayloadSize()
-   *
-   * @note I specifically chose 'void*' as a data type to make it easier
-   * for beginners to use.  No casting needed.
-   *
-   * @param buf Pointer to a buffer where the data should be written
-   * @param len Maximum number of bytes to read into the buffer
-   * @return True if the payload was delivered successfully false if not
-   */
-  bool read( void* buf, uint8_t len );
-
-  /**
-   * Open a pipe for writing
-   *
-   * Only one pipe can be open at once, but you can change the pipe
-   * you'll listen to.  Do not call this while actively listening.
-   * Remember to stopListening() first.
-   *
-   * Addresses are 40-bit hex values, e.g.:
-   *
-   * @code
-   *   openWritingPipe(0xF0F0F0F0F0);
-   * @endcode
-   *
-   * @param address The 40-bit address of the pipe to open.  This can be
-   * any value whatsoever, as long as you are the only one writing to it
-   * and only one other radio is listening to it.  Coordinate these pipe
-   * addresses amongst nodes on the network.
-   */
-  void openWritingPipe(uint64_t address);
-
-  /**
-   * Open a pipe for reading
-   *
-   * Up to 6 pipes can be open for reading at once.  Open all the
-   * reading pipes, and then call startListening().
-   *
-   * @see openWritingPipe
-   *
-   * @warning Pipes 1-5 should share the first 32 bits.
-   * Only the least significant byte should be unique, e.g.
-   * @code
-   *   openReadingPipe(1,0xF0F0F0F0AA);
-   *   openReadingPipe(2,0xF0F0F0F066);
-   * @endcode
-   *
-   * @warning Pipe 0 is also used by the writing pipe.  So if you open
-   * pipe 0 for reading, and then startListening(), it will overwrite the
-   * writing pipe.  Ergo, do an openWritingPipe() again before write().
-   *
-   * @todo Enforce the restriction that pipes 1-5 must share the top 32 bits
-   *
-   * @param number Which pipe# to open, 0-5.
-   * @param address The 40-bit address of the pipe to open.
-   */
-  void openReadingPipe(uint8_t number, uint64_t address);
-
-  /**@}*/
-  /**
-   * @name Optional Configurators 
-   *
-   *  Methods you can use to get or set the configuration of the chip.
-   *  None are required.  Calling begin() sets up a reasonable set of
-   *  defaults.
-   */
-  /**@{*/
-  /**
-   * Set the number and delay of retries upon failed submit
-   *
-   * @param delay How long to wait between each retry, in multiples of 250us,
-   * max is 15.  0 means 250us, 15 means 4000us.
-   * @param count How many retries before giving up, max 15
-   */
-  void setRetries(uint8_t delay, uint8_t count);
-
-  /**
-   * Set RF communication channel
-   *
-   * @param channel Which RF channel to communicate on, 0-127
-   */
-  void setChannel(uint8_t channel);
-
-  /**
-   * Set Static Payload Size
-   *
-   * This implementation uses a pre-stablished fixed payload size for all
-   * transmissions.  If this method is never called, the driver will always
-   * transmit the maximum payload size (32 bytes), no matter how much
-   * was sent to write().
-   *
-   * @todo Implement variable-sized payloads feature
-   *
-   * @param size The number of bytes in the payload
-   */
-  void setPayloadSize(uint8_t size);
-
-  /**
-   * Get Static Payload Size
-   *
-   * @see setPayloadSize()
-   *
-   * @return The number of bytes in the payload
-   */
-  uint8_t getPayloadSize(void);
-
-  /**
-   * Get Dynamic Payload Size
-   *
-   * For dynamic payloads, this pulls the size of the payload off
-   * the chip
-   *
-   * @return Payload length of last-received dynamic payload
-   */
-  uint8_t getDynamicPayloadSize(void);
-  
-  /**
-   * Enable custom payloads on the acknowledge packets
-   *
-   * Ack payloads are a handy way to return data back to senders without
-   * manually changing the radio modes on both units.
-   *
-   * @see examples/pingpair_pl/pingpair_pl.pde
-   */
-  void enableAckPayload(void);
-
-  /**
-   * Enable dynamically-sized payloads
-   *
-   * This way you don't always have to send large packets just to send them
-   * once in a while.  This enables dynamic payloads on ALL pipes.
-   *
-   * @see examples/pingpair_pl/pingpair_dyn.pde
-   */
-  void enableDynamicPayloads(void);
-
-  /**
-   * Determine whether the hardware is an nRF24L01+ or not.
-   *
-   * @return true if the hardware is nRF24L01+ (or compatible) and false
-   * if its not.
-   */
-  bool isPVariant(void) ;
-
-  /**
-   * Enable or disable auto-acknowlede packets
-   *
-   * This is enabled by default, so it's only needed if you want to turn
-   * it off for some reason.
-   *
-   * @param enable Whether to enable (true) or disable (false) auto-acks
-   */
-  void setAutoAck(bool enable);
-
-  /**
-   * Enable or disable auto-acknowlede packets on a per pipeline basis.
-   *
-   * AA is enabled by default, so it's only needed if you want to turn
-   * it off/on for some reason on a per pipeline basis.
-   *
-   * @param pipe Which pipeline to modify
-   * @param enable Whether to enable (true) or disable (false) auto-acks
-   */
-  void setAutoAck( uint8_t pipe, bool enable ) ;
-
-  /**
-   * Set Power Amplifier (PA) level to one of four levels.
-   * Relative mnemonics have been used to allow for future PA level
-   * changes. According to 6.5 of the nRF24L01+ specification sheet,
-   * they translate to: RF24_PA_MIN=-18dBm, RF24_PA_LOW=-12dBm,
-   * RF24_PA_MED=-6dBM, and RF24_PA_HIGH=0dBm.
-   *
-   * @param level Desired PA level.
-   */
-  void setPALevel( rf24_pa_dbm_e level ) ;
-
-  /**
-   * Fetches the current PA level.
-   *
-   * @return Returns a value from the rf24_pa_dbm_e enum describing
-   * the current PA setting. Please remember, all values represented
-   * by the enum mnemonics are negative dBm. See setPALevel for
-   * return value descriptions.
-   */
-  rf24_pa_dbm_e getPALevel( void ) ;
-
-  /**
-   * Set the transmission data rate
-   *
-   * @warning setting RF24_250KBPS will fail for non-plus units
-   *
-   * @param speed RF24_250KBPS for 250kbs, RF24_1MBPS for 1Mbps, or RF24_2MBPS for 2Mbps
-   * @return true if the change was successful
-   */
-  bool setDataRate(rf24_datarate_e speed);
-  
-  /**
-   * Fetches the transmission data rate
-   *
-   * @return Returns the hardware's currently configured datarate. The value
-   * is one of 250kbs, RF24_1MBPS for 1Mbps, or RF24_2MBPS, as defined in the
-   * rf24_datarate_e enum.
-   */
-  rf24_datarate_e getDataRate( void ) ;
-
-  /**
-   * Set the CRC length
-   *
-   * @param length RF24_CRC_8 for 8-bit or RF24_CRC_16 for 16-bit
-   */
-  void setCRCLength(rf24_crclength_e length);
-
-  /**
-   * Get the CRC length
-   *
-   * @return RF24_DISABLED if disabled or RF24_CRC_8 for 8-bit or RF24_CRC_16 for 16-bit
-   */
-  rf24_crclength_e getCRCLength(void);
-
-  /**
-   * Disable CRC validation
-   *
-   */
-  void disableCRC( void ) ;
-
-  /**@}*/
-  /**
-   * @name Advanced Operation 
-   *
-   *  Methods you can use to drive the chip in more advanced ways 
-   */
-  /**@{*/
-
-  /**
-   * Print a giant block of debugging information to stdout
-   *
-   * @warning Does nothing if stdout is not defined.  See fdevopen in stdio.h
-   */
-  void printDetails(void);
-
-  /**
-   * Enter low-power mode
-   *
-   * To return to normal power mode, either write() some data or
-   * startListening, or powerUp().
-   */
-  void powerDown(void);
-
-  /**
-   * Leave low-power mode - making radio more responsive
-   *
-   * To return to low power mode, call powerDown().
-   */
-  void powerUp(void) ;
-
-  /**
-   * Test whether there are bytes available to be read
-   *
-   * Use this version to discover on which pipe the message
-   * arrived.
