CMSIS DSP library

Dependents:   KL25Z_FFT_Demo Hat_Board_v5_1 KL25Z_FFT_Demo_tony KL25Z_FFT_Demo_tony ... more

Fork of mbed-dsp by mbed official

Embed: (wiki syntax)

« Back to documentation index

Complex FFT Functions

Complex FFT Functions
[Transform Functions]

Functions

void arm_cfft_f32 (const arm_cfft_instance_f32 *S, float32_t *p1, uint8_t ifftFlag, uint8_t bitReverseFlag)
 Processing function for the floating-point complex FFT.
void arm_cfft_radix2_f32 (const arm_cfft_radix2_instance_f32 *S, float32_t *pSrc)
 Radix-2 CFFT/CIFFT.
arm_status arm_cfft_radix2_init_f32 (arm_cfft_radix2_instance_f32 *S, uint16_t fftLen, uint8_t ifftFlag, uint8_t bitReverseFlag)
 Initialization function for the floating-point CFFT/CIFFT.
arm_status arm_cfft_radix2_init_q15 (arm_cfft_radix2_instance_q15 *S, uint16_t fftLen, uint8_t ifftFlag, uint8_t bitReverseFlag)
 Initialization function for the Q15 CFFT/CIFFT.
arm_status arm_cfft_radix2_init_q31 (arm_cfft_radix2_instance_q31 *S, uint16_t fftLen, uint8_t ifftFlag, uint8_t bitReverseFlag)
 Initialization function for the Q31 CFFT/CIFFT.
void arm_cfft_radix2_q15 (const arm_cfft_radix2_instance_q15 *S, q15_t *pSrc)
 Processing function for the fixed-point CFFT/CIFFT.
void arm_cfft_radix2_q31 (const arm_cfft_radix2_instance_q31 *S, q31_t *pSrc)
 Processing function for the fixed-point CFFT/CIFFT.
void arm_cfft_radix4_f32 (const arm_cfft_radix4_instance_f32 *S, float32_t *pSrc)
 Processing function for the floating-point Radix-4 CFFT/CIFFT.
arm_status arm_cfft_radix4_init_f32 (arm_cfft_radix4_instance_f32 *S, uint16_t fftLen, uint8_t ifftFlag, uint8_t bitReverseFlag)
 Initialization function for the floating-point CFFT/CIFFT.
arm_status arm_cfft_radix4_init_q15 (arm_cfft_radix4_instance_q15 *S, uint16_t fftLen, uint8_t ifftFlag, uint8_t bitReverseFlag)
 Initialization function for the Q15 CFFT/CIFFT.
arm_status arm_cfft_radix4_init_q31 (arm_cfft_radix4_instance_q31 *S, uint16_t fftLen, uint8_t ifftFlag, uint8_t bitReverseFlag)
 Initialization function for the Q31 CFFT/CIFFT.
void arm_cfft_radix4_q15 (const arm_cfft_radix4_instance_q15 *S, q15_t *pSrc)
 Processing function for the Q15 CFFT/CIFFT.
void arm_cfft_radix4_q31 (const arm_cfft_radix4_instance_q31 *S, q31_t *pSrc)
 Processing function for the Q31 CFFT/CIFFT.