-   *
-   * @param[out] pipe_num Which pipe has the payload available
-   * @return True if there is a payload available, false if none is
-   */
-  bool available(uint8_t* pipe_num);
-
-  /**
-   * Non-blocking write to the open writing pipe
-   *
-   * Just like write(), but it returns immediately. To find out what happened
-   * to the send, catch the IRQ and then call whatHappened().
-   *
-   * @see write()
-   * @see whatHappened()
-   *
-   * @param buf Pointer to the data to be sent
-   * @param len Number of bytes to be sent
-   * @return True if the payload was delivered successfully false if not
-   */
-  void startWrite( const void* buf, uint8_t len );
-
-  /**
-   * Write an ack payload for the specified pipe
-   *
-   * The next time a message is received on @p pipe, the data in @p buf will
-   * be sent back in the acknowledgement.
-   *
-   * @warning According to the data sheet, only three of these can be pending
-   * at any time.  I have not tested this.
-   *
-   * @param pipe Which pipe# (typically 1-5) will get this response.
-   * @param buf Pointer to data that is sent
-   * @param len Length of the data to send, up to 32 bytes max.  Not affected
-   * by the static payload set by setPayloadSize().
-   */
-  void writeAckPayload(uint8_t pipe, const void* buf, uint8_t len);
-
-  /**
-   * Determine if an ack payload was received in the most recent call to
-   * write().
-   *
-   * Call read() to retrieve the ack payload.
-   *
-   * @warning Calling this function clears the internal flag which indicates
-   * a payload is available.  If it returns true, you must read the packet
-   * out as the very next interaction with the radio, or the results are
-   * undefined.
-   *
-   * @return True if an ack payload is available.
-   */
-  bool isAckPayloadAvailable(void);
-
-  /**
-   * Call this when you get an interrupt to find out why
-   *
-   * Tells you what caused the interrupt, and clears the state of
-   * interrupts.
-   *
-   * @param[out] tx_ok The send was successful (TX_DS)
-   * @param[out] tx_fail The send failed, too many retries (MAX_RT)
-   * @param[out] rx_ready There is a message waiting to be read (RX_DS)
-   */
-  void whatHappened(bool& tx_ok,bool& tx_fail,bool& rx_ready);
-
-  /**
-   * Test whether there was a carrier on the line for the
-   * previous listening period.
-   *
-   * Useful to check for interference on the current channel.
-   *
-   * @return true if was carrier, false if not
-   */
-  bool testCarrier(void);
-
-  /**
-   * Test whether a signal (carrier or otherwise) greater than
-   * or equal to -64dBm is present on the channel. Valid only
-   * on nRF24L01P (+) hardware. On nRF24L01, use testCarrier().
-   *
-   * Useful to check for interference on the current channel and
-   * channel hopping strategies.
-   *
-   * @return true if signal => -64dBm, false if not
-   */
-  bool testRPD(void) ;
-  
-  int min(int, int);
-
-};
-
-
-#endif // __RF24_H__
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/nRF24L01P_Maniacbug.cpp	Thu Apr 04 11:49:28 2013 +0000
@@ -0,0 +1,964 @@
+/*
+ Copyright (C) 2011 J. Coliz <maniacbug@ymail.com>
+
+ This program is free software; you can redistribute it and/or
+ modify it under the terms of the GNU General Public License
+ version 2 as published by the Free Software Foundation.
+ */
+
+#include "nRF24L01P_Maniacbug.h"
+
+/****************************************************************************/
+
+void RF24::csn(int mode)
+{
+//    // Minimum ideal SPI bus speed is 2x data rate
+//    // If we assume 2Mbs data rate and 16Mhz clock, a
+//    // divider of 4 is the minimum we want.
+//    // CLK:BUS 8Mhz:2Mhz, 16Mhz:4Mhz, or 20Mhz:5Mhz
+////#ifdef ARDUINO
+////  spi.setBitOrder(MSBFIRST);
+////  spi.setDataMode(SPI_MODE0);
+////  spi.setClockDivider(SPI_CLOCK_DIV4);
+////#endif
+////  digitalWrite(csn_pin,mode);
+//
+//
+    csn_pin = mode;
+}
+
+/****************************************************************************/
+
+void RF24::ce(int level)
+{
+    //digitalWrite(ce_pin,level);
+    ce_pin = level;
+    wait_us(_NRF24L01P_TIMING_Tpece2csn_us);
+}
+
+/****************************************************************************/
+
+uint8_t RF24::read_register(uint8_t reg, uint8_t* buf, uint8_t len)
+{
+    uint8_t status;
+
+    csn(LOW);
+    status = spi.write( R_REGISTER | ( REGISTER_MASK & reg ) );
+    while ( len-- )
+        *buf++ = spi.write(0xff);
+
+    csn(HIGH);
+
+    return status;
+}
+
+/****************************************************************************/
+
+uint8_t RF24::read_register(uint8_t reg)    //checked
+{
+    csn(LOW);
+    spi.write( R_REGISTER | ( REGISTER_MASK & reg ) );
+    uint8_t result = spi.write(0xff);
+
+    csn(HIGH);
+    return result;
+}
+
+/****************************************************************************/
+
+uint8_t RF24::write_register(uint8_t reg, const uint8_t* buf, uint8_t len)
+{
+    uint8_t status;
+    int originalCe = ce_pin;
+    ce(LOW);
+
+    csn(LOW);
+    status = spi.write( W_REGISTER | ( REGISTER_MASK & reg ) );
+    while ( len-- )
+        spi.write(*buf++);
+
+    csn(HIGH);
+    
+    ce_pin = originalCe;
+    wait_us( _NRF24L01P_TIMING_Tpece2csn_us );
+
+    return status;
+}
+
+/****************************************************************************/
+
+uint8_t RF24::write_register(uint8_t reg, uint8_t value)        //checked
+{
+    uint8_t status;
+
+//    IF_SERIAL_DEBUG(printf(PSTR("write_register(%02x,%02x)\r\n"),reg,value));
+    int originalCe = ce_pin;
+    ce(LOW);
+
+
+    csn(LOW);
+    status = spi.write( W_REGISTER | ( REGISTER_MASK & reg ) );
+    spi.write(value);
+    csn(HIGH);
+
+    ce_pin = originalCe;
+    wait_us( _NRF24L01P_TIMING_Tpece2csn_us );
+
+    return status;
+}
+
+/****************************************************************************/
+
+uint8_t RF24::write_payload(const void* buf, uint8_t len)
+{
+    uint8_t status;
+
+    const uint8_t* current = reinterpret_cast<const uint8_t*>(buf);
+
+    uint8_t data_len = min(len,payload_size);
+    uint8_t blank_len = dynamic_payloads_enabled ? 0 : payload_size - data_len;
+
+    //printf("[Writing %u bytes %u blanks]",data_len,blank_len);
+
+    csn(LOW);
+    status = spi.write( W_TX_PAYLOAD );
+    while ( data_len-- )
+        spi.write(*current++);
+    while ( blank_len-- )
+        spi.write(0);
+    csn(HIGH);
+
+    return status;
+}
+
+/****************************************************************************/
+
+uint8_t RF24::read_payload(void* buf, uint8_t len)
+{
+    uint8_t status;
+    uint8_t* current = reinterpret_cast<uint8_t*>(buf);
+
+    uint8_t data_len = min(len,payload_size);
+    uint8_t blank_len = dynamic_payloads_enabled ? 0 : payload_size - data_len;
+
+    //printf("[Reading %u bytes %u blanks]",data_len,blank_len);
+
+    csn(LOW);
+    status = spi.write( R_RX_PAYLOAD );
+    while ( data_len-- )
+        *current++ = spi.write(0xff);
+    while ( blank_len-- )
+        spi.write(0xff);
+    csn(HIGH);
+
+    return status;
+}
+
+/****************************************************************************/
+
+uint8_t RF24::flush_rx(void)
+{
+    uint8_t status;
+
+    csn(LOW);
+    status = spi.write( FLUSH_RX );
+    csn(HIGH);
+
+    return status;
+}
+
+/****************************************************************************/
+
+uint8_t RF24::flush_tx(void)
+{
+    uint8_t status;
+
+    csn(LOW);
+    status = spi.write( FLUSH_TX );
+    csn(HIGH);
+
+    return status;
+}
+
+/****************************************************************************/
+
+uint8_t RF24::get_status(void)
+{
+    uint8_t status;
+
+    csn(LOW);
+    status = spi.write( NOP );
+    csn(HIGH);
+
+    return status;
+}
+
+/****************************************************************************/
+
+void RF24::print_status(uint8_t status)
+{
+    printf("STATUS = 0x%02x RX_DR=%x TX_DS=%x MAX_RT=%x RX_P_NO=%x TX_FULL=%x\r\n",
+           status,
+           (status & RX_DR)?1:0,
+           (status & TX_DS)?1:0,
+           (status & MAX_RT)?1:0,
+           ((status >> RX_P_NO) & 7),
+           (status & TX_FULL)?1:0
+          );
+}
+
+///****************************************************************************/
+
+void RF24::print_observe_tx(uint8_t value)
+{
+    printf("OBSERVE_TX=%02x: POLS_CNT=%x ARC_CNT=%x\r\n",
+           value,
+           (value >> PLOS_CNT) & 15,
+           (value >> ARC_CNT) & 15
+          );
+}
+
+/****************************************************************************/
+
+void RF24::print_byte_register(const char* name, uint8_t reg, uint8_t qty)
+{
+//    char extra_tab = strlen(name) < 8 ? '\t' : 0;
+    printf("%s =",name);
+    while (qty--)
+        printf(" 0x%02x",read_register(reg++));
+    printf("\r\n");
+}
+
+/****************************************************************************/
+
+void RF24::print_address_register(const char* name, uint8_t reg, uint8_t qty)
+{
+//    char extra_tab = strlen(name) < 8 ? '\t' : 0;
+    printf("%s =",name);
+
+    while (qty--) {
+        uint8_t buffer[5];
+        read_register(reg++,buffer,sizeof buffer);
+
+        printf(" 0x");
+        uint8_t* bufptr = buffer + sizeof buffer;
+        while( --bufptr >= buffer )
+            printf("%02x",*bufptr);
+    }
+
+    printf("\r\n");
+}
+
+/****************************************************************************/
+
+RF24::RF24(PinName mosi, PinName miso, PinName sck, PinName _cspin, PinName _cepin):
+    ce_pin(_cepin), csn_pin(_cspin), wide_band(true), p_variant(false),
+    payload_size(32), ack_payload_available(false), dynamic_payloads_enabled(false),
+    pipe0_reading_address(0), spi(mosi, miso, sck)
+{
+}
+
+/****************************************************************************/
+
+void RF24::setChannel(uint8_t channel)
+{
+    // TODO: This method could take advantage of the 'wide_band' calculation
+    // done in setChannel() to require certain channel spacing.
+
+    const uint8_t max_channel = 127;
+    write_register(RF_CH,min(channel,max_channel));
+}
+
+/****************************************************************************/
+
+void RF24::setPayloadSize(uint8_t size)
+{
+    const uint8_t max_payload_size = 32;
+    payload_size = min(size,max_payload_size);
+}
+
+/****************************************************************************/
+
+uint8_t RF24::getPayloadSize(void)
+{
+    return payload_size;
+}
+
+/****************************************************************************/
+
+static const char rf24_datarate_e_str_0[]  = "1MBPS";
+static const char rf24_datarate_e_str_1[]  = "2MBPS";
+static const char rf24_datarate_e_str_2[]  = "250KBPS";
+static const char * const rf24_datarate_e_str_P[]  = {
+    rf24_datarate_e_str_0,
+    rf24_datarate_e_str_1,
+    rf24_datarate_e_str_2,
+};
+static const char rf24_model_e_str_0[]  = "nRF24L01";
+static const char rf24_model_e_str_1[]  = "nRF24L01+";
+static const char * const rf24_model_e_str_P[]  = {
+    rf24_model_e_str_0,
+    rf24_model_e_str_1,
+};
+static const char rf24_crclength_e_str_0[]  = "Disabled";
+static const char rf24_crclength_e_str_1[]  = "8 bits";
+static const char rf24_crclength_e_str_2[]  = "16 bits" ;
+static const char * const rf24_crclength_e_str_P[]  = {
+    rf24_crclength_e_str_0,
+    rf24_crclength_e_str_1,
+    rf24_crclength_e_str_2,
+};
+static const char rf24_pa_dbm_e_str_0[]  = "PA_MIN";
+static const char rf24_pa_dbm_e_str_1[]  = "PA_LOW";
+static const char rf24_pa_dbm_e_str_2[]  = "PA_MED";
+static const char rf24_pa_dbm_e_str_3[]  = "PA_HIGH";
+static const char * const rf24_pa_dbm_e_str_P[]  = {
+    rf24_pa_dbm_e_str_0,
+    rf24_pa_dbm_e_str_1,
+    rf24_pa_dbm_e_str_2,
+    rf24_pa_dbm_e_str_3,
+};
+
+void RF24::printDetails(void)
+{
+    print_status(get_status());
+
+    print_address_register("RX_ADDR_P0-1",RX_ADDR_P0,2);
+    print_byte_register("RX_ADDR_P2-5", RX_ADDR_P2,4);
+    print_address_register("TX_ADDR",   TX_ADDR);
+
+    print_byte_register("RX_PW_P0-6",   RX_PW_P0,6);
+    print_byte_register("EN_AA",        EN_AA);
+    print_byte_register("EN_RXADDR",    EN_RXADDR);
+    print_byte_register("RF_CH",        RF_CH);
+    print_byte_register("RF_SETUP",     RF_SETUP);
+    print_byte_register("CONFIG",       CONFIG);
+    print_byte_register("DYNPD/FEATURE",DYNPD,2);
+
+    printf("Data Rate\t = %s\r\n",  rf24_datarate_e_str_P[getDataRate()]);
+    printf("Model\t\t = %s\r\n",    rf24_model_e_str_P[isPVariant()]);
+    printf("CRC Length\t = %s\r\n", rf24_crclength_e_str_P[getCRCLength()]);
+    printf("PA Power\t = %s\r\n",   rf24_pa_dbm_e_str_P[getPALevel()]);
+}
+
+/****************************************************************************/
+
+void RF24::begin(void)
+{
+    // Initialize pins
+//    pinMode(ce_pin,OUTPUT);   //ARD
+//    pinMode(csn_pin,OUTPUT);
+
+    mainTimer.start();
+
+
+    spi.frequency(_NRF24L01P_SPI_MAX_DATA_RATE/5);     // 2Mbit, 1/5th the maximum transfer rate for the SPI bus
+    spi.format(8,0);                                   // 8-bit, ClockPhase = 0, ClockPolarity = 0
+
+    wait_us(_NRF24L01P_TIMING_Tundef2pd_us);    // Wait for Power-on reset    //MBED
+
+    // Initialize SPI bus
+//    spi.begin();      //ARD
+
+    ce(LOW);
+    csn(HIGH);
+
+    // Must allow the radio time to settle else configuration bits will not necessarily stick.
+    // This is actually only required following power up but some settling time also appears to
+    // be required after resets too. For full coverage, we'll always assume the worst.
+    // Enabling 16b CRC is by far the most obvious case if the wrong timing is used - or skipped.
+    // Technically we require 4.5ms + 14us as a worst case. We'll just call it 5ms for good measure.
+    // WARNING: Delay is based on P-variant whereby non-P *may* require different timing.
+//    delay( 5 ) ;
+    wait_ms(5);
+
+    // Set 1500uS (minimum for 32B payload in ESB@250KBPS) timeouts, to make testing a little easier
+    // WARNING: If this is ever lowered, either 250KBS mode with AA is broken or maximum packet
+    // sizes must never be used. See documentation for a more complete explanation.
+    write_register(SETUP_RETR,(4 << ARD) | (15 << ARC));
+
+    // Restore our default PA level
+    setPALevel( RF24_PA_MAX ) ;
+
+    // Determine if this is a p or non-p RF24 module and then
+    // reset our data rate back to default value. This works
+    // because a non-P variant won't allow the data rate to
+    // be set to 250Kbps.
+    if( setDataRate( RF24_250KBPS ) ) {
+        p_variant = true ;
+    }
+
+    // Then set the data rate to the slowest (and most reliable) speed supported by all
+    // hardware.
+    setDataRate( RF24_1MBPS ) ;
+
+    // Initialize CRC and request 2-byte (16bit) CRC
+    setCRCLength( RF24_CRC_16 ) ;
+
+    // Disable dynamic payloads, to match dynamic_payloads_enabled setting
+    write_register(DYNPD,0);
+
+    // Reset current status
+    // Notice reset and flush is the last thing we do
+    write_register(STATUS,RX_DR | TX_DS | MAX_RT );
+
+    // Set up default configuration.  Callers can always change it later.
+    // This channel should be universally safe and not bleed over into adjacent
+    // spectrum.