Detailed Description

The Fast Fourier Transform (FFT) is an efficient algorithm for computing the Discrete Fourier Transform (DFT). The FFT can be orders of magnitude faster than the DFT, especially for long lengths. The algorithms described in this section operate on complex data. A separate set of functions is devoted to handling of real sequences.
There are separate algorithms for handling floating-point, Q15, and Q31 data types. The algorithms available for each data type are described next.
The FFT functions operate in-place. That is, the array holding the input data will also be used to hold the corresponding result. The input data is complex and contains 2*fftLen interleaved values as shown below.
 {real[0], imag[0], real[1], imag[1],..} 
The FFT result will be contained in the same array and the frequency domain values will have the same interleaving.
Floating-point
The floating-point complex FFT uses a mixed-radix algorithm. Multiple radix-8 stages are performed along with a single radix-2 or radix-4 stage, as needed. The algorithm supports lengths of [16, 32, 64, ..., 4096] and each length uses a different twiddle factor table.
The function uses the standard FFT definition and output values may grow by a factor of fftLen when computing the forward transform. The inverse transform includes a scale of 1/fftLen as part of the calculation and this matches the textbook definition of the inverse FFT.
Preinitialized data structures containing twiddle factors and bit reversal tables are provided and defined in arm_const_structs.h. Include this header in your function and then pass one of the constant structures as an argument to arm_cfft_f32. For example:
arm_cfft_f32(arm_cfft_sR_f32_len64, pSrc, 1, 1)
computes a 64-point inverse complex FFT including bit reversal. The data structures are treated as constant data and not modified during the calculation. The same data structure can be reused for multiple transforms including mixing forward and inverse transforms.
Earlier releases of the library provided separate radix-2 and radix-4 algorithms that operated on floating-point data. These functions are still provided but are deprecated. The older functions are slower and less general than the new functions.
An example of initialization of the constants for the arm_cfft_f32 function follows:
const static arm_cfft_instance_f32 *S; ... switch (length) { case 16: S = & arm_cfft_sR_f32_len16; break; case 32: S = & arm_cfft_sR_f32_len32; break; case 64: S = & arm_cfft_sR_f32_len64; break; case 128: S = & arm_cfft_sR_f32_len128; break; case 256: S = & arm_cfft_sR_f32_len256; break; case 512: S = & arm_cfft_sR_f32_len512; break; case 1024: S = & arm_cfft_sR_f32_len1024; break; case 2048: S = & arm_cfft_sR_f32_len2048; break; case 4096: S = & arm_cfft_sR_f32_len4096; break; }
Q15 and Q31
The library provides radix-2 and radix-4 FFT algorithms for fixed-point data. The radix-2 algorithm supports lengths of [16, 32, 64, ..., 4096]. The radix-4 algorithm supports lengths of [16, 64, 256, ..., 4096]. When possible, you should use the radix-4 algorithm since it is faster than the radix-2 of the same length.
The forward FFTs include scaling in order to prevent results from overflowing. Intermediate results are scaled down during each butterfly stage. In the radix-2 algorithm, a scale of 0.5 is applied during each butterfly. In the radix-4 algorithm, a scale of 0.25 is applied. The scaling applies to both the forward and the inverse FFTs. Thus the forward FFT contains an additional scale factor of 1/fftLen as compared to the standard textbook definition of the FFT. The inverse FFT also scales down during each butterfly stage and this corresponds to the standard textbook definition.
A separate instance structure must be defined for each transform used but twiddle factor and bit reversal tables can be reused.
There is also an associated initialization function for each data type. The initialization function performs the following operations:
  • Sets the values of the internal structure fields.
  • Initializes twiddle factor table and bit reversal table pointers.
Use of the initialization function is optional. However, if the initialization function is used, then the instance structure cannot be placed into a const data section. To place an instance structure into a const data section, the instance structure should be manually initialized as follows:
   
arm_cfft_radix2_instance_q31 S = {fftLen, ifftFlag, bitReverseFlag, pTwiddle, pBitRevTable, twidCoefModifier, bitRevFactor};   
arm_cfft_radix2_instance_q15 S = {fftLen, ifftFlag, bitReverseFlag, pTwiddle, pBitRevTable, twidCoefModifier, bitRevFactor};   
arm_cfft_radix4_instance_q31 S = {fftLen, ifftFlag, bitReverseFlag, pTwiddle, pBitRevTable, twidCoefModifier, bitRevFactor};    
arm_cfft_radix4_instance_q15 S = {fftLen, ifftFlag, bitReverseFlag, pTwiddle, pBitRevTable, twidCoefModifier, bitRevFactor};    
arm_cfft_instance_f32 S = {fftLen, pTwiddle, pBitRevTable, bitRevLength};
 
where fftLen length of CFFT/CIFFT; ifftFlag Flag for selection of forward or inverse transform. When ifftFlag is set the inverse transform is calculated. bitReverseFlag Flag for selection of output order (Set bitReverseFlag to output in normal order otherwise output in bit reversed order); pTwiddlepoints to array of twiddle coefficients; pBitRevTable points to the bit reversal table. twidCoefModifier modifier for twiddle factor table which supports all FFT lengths with same table; pBitRevTable modifier for bit reversal table which supports all FFT lengths with same table. onebyfftLen value of 1/fftLen to calculate CIFFT;
The Q15 and Q31 FFT functions use a large bit reversal and twiddle factor table. The tables are defined for the maximum length transform and a subset of the coefficients are used in shorter transforms.

Function Documentation

void arm_cfft_f32 ( const arm_cfft_instance_f32 S,
float32_t *  p1,
uint8_t  ifftFlag,
uint8_t  bitReverseFlag 
)

Processing function for the floating-point complex FFT.

Parameters:
[in]*Spoints to an instance of the floating-point CFFT structure.
[in,out]*p1points to the complex data buffer of size 2*fftLen. Processing occurs in-place.
[in]ifftFlagflag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform.
[in]bitReverseFlagflag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output.
Returns:
none.