+    setChannel(76);
+
+    // Flush buffers
+    flush_rx();
+    flush_tx();
+}
+
+/****************************************************************************/
+
+void RF24::startListening(void)
+{
+    write_register(CONFIG, read_register(CONFIG) | PWR_UP | PRIM_RX);
+    write_register(STATUS, RX_DR | TX_DS | MAX_RT );
+
+    // Restore the pipe0 adddress, if exists
+    if (pipe0_reading_address)
+        write_register(RX_ADDR_P0, reinterpret_cast<const uint8_t*>(&pipe0_reading_address), 5);
+
+    // Flush buffers
+    flush_rx();
+    flush_tx();
+
+    // Go!
+    ce(HIGH);;
+
+    // wait for the radio to come up (130us actually only needed)
+//    delayMicroseconds(130);
+    wait_us(130);
+}
+
+/****************************************************************************/
+
+void RF24::stopListening(void)
+{
+    ce(LOW);
+    flush_tx();
+    flush_rx();
+}
+
+/****************************************************************************/
+
+void RF24::powerDown(void)
+{
+    write_register(CONFIG,read_register(CONFIG) & ~PWR_UP);
+}
+
+/****************************************************************************/
+
+void RF24::powerUp(void)
+{
+    write_register(CONFIG,read_register(CONFIG) | PWR_UP);
+}
+
+/******************************************************************/
+
+bool RF24::write( const void* buf, uint8_t len )
+{
+    bool result = false;
+
+    // Begin the write
+    startWrite(buf,len);
+
+    // ------------
+    // At this point we could return from a non-blocking write, and then call
+    // the rest after an interrupt
+
+    // Instead, we are going to block here until we get TX_DS (transmission completed and ack'd)
+    // or MAX_RT (maximum retries, transmission failed).  Also, we'll timeout in case the radio
+    // is flaky and we get neither.
+
+    // IN the end, the send should be blocking.  It comes back in 60ms worst case, or much faster
+    // if I tighted up the retry logic.  (Default settings will be 1500us.
+    // Monitor the send
+    uint8_t observe_tx;
+    uint8_t status;
+    uint32_t sent_at = mainTimer.read_ms();
+    const uint32_t timeout = 500; //ms to wait for timeout
+    do {
+        status = read_register(OBSERVE_TX,&observe_tx,1);
+//        IF_SERIAL_DEBUG(Serial.print(observe_tx,HEX));
+    } while( ! ( status & ( TX_DS | MAX_RT ) ) && ( mainTimer.read_ms() - sent_at < timeout ) );
+
+    // The part above is what you could recreate with your own interrupt handler,
+    // and then call this when you got an interrupt
+    // ------------
+
+    // Call this when you get an interrupt
+    // The status tells us three things
+    // * The send was successful (TX_DS)
+    // * The send failed, too many retries (MAX_RT)
+    // * There is an ack packet waiting (RX_DR)
+    bool tx_ok, tx_fail;
+    whatHappened(tx_ok,tx_fail,ack_payload_available);
+
+    //printf("%u%u%u\r\n",tx_ok,tx_fail,ack_payload_available);
+
+    result = tx_ok;
+//    IF_SERIAL_DEBUG(Serial.print(result?"...OK.":"...Failed"));
+
+    // Handle the ack packet
+    if ( ack_payload_available ) {
+        ack_payload_length = getDynamicPayloadSize();
+//        IF_SERIAL_DEBUG(Serial.print("[AckPacket]/"));
+//        IF_SERIAL_DEBUG(Serial.println(ack_payload_length,DEC));
+    }
+
+    // Yay, we are done.
+
+    // Power down
+    powerDown();
+
+    // Flush buffers (Is this a relic of past experimentation, and not needed anymore?
+    flush_tx();
+
+    return result;
+}
+/****************************************************************************/
+
+void RF24::startWrite( const void* buf, uint8_t len )
+{
+    // Transmitter power-up
+    write_register(CONFIG, ( read_register(CONFIG) | PWR_UP ) & ~PRIM_RX );
+    //delayMicroseconds(150);
+    wait_us(150);
+
+    // Send the payload
+    write_payload( buf, len );
+
+    // Allons!
+    ce(HIGH);;
+//    delayMicroseconds(15);
+    wait_us(15);
+    ce(LOW);
+}
+
+/****************************************************************************/
+
+uint8_t RF24::getDynamicPayloadSize(void)
+{
+    uint8_t result = 0;
+
+    csn(LOW);
+    spi.write( R_RX_PL_WID );
+    result = spi.write(0xff);
+    csn(HIGH);
+
+    return result;
+}
+
+/****************************************************************************/
+
+bool RF24::available(void)
+{
+    return available(NULL);
+}
+
+/****************************************************************************/
+
+bool RF24::available(uint8_t* pipe_num)
+{
+    uint8_t status = get_status();
+
+    // Too noisy, enable if you really want lots o data!!
+    //IF_SERIAL_DEBUG(print_status(status));
+
+    bool result = ( status & RX_DR );
+
+    if (result) {
+        // If the caller wants the pipe number, include that
+        if ( pipe_num )
+            *pipe_num = ( status >> RX_P_NO ) & 7;
+
+        // Clear the status bit
+
+        // ??? Should this REALLY be cleared now?  Or wait until we
+        // actually READ the payload?
+
+        write_register(STATUS,RX_DR );
+
+        // Handle ack payload receipt
+        if ( status & TX_DS ) {
+            write_register(STATUS,TX_DS);
+        }
+    }
+
+    return result;
+}
+
+/****************************************************************************/
+
+bool RF24::read( void* buf, uint8_t len )
+{
+    // Fetch the payload
+    read_payload( buf, len );
+
+    // was this the last of the data available?
+    return read_register(FIFO_STATUS) & RX_EMPTY;
+}
+
+/****************************************************************************/
+
+void RF24::whatHappened(bool& tx_ok,bool& tx_fail,bool& rx_ready)
+{
+    // Read the status & reset the status in one easy call
+    // Or is that such a good idea?
+    uint8_t status = write_register(STATUS,RX_DR | TX_DS | MAX_RT );
+
+    // Report to the user what happened
+    tx_ok = status & TX_DS;
+    tx_fail = status & MAX_RT;
+    rx_ready = status & RX_DR;
+}
+
+/****************************************************************************/
+
+void RF24::openWritingPipe(uint64_t value)
+{
+    // Note that AVR 8-bit uC's store this LSB first, and the NRF24L01(+)
+    // expects it LSB first too, so we're good.
+
+    write_register(RX_ADDR_P0, reinterpret_cast<uint8_t*>(&value), 5);
+    write_register(TX_ADDR, reinterpret_cast<uint8_t*>(&value), 5);
+
+    const uint8_t max_payload_size = 32;
+    write_register(RX_PW_P0,min(payload_size,max_payload_size));
+}
+
+/****************************************************************************/
+
+static const uint8_t child_pipe[] = {
+    RX_ADDR_P0, RX_ADDR_P1, RX_ADDR_P2, RX_ADDR_P3, RX_ADDR_P4, RX_ADDR_P5
+};
+static const uint8_t child_payload_size[] = {
+    RX_PW_P0, RX_PW_P1, RX_PW_P2, RX_PW_P3, RX_PW_P4, RX_PW_P5
+};
+static const uint8_t child_pipe_enable[] = {
+    ERX_P0, ERX_P1, ERX_P2, ERX_P3, ERX_P4, ERX_P5
+};
+
+void RF24::openReadingPipe(uint8_t child, uint64_t address)
+{
+    // If this is pipe 0, cache the address.  This is needed because
+    // openWritingPipe() will overwrite the pipe 0 address, so
+    // startListening() will have to restore it.
+    if (child == 0)
+        pipe0_reading_address = address;
+
+    if (child <= 6) {
+        // For pipes 2-5, only write the LSB
+        if ( child < 2 )
+            write_register(child_pipe[child], reinterpret_cast<const uint8_t*>(&address), 5);
+        else
+            write_register(child_pipe[child], reinterpret_cast<const uint8_t*>(&address), 1);
+
+        write_register(child_payload_size[child],payload_size);
+
+        // Note it would be more efficient to set all of the bits for all open
+        // pipes at once.  However, I thought it would make the calling code
+        // more simple to do it this way.
+        write_register(EN_RXADDR,read_register(EN_RXADDR) | child_pipe_enable[child]);
+    }
+}
+
+/****************************************************************************/
+
+void RF24::toggle_features(void)
+{
+    csn(LOW);
+    spi.write( ACTIVATE );
+    spi.write( 0x73 );
+    csn(HIGH);
+}
+
+/****************************************************************************/
+
+void RF24::enableDynamicPayloads(void)
+{
+    // Enable dynamic payload throughout the system
+    write_register(FEATURE,read_register(FEATURE) | EN_DPL );
+
+    // If it didn't work, the features are not enabled
+    if ( ! read_register(FEATURE) ) {
+        // So enable them and try again
+        toggle_features();
+        write_register(FEATURE,read_register(FEATURE) | EN_DPL );
+    }
+
+//    IF_SERIAL_DEBUG(printf("FEATURE=%i\r\n",read_register(FEATURE)));
+
+    // Enable dynamic payload on all pipes
+    //
+    // Not sure the use case of only having dynamic payload on certain
+    // pipes, so the library does not support it.
+    write_register(DYNPD,read_register(DYNPD) | DPL_P5 | DPL_P4 | DPL_P3 | DPL_P2 | DPL_P1 | DPL_P0);
+
+    dynamic_payloads_enabled = true;
+}
+
+/****************************************************************************/
+
+void RF24::enableAckPayload(void)
+{
+    //
+    // enable ack payload and dynamic payload features
+    //
+
+    write_register(FEATURE,read_register(FEATURE) | EN_ACK_PAY | EN_DPL );
+
+    // If it didn't work, the features are not enabled
+    if ( ! read_register(FEATURE) ) {
+        // So enable them and try again
+        toggle_features();
+        write_register(FEATURE,read_register(FEATURE) | EN_ACK_PAY | EN_DPL );
+    }
+
+//    IF_SERIAL_DEBUG(printf("FEATURE=%i\r\n",read_register(FEATURE)));
+
+    //
+    // Enable dynamic payload on pipes 0 & 1
+    //
+
+    write_register(DYNPD,read_register(DYNPD) | DPL_P1 | DPL_P0);
+}
+
+/****************************************************************************/
+
+void RF24::writeAckPayload(uint8_t pipe, const void* buf, uint8_t len)
+{
+    const uint8_t* current = reinterpret_cast<const uint8_t*>(buf);
+
+    csn(LOW);
+    spi.write( W_ACK_PAYLOAD | ( pipe & 7 ) );
+    const uint8_t max_payload_size = 32;
+    uint8_t data_len = min(len,max_payload_size);
+    while ( data_len-- )
+        spi.write(*current++);
+
+    csn(HIGH);
+}
+
+/****************************************************************************/
+
+bool RF24::isAckPayloadAvailable(void)
+{
+    bool result = ack_payload_available;
+    ack_payload_available = false;
+    return result;
+}
+
+/****************************************************************************/
+
+bool RF24::isPVariant(void)
+{
+    return p_variant ;
+}
+
+/****************************************************************************/
+
+void RF24::setAutoAck(bool enable)
+{
+    if ( enable )
+        write_register(EN_AA, 63);
+    else
+        write_register(EN_AA, 0);
+}
+
+/****************************************************************************/
+
+void RF24::setAutoAck( uint8_t pipe, bool enable )
+{
+    if ( pipe <= 6 ) {
+        uint8_t en_aa = read_register( EN_AA ) ;
+        if( enable ) {
+            en_aa |= pipe ;
+        } else {
+            en_aa &= ~pipe ;
+        }
+        write_register( EN_AA, en_aa ) ;
+    }
+}
+
+/****************************************************************************/
+
+bool RF24::testCarrier(void)
+{
+    return ( read_register(CD) & 1 );
+}
+
+/****************************************************************************/
+
+bool RF24::testRPD(void)
+{
+    return ( read_register(RPD) & 1 ) ;
+}
+
+/****************************************************************************/
+
+void RF24::setPALevel(rf24_pa_dbm_e level)
+{
+    uint8_t setup = read_register(RF_SETUP) ;
+    setup &= ~(RF_PWR_LOW | RF_PWR_HIGH) ;
+
+    // switch uses RAM (evil!)
+    if ( level == RF24_PA_MAX ) {
+        setup |= (RF_PWR_LOW | RF_PWR_HIGH) ;
+    } else if ( level == RF24_PA_HIGH ) {
+        setup |= RF_PWR_HIGH ;
+    } else if ( level == RF24_PA_LOW ) {
+        setup |= RF_PWR_LOW;
+    } else if ( level == RF24_PA_MIN ) {
+        // nothing
+    } else if ( level == RF24_PA_ERROR ) {
+        // On error, go to maximum PA
+        setup |= (RF_PWR_LOW | RF_PWR_HIGH) ;
+    }
+
+    write_register( RF_SETUP, setup ) ;
+}
+
+/****************************************************************************/
+
+rf24_pa_dbm_e RF24::getPALevel(void)
+{
+    rf24_pa_dbm_e result = RF24_PA_ERROR ;
+    uint8_t power = read_register(RF_SETUP) & (RF_PWR_LOW | RF_PWR_HIGH) ;
+
+    // switch uses RAM (evil!)
+    if ( power == (RF_PWR_LOW | RF_PWR_HIGH) ) {
+        result = RF24_PA_MAX ;
+    } else if ( power == RF_PWR_HIGH) {
+        result = RF24_PA_HIGH ;
+    } else if ( power == RF_PWR_LOW) {
+        result = RF24_PA_LOW ;
+    } else {
+        result = RF24_PA_MIN ;
+    }
+
+    return result ;
+}
+
+/****************************************************************************/
+
+bool RF24::setDataRate(rf24_datarate_e speed)
+{
+    bool result = false;
+    uint8_t setup = read_register(RF_SETUP) ;
+
+    // HIGH and LOW '00' is 1Mbs - our default
+    wide_band = false ;
+    setup &= ~(RF_DR_LOW | RF_DR_HIGH) ;
+    if( speed == RF24_250KBPS ) {
+        // Must set the RF_DR_LOW to 1; RF_DR_HIGH (used to be RF_DR) is already 0
+        // Making it '10'.
+        wide_band = false ;
+        setup |=  RF_DR_LOW  ;
+    } else {
+        // Set 2Mbs, RF_DR (RF_DR_HIGH) is set 1
+        // Making it '01'
+        if ( speed == RF24_2MBPS ) {
+            wide_band = true ;
+            setup |= RF_DR_HIGH;
+        } else {
+            // 1Mbs
+            wide_band = false ;
+        }
+    }
+    write_register(RF_SETUP,setup);
+
+    // Verify our result
+    if ( read_register(RF_SETUP) == setup ) {
+        result = true;
+    } else {
+        wide_band = false;
+    }
+
+    return result;
+}
+
+/****************************************************************************/
+
+rf24_datarate_e RF24::getDataRate( void )
+{
+    rf24_datarate_e result ;
+    uint8_t dr = read_register(RF_SETUP) & (RF_DR_LOW | RF_DR_HIGH);
+
+    // switch uses RAM (evil!)
+    // Order matters in our case below
+    if ( dr == RF_DR_LOW) {
+        // '10' = 250KBPS
+        result = RF24_250KBPS ;
+    } else if ( dr == RF_DR_HIGH) {
+        // '01' = 2MBPS
+        result = RF24_2MBPS ;
+    } else {
+        // '00' = 1MBPS
+        result = RF24_1MBPS ;
+    }
+    return result ;
+}
+
+/****************************************************************************/
+
+void RF24::setCRCLength(rf24_crclength_e length)
+{
+    uint8_t config = read_register(CONFIG) & ~( CRCO | EN_CRC) ;
+
+    if ( length == RF24_CRC_DISABLED ) {
+        // Do nothing, we turned it off above.
+    } else if ( length == RF24_CRC_8 ) {
+        config |= EN_CRC;
+    } else {
+        config |= EN_CRC;
+        config |= CRCO;
+    }
+    write_register( CONFIG, config ) ;
+    
+    printf("CRC SET: %u\n\r", config);
+}
+
+/****************************************************************************/
+
+rf24_crclength_e RF24::getCRCLength(void)
+{
+    rf24_crclength_e result = RF24_CRC_DISABLED;
+    uint8_t config = read_register(CONFIG) & ( CRCO | EN_CRC) ;
+
+    if ( config & EN_CRC) {
+        if ( config & CRCO )
+            result = RF24_CRC_16;
+        else
+            result = RF24_CRC_8;
+    }
+
+    return result;
+}
+
+/****************************************************************************/
+
+void RF24::disableCRC( void )
+{
+    uint8_t disable = read_register(CONFIG) & ~EN_CRC ;
+    write_register( CONFIG, disable ) ;
+}
+
+/****************************************************************************/
+void RF24::setRetries(uint8_t delay, uint8_t count)
+{
+    write_register(SETUP_RETR,(delay&0xf)<<ARD | (count&0xf)<<ARC);
+}
+
+int RF24::min(int a, int b)
+{
+    if(a < b)
+        return a;
+    else
+        return b;
+}
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/nRF24L01P_Maniacbug.h	Thu Apr 04 11:49:28 2013 +0000
@@ -0,0 +1,783 @@
+/*
+    Copyright (c) 2007 Stefan Engelke <mbox@stefanengelke.de>
+
+    Permission is hereby granted, free of charge, to any person
+    obtaining a copy of this software and associated documentation
+    files (the "Software"), to deal in the Software without
+    restriction, including without limitation the rights to use, copy,
+    modify, merge, publish, distribute, sublicense, and/or sell copies
+    of the Software, and to permit persons to whom the Software is
+    furnished to do so, subject to the following conditions:
+
+    The above copyright notice and this permission notice shall be
+    included in all copies or substantial portions of the Software.
+
+    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+    EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+    MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+    NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
+    HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
+    WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+    OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
+    DEALINGS IN THE SOFTWARE.
+*/
+
+/* Memory Map */
+#define CONFIG      0x00
+#define EN_AA       0x01
+#define EN_RXADDR   0x02
+#define SETUP_AW    0x03
+#define SETUP_RETR  0x04
+#define RF_CH       0x05
+#define RF_SETUP    0x06
+#define STATUS      0x07
+#define OBSERVE_TX  0x08
+#define CD          0x09
+#define RX_ADDR_P0  0x0A
+#define RX_ADDR_P1  0x0B
+#define RX_ADDR_P2  0x0C
+#define RX_ADDR_P3  0x0D
+#define RX_ADDR_P4  0x0E
+#define RX_ADDR_P5  0x0F
+#define TX_ADDR     0x10
+#define RX_PW_P0    0x11
+#define RX_PW_P1    0x12
+#define RX_PW_P2    0x13
+#define RX_PW_P3    0x14
+#define RX_PW_P4    0x15
+#define RX_PW_P5    0x16
+#define FIFO_STATUS 0x17
+#define DYNPD       0x1C
+#define FEATURE     0x1D
+
+/* Bit Mnemonics */
+#define MASK_RX_DR  6
+#define MASK_TX_DS  5
+#define MASK_MAX_RT 4
+#define EN_CRC      3
+#define CRCO        2
+#define PWR_UP      1
+#define PRIM_RX     0
+#define ENAA_P5     5
+#define ENAA_P4     4
+#define ENAA_P3     3
+#define ENAA_P2     2
+#define ENAA_P1     1
+#define ENAA_P0     0
+#define ERX_P5      5
+#define ERX_P4      4
+#define ERX_P3      3
+#define ERX_P2      2
+#define ERX_P1      1
+#define ERX_P0      0
+#define AW          0
+#define ARD         4
+#define ARC         0
+#define PLL_LOCK    4
+#define RF_DR       3
+#define RF_PWR      6
+#define RX_DR       6
+#define TX_DS       5
+#define MAX_RT      4
+#define RX_P_NO     1
+#define TX_FULL     0
+#define PLOS_CNT    4
+#define ARC_CNT     0
+#define TX_REUSE    6
+#define FIFO_FULL   5
+#define TX_EMPTY    4
+#define RX_FULL     1
+#define RX_EMPTY    0
+#define DPL_P5      5
+#define DPL_P4      4
+#define DPL_P3      3
+#define DPL_P2      2
+#define DPL_P1      1
+#define DPL_P0      0
+#define EN_DPL      2
+#define EN_ACK_PAY  1
+#define EN_DYN_ACK  0
+
+/* Instruction Mnemonics */
+#define R_REGISTER    0x00
+#define W_REGISTER    0x20
+#define REGISTER_MASK 0x1F
+#define ACTIVATE      0x50
+#define R_RX_PL_WID   0x60
+#define R_RX_PAYLOAD  0x61
+#define W_TX_PAYLOAD  0xA0
+#define W_ACK_PAYLOAD 0xA8
+#define FLUSH_TX      0xE1
+#define FLUSH_RX      0xE2
+#define REUSE_TX_PL   0xE3
+#define NOP           0xFF
+
+/* Non-P omissions */
+#define LNA_HCURR   0
+
+/* P model memory Map */
+#define RPD         0x09
+
+/* P model bit Mnemonics */
+#define RF_DR_LOW   5
+#define RF_DR_HIGH  3
+#define RF_PWR_LOW  1
+#define RF_PWR_HIGH 2
+
+#define LOW         0
+#define HIGH        1
+#define _NRF24L01P_SPI_MAX_DATA_RATE     10000000
+#define _NRF24L01P_TIMING_Tundef2pd_us     100000   // 100mS
+#define _NRF24L01P_TIMING_Tpece2csn_us          4
+
+
+
+
+/*
+ Copyright (C) 2011 J. Coliz <maniacbug@ymail.com>
+
+ This program is free software; you can redistribute it and/or
+ modify it under the terms of the GNU General Public License
+ version 2 as published by the Free Software Foundation.
+ */
+
+/**
+ * @file RF24.h
+ *
+ * Class declaration for RF24 and helper enums
+ */
+
+#ifndef __RF24_H__
+#define __RF24_H__
+
+#include "mbed.h"
+
+
+/**
+ * Power Amplifier level.
+ *
+ * For use with setPALevel()
+ */
+typedef enum { RF24_PA_MIN = 0,RF24_PA_LOW, RF24_PA_HIGH, RF24_PA_MAX, RF24_PA_ERROR } rf24_pa_dbm_e ;
+
+/**
+ * Data rate.  How fast data moves through the air.
+ *
+ * For use with setDataRate()
+ */
+typedef enum { RF24_1MBPS = 0, RF24_2MBPS, RF24_250KBPS } rf24_datarate_e;
+
+/**
+ * CRC Length.  How big (if any) of a CRC is included.
+ *
+ * For use with setCRCLength()
+ */
+typedef enum { RF24_CRC_DISABLED = 0, RF24_CRC_8, RF24_CRC_16 } rf24_crclength_e;
+
+/**
+ * Driver for nRF24L01(+) 2.4GHz Wireless Transceiver
+ */
+
+class RF24
+{
+private:
+  DigitalOut ce_pin; /**< "Chip Enable" pin, activates the RX or TX role */
+  DigitalOut csn_pin; /**< SPI Chip select */
+  bool wide_band; /* 2Mbs data rate in use? */
+  bool p_variant; /* False for RF24L01 and true for RF24L01P */
+  uint8_t payload_size; /**< Fixed size of payloads */
+  bool ack_payload_available; /**< Whether there is an ack payload waiting */
+  bool dynamic_payloads_enabled; /**< Whether dynamic payloads are enabled. */ 
+  uint8_t ack_payload_length; /**< Dynamic size of pending ack payload. */
+  uint64_t pipe0_reading_address; /**< Last address set on pipe 0 for reading. */
+  SPI spi;
+  Timer mainTimer;
+
+protected:
+  /**
+   * @name Low-level internal interface.
+   *
+   *  Protected methods that address the chip directly.  Regular users cannot
+   *  ever call these.  They are documented for completeness and for developers who
+   *  may want to extend this class.
+   */
+  /**@{*/
+
+  /**
+   * Set chip select pin
+   *
+   * Running SPI bus at PI_CLOCK_DIV2 so we don't waste time transferring data
+   * and best of all, we make use of the radio's FIFO buffers. A lower speed
+   * means we're less likely to effectively leverage our FIFOs and pay a higher
+   * AVR runtime cost as toll.
+   *
+   * @param mode HIGH to take this unit off the SPI bus, LOW to put it on
+   */
+  void csn(int mode);
+
+  /**
+   * Set chip enable
+   *
+   * @param level HIGH to actively begin transmission or LOW to put in standby.  Please see data sheet
+   * for a much more detailed description of this pin.
+   */
+  void ce(int level);
+
+  /**
+   * Read a chunk of data in from a register
+   *
+   * @param reg Which register. Use constants from nRF24L01.h
+   * @param buf Where to put the data
+   * @param len How many bytes of data to transfer
+   * @return Current value of status register
+   */
+  uint8_t read_register(uint8_t reg, uint8_t* buf, uint8_t len);
+
+  /**
+   * Read single byte from a register
+   *
+   * @param reg Which register. Use constants from nRF24L01.h
+   * @return Current value of register @p reg
+   */
+  uint8_t read_register(uint8_t reg);
+
+  /**
+   * Write a chunk of data to a register
+   *
+   * @param reg Which register. Use constants from nRF24L01.h
+   * @param buf Where to get the data
+   * @param len How many bytes of data to transfer
+   * @return Current value of status register
+   */
+  uint8_t write_register(uint8_t reg, const uint8_t* buf, uint8_t len);
+
+  /**
+   * Write a single byte to a register
+   *
+   * @param reg Which register. Use constants from nRF24L01.h
+   * @param value The new value to write
+   * @return Current value of status register
+   */
+  uint8_t write_register(uint8_t reg, uint8_t value);
+
+  /**
+   * Write the transmit payload
+   *
+   * The size of data written is the fixed payload size, see getPayloadSize()
+   *
+   * @param buf Where to get the data
+   * @param len Number of bytes to be sent
+   * @return Current value of status register
+   */
+  uint8_t write_payload(const void* buf, uint8_t len);
+
+  /**
+   * Read the receive payload
+   *
+   * The size of data read is the fixed payload size, see getPayloadSize()
+   *
+   * @param buf Where to put the data
+   * @param len Maximum number of bytes to read
+   * @return Current value of status register
+   */
+  uint8_t read_payload(void* buf, uint8_t len);
+
+  /**
+   * Empty the receive buffer
+   *
+   * @return Current value of status register
+   */
+  uint8_t flush_rx(void);
+
+  /**
+   * Empty the transmit buffer
+   *
+   * @return Current value of status register
+   */
+  uint8_t flush_tx(void);
+
+  /**
+   * Retrieve the current status of the chip
+   *
+   * @return Current value of status register
+   */
+  uint8_t get_status(void);
+
+  /**
+   * Decode and print the given status to stdout
+   *
+   * @param status Status value to print
+   *
+   * @warning Does nothing if stdout is not defined.  See fdevopen in stdio.h
+   */
+  void print_status(uint8_t status);
+
+  /**
+   * Decode and print the given 'observe_tx' value to stdout
+   *
+   * @param value The observe_tx value to print
+   *
+   * @warning Does nothing if stdout is not defined.  See fdevopen in stdio.h
+   */
+  void print_observe_tx(uint8_t value);
+
+  /**
+   * Print the name and value of an 8-bit register to stdout
+   *
+   * Optionally it can print some quantity of successive
+   * registers on the same line.  This is useful for printing a group
+   * of related registers on one line.
+   *
+   * @param name Name of the register
+   * @param reg Which register. Use constants from nRF24L01.h
+   * @param qty How many successive registers to print
+   */
+  void print_byte_register(const char* name, uint8_t reg, uint8_t qty = 1);
+
+  /**
+   * Print the name and value of a 40-bit address register to stdout
+   *
+   * Optionally it can print some quantity of successive
+   * registers on the same line.  This is useful for printing a group
+   * of related registers on one line.
+   *
+   * @param name Name of the register
+   * @param reg Which register. Use constants from nRF24L01.h
+   * @param qty How many successive registers to print
+   */
+  void print_address_register(const char* name, uint8_t reg, uint8_t qty = 1);
+
+  /**
+   * Turn on or off the special features of the chip
+   *
+   * The chip has certain 'features' which are only available when the 'features'
+   * are enabled.  See the datasheet for details.
+   */
+  void toggle_features(void);
+  /**@}*/
+
+public:
+  /**
+   * @name Primary public interface
+   *
+   *  These are the main methods you need to operate the chip
+   */
+  /**@{*/
+
+  /**
+   * Constructor
+   *
+   * Creates a new instance of this driver.  Before using, you create an instance
+   * and send in the unique pins that this chip is connected to.
+   *
+   * @param _cepin The pin attached to Chip Enable on the RF module
+   * @param _cspin The pin attached to Chip Select
+   */
+  RF24(PinName, PinName, PinName, PinName, PinName); //mosi miso sck ce cs
+
+  /**
+   * Begin operation of the chip
+   *
+   * Call this in setup(), before calling any other methods.
+   */
+  void begin(void);
+
+  /**
+   * Start listening on the pipes opened for reading.
+   *
+   * Be sure to call openReadingPipe() first.  Do not call write() while
+   * in this mode, without first calling stopListening().  Call
+   * isAvailable() to check for incoming traffic, and read() to get it.
+   */
+  void startListening(void);
+
+  /**
+   * Stop listening for incoming messages
+   *
+   * Do this before calling write().
+   */
+  void stopListening(void);
+
+  /**
+   * Write to the open writing pipe
+   *
+   * Be sure to call openWritingPipe() first to set the destination
+   * of where to write to.
+   *
+   * This blocks until the message is successfully acknowledged by
+   * the receiver or the timeout/retransmit maxima are reached.  In
+   * the current configuration, the max delay here is 60ms.
+   *
+   * The maximum size of data written is the fixed payload size, see
+   * getPayloadSize().  However, you can write less, and the remainder
+   * will just be filled with zeroes.
+   *
+   * @param buf Pointer to the data to be sent
+   * @param len Number of bytes to be sent
+   * @return True if the payload was delivered successfully false if not
+   */
+  bool write( const void* buf, uint8_t len );
+
+  /**
+   * Test whether there are bytes available to be read
+   *
+   * @return True if there is a payload available, false if none is
+   */
+  bool available(void);
+
+  /**
+   * Read the payload
+   *
+   * Return the last payload received
+   *
+   * The size of data read is the fixed payload size, see getPayloadSize()
+   *
+   * @note I specifically chose 'void*' as a data type to make it easier
+   * for beginners to use.  No casting needed.
+   *
+   * @param buf Pointer to a buffer where the data should be written
+   * @param len Maximum number of bytes to read into the buffer
+   * @return True if the payload was delivered successfully false if not
+   */
+  bool read( void* buf, uint8_t len );
+
+  /**
+   * Open a pipe for writing
+   *
+   * Only one pipe can be open at once, but you can change the pipe
+   * you'll listen to.  Do not call this while actively listening.
+   * Remember to stopListening() first.
+   *
+   * Addresses are 40-bit hex values, e.g.:
+   *
+   * @code
+   *   openWritingPipe(0xF0F0F0F0F0);
+   * @endcode
+   *
+   * @param address The 40-bit address of the pipe to open.  This can be
+   * any value whatsoever, as long as you are the only one writing to it
+   * and only one other radio is listening to it.  Coordinate these pipe
+   * addresses amongst nodes on the network.
+   */
+  void openWritingPipe(uint64_t address);
+
+  /**
+   * Open a pipe for reading
+   *
+   * Up to 6 pipes can be open for reading at once.  Open all the
+   * reading pipes, and then call startListening().
+   *
+   * @see openWritingPipe
+   *
+   * @warning Pipes 1-5 should share the first 32 bits.
+   * Only the least significant byte should be unique, e.g.
+   * @code
+   *   openReadingPipe(1,0xF0F0F0F0AA);
+   *   openReadingPipe(2,0xF0F0F0F066);
+   * @endcode
+   *
+   * @warning Pipe 0 is also used by the writing pipe.  So if you open
+   * pipe 0 for reading, and then startListening(), it will overwrite the
+   * writing pipe.  Ergo, do an openWritingPipe() again before write().
+   *
+   * @todo Enforce the restriction that pipes 1-5 must share the top 32 bits
+   *
+   * @param number Which pipe# to open, 0-5.
+   * @param address The 40-bit address of the pipe to open.
+   */
+  void openReadingPipe(uint8_t number, uint64_t address);
+
+  /**@}*/
+  /**
+   * @name Optional Configurators 
+   *
+   *  Methods you can use to get or set the configuration of the chip.
+   *  None are required.  Calling begin() sets up a reasonable set of
+   *  defaults.
+   */
+  /**@{*/
+  /**
+   * Set the number and delay of retries upon failed submit
+   *
+   * @param delay How long to wait between each retry, in multiples of 250us,
+   * max is 15.  0 means 250us, 15 means 4000us.
+   * @param count How many retries before giving up, max 15
+   */
+  void setRetries(uint8_t delay, uint8_t count);
+
+  /**
+   * Set RF communication channel
+   *
+   * @param channel Which RF channel to communicate on, 0-127
+   */
+  void setChannel(uint8_t channel);
+
+  /**
+   * Set Static Payload Size
+   *
+   * This implementation uses a pre-stablished fixed payload size for all
+   * transmissions.  If this method is never called, the driver will always
+   * transmit the maximum payload size (32 bytes), no matter how much
+   * was sent to write().
+   *
+   * @todo Implement variable-sized payloads feature
+   *
+   * @param size The number of bytes in the payload
+   */
+  void setPayloadSize(uint8_t size);
+
+  /**
+   * Get Static Payload Size
+   *
+   * @see setPayloadSize()
+   *
+   * @return The number of bytes in the payload
+   */
+  uint8_t getPayloadSize(void);
+
+  /**
+   * Get Dynamic Payload Size
+   *
+   * For dynamic payloads, this pulls the size of the payload off
+   * the chip
+   *
+   * @return Payload length of last-received dynamic payload
+   */
+  uint8_t getDynamicPayloadSize(void);
+  
+  /**
+   * Enable custom payloads on the acknowledge packets
+   *
+   * Ack payloads are a handy way to return data back to senders without
+   * manually changing the radio modes on both units.
+   *
+   * @see examples/pingpair_pl/pingpair_pl.pde
+   */
+  void enableAckPayload(void);
+
+  /**
+   * Enable dynamically-sized payloads
+   *
+   * This way you don't always have to send large packets just to send them
+   * once in a while.  This enables dynamic payloads on ALL pipes.
+   *
+   * @see examples/pingpair_pl/pingpair_dyn.pde
+   */
+  void enableDynamicPayloads(void);
+
+  /**
+   * Determine whether the hardware is an nRF24L01+ or not.
+   *
+   * @return true if the hardware is nRF24L01+ (or compatible) and false
+   * if its not.
+   */
+  bool isPVariant(void) ;
+
+  /**
+   * Enable or disable auto-acknowlede packets
+   *
+   * This is enabled by default, so it's only needed if you want to turn
+   * it off for some reason.
+   *
+   * @param enable Whether to enable (true) or disable (false) auto-acks
+   */
+  void setAutoAck(bool enable);
+
+  /**
+   * Enable or disable auto-acknowlede packets on a per pipeline basis.
+   *
+   * AA is enabled by default, so it's only needed if you want to turn
+   * it off/on for some reason on a per pipeline basis.
+   *
+   * @param pipe Which pipeline to modify
+   * @param enable Whether to enable (true) or disable (false) auto-acks
+   */
+  void setAutoAck( uint8_t pipe, bool enable ) ;
+
+  /**
+   * Set Power Amplifier (PA) level to one of four levels.
+   * Relative mnemonics have been used to allow for future PA level
+   * changes. According to 6.5 of the nRF24L01+ specification sheet,
+   * they translate to: RF24_PA_MIN=-18dBm, RF24_PA_LOW=-12dBm,
+   * RF24_PA_MED=-6dBM, and RF24_PA_HIGH=0dBm.
+   *
+   * @param level Desired PA level.
+   */
+  void setPALevel( rf24_pa_dbm_e level ) ;
+
+  /**
+   * Fetches the current PA level.
+   *
+   * @return Returns a value from the rf24_pa_dbm_e enum describing
+   * the current PA setting. Please remember, all values represented
+   * by the enum mnemonics are negative dBm. See setPALevel for
+   * return value descriptions.
+   */
+  rf24_pa_dbm_e getPALevel( void ) ;
+
+  /**
+   * Set the transmission data rate
+   *
+   * @warning setting RF24_250KBPS will fail for non-plus units
+   *
+   * @param speed RF24_250KBPS for 250kbs, RF24_1MBPS for 1Mbps, or RF24_2MBPS for 2Mbps
+   * @return true if the change was successful
+   */
+  bool setDataRate(rf24_datarate_e speed);
+  
+  /**
+   * Fetches the transmission data rate
+   *
+   * @return Returns the hardware's currently configured datarate. The value
+   * is one of 250kbs, RF24_1MBPS for 1Mbps, or RF24_2MBPS, as defined in the
+   * rf24_datarate_e enum.
+   */
+  rf24_datarate_e getDataRate( void ) ;
+
+  /**
+   * Set the CRC length
+   *
+   * @param length RF24_CRC_8 for 8-bit or RF24_CRC_16 for 16-bit
+   */
+  void setCRCLength(rf24_crclength_e length);
+
+  /**
+   * Get the CRC length
+   *
+   * @return RF24_DISABLED if disabled or RF24_CRC_8 for 8-bit or RF24_CRC_16 for 16-bit
+   */
+  rf24_crclength_e getCRCLength(void);
+
+  /**
+   * Disable CRC validation
+   *
+   */
+  void disableCRC( void ) ;
+
+  /**@}*/
+  /**
+   * @name Advanced Operation 
+   *
+   *  Methods you can use to drive the chip in more advanced ways 
+   */
+  /**@{*/
+
+  /**
+   * Print a giant block of debugging information to stdout
+   *
+   * @warning Does nothing if stdout is not defined.  See fdevopen in stdio.h
+   */
+  void printDetails(void);
+
+  /**
+   * Enter low-power mode
+   *
+   * To return to normal power mode, either write() some data or
+   * startListening, or powerUp().
+   */
+  void powerDown(void);
+
+  /**
+   * Leave low-power mode - making radio more responsive
+   *
+   * To return to low power mode, call powerDown().
+   */
+  void powerUp(void) ;
+
+  /**
+   * Test whether there are bytes available to be read
+   *
+   * Use this version to discover on which pipe the message
+   * arrived.
+   *
+   * @param[out] pipe_num Which pipe has the payload available
+   * @return True if there is a payload available, false if none is
+   */
+  bool available(uint8_t* pipe_num);
+
+  /**
+   * Non-blocking write to the open writing pipe
+   *
+   * Just like write(), but it returns immediately. To find out what happened
+   * to the send, catch the IRQ and then call whatHappened().
+   *
+   * @see write()
+   * @see whatHappened()
+   *
+   * @param buf Pointer to the data to be sent
+   * @param len Number of bytes to be sent
+   * @return True if the payload was delivered successfully false if not
+   */
+  void startWrite( const void* buf, uint8_t len );
+
+  /**
+   * Write an ack payload for the specified pipe
+   *
+   * The next time a message is received on @p pipe, the data in @p buf will
+   * be sent back in the acknowledgement.
+   *
+   * @warning According to the data sheet, only three of these can be pending
+   * at any time.  I have not tested this.
+   *
+   * @param pipe Which pipe# (typically 1-5) will get this response.
+   * @param buf Pointer to data that is sent
+   * @param len Length of the data to send, up to 32 bytes max.  Not affected
+   * by the static payload set by setPayloadSize().
+   */
+  void writeAckPayload(uint8_t pipe, const void* buf, uint8_t len);
+
+  /**
+   * Determine if an ack payload was received in the most recent call to
+   * write().
+   *
+   * Call read() to retrieve the ack payload.
+   *
+   * @warning Calling this function clears the internal flag which indicates
+   * a payload is available.  If it returns true, you must read the packet
+   * out as the very next interaction with the radio, or the results are
+   * undefined.
+   *
+   * @return True if an ack payload is available.
+   */
+  bool isAckPayloadAvailable(void);
+
+  /**
+   * Call this when you get an interrupt to find out why
+   *
+   * Tells you what caused the interrupt, and clears the state of
+   * interrupts.
+   *
+   * @param[out] tx_ok The send was successful (TX_DS)
+   * @param[out] tx_fail The send failed, too many retries (MAX_RT)
+   * @param[out] rx_ready There is a message waiting to be read (RX_DS)
+   */
+  void whatHappened(bool& tx_ok,bool& tx_fail,bool& rx_ready);
+
+  /**
+   * Test whether there was a carrier on the line for the
+   * previous listening period.
+   *
+   * Useful to check for interference on the current channel.
+   *
+   * @return true if was carrier, false if not
+   */
+  bool testCarrier(void);
+
+  /**
+   * Test whether a signal (carrier or otherwise) greater than
+   * or equal to -64dBm is present on the channel. Valid only
+   * on nRF24L01P (+) hardware. On nRF24L01, use testCarrier().
+   *
+   * Useful to check for interference on the current channel and
+   * channel hopping strategies.
+   *
+   * @return true if signal => -64dBm, false if not
+   */
+  bool testRPD(void) ;
+  
+  int min(int, int);
+
+};
+
+
+#endif // __RF24_H__
\ No newline at end of file