Definition at line 563 of file arm_cfft_f32.c.

void arm_cfft_radix2_f32 ( const arm_cfft_radix2_instance_f32 S,
float32_t *  pSrc 
)

Radix-2 CFFT/CIFFT.

Parameters:
[in]*Spoints to an instance of the floating-point Radix-2 CFFT/CIFFT structure.
[in,out]*pSrcpoints to the complex data buffer of size 2*fftLen. Processing occurs in-place.
Returns:
none.

Definition at line 82 of file arm_cfft_radix2_f32.c.

arm_status arm_cfft_radix2_init_f32 ( arm_cfft_radix2_instance_f32 S,
uint16_t  fftLen,
uint8_t  ifftFlag,
uint8_t  bitReverseFlag 
)

Initialization function for the floating-point CFFT/CIFFT.

Parameters:
[in,out]*Spoints to an instance of the floating-point CFFT/CIFFT structure.
[in]fftLenlength of the FFT.
[in]ifftFlagflag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform.
[in]bitReverseFlagflag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output.
Returns:
The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if fftLen is not a supported value.
Description:
The parameter ifftFlag controls whether a forward or inverse transform is computed. Set(=1) ifftFlag for calculation of CIFFT otherwise CFFT is calculated
The parameter bitReverseFlag controls whether output is in normal order or bit reversed order. Set(=1) bitReverseFlag for output to be in normal order otherwise output is in bit reversed order.
The parameter fftLen Specifies length of CFFT/CIFFT process. Supported FFT Lengths are 16, 64, 256, 1024.
This Function also initializes Twiddle factor table pointer and Bit reversal table pointer.

Definition at line 76 of file arm_cfft_radix2_init_f32.c.

arm_status arm_cfft_radix2_init_q15 ( arm_cfft_radix2_instance_q15 S,
uint16_t  fftLen,
uint8_t  ifftFlag,
uint8_t  bitReverseFlag 
)

Initialization function for the Q15 CFFT/CIFFT.

Parameters:
[in,out]*Spoints to an instance of the Q15 CFFT/CIFFT structure.
[in]fftLenlength of the FFT.
[in]ifftFlagflag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform.
[in]bitReverseFlagflag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output.
Returns:
The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if fftLen is not a supported value.
Description:
The parameter ifftFlag controls whether a forward or inverse transform is computed. Set(=1) ifftFlag for calculation of CIFFT otherwise CFFT is calculated
The parameter bitReverseFlag controls whether output is in normal order or bit reversed order. Set(=1) bitReverseFlag for output to be in normal order otherwise output is in bit reversed order.
The parameter fftLen Specifies length of CFFT/CIFFT process. Supported FFT Lengths are 16, 64, 256, 1024.
This Function also initializes Twiddle factor table pointer and Bit reversal table pointer.

Definition at line 75 of file arm_cfft_radix2_init_q15.c.

arm_status arm_cfft_radix2_init_q31 ( arm_cfft_radix2_instance_q31 S,
uint16_t  fftLen,
uint8_t  ifftFlag,
uint8_t  bitReverseFlag 
)

Initialization function for the Q31 CFFT/CIFFT.

Parameters:
[in,out]*Spoints to an instance of the Q31 CFFT/CIFFT structure.
[in]fftLenlength of the FFT.
[in]ifftFlagflag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform.
[in]bitReverseFlagflag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output.
Returns:
The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if fftLen is not a supported value.
Description:
The parameter ifftFlag controls whether a forward or inverse transform is computed. Set(=1) ifftFlag for calculation of CIFFT otherwise CFFT is calculated
The parameter bitReverseFlag controls whether output is in normal order or bit reversed order. Set(=1) bitReverseFlag for output to be in normal order otherwise output is in bit reversed order.
The parameter fftLen Specifies length of CFFT/CIFFT process. Supported FFT Lengths are 16, 64, 256, 1024.
This Function also initializes Twiddle factor table pointer and Bit reversal table pointer.

Definition at line 77 of file arm_cfft_radix2_init_q31.c.

void arm_cfft_radix2_q15 ( const arm_cfft_radix2_instance_q15 S,
q15_t *  pSrc 
)

Processing function for the fixed-point CFFT/CIFFT.

Parameters:
[in]*Spoints to an instance of the fixed-point CFFT/CIFFT structure.
[in,out]*pSrcpoints to the complex data buffer of size 2*fftLen. Processing occurs in-place.
Returns:
none.

Definition at line 79 of file arm_cfft_radix2_q15.c.

void arm_cfft_radix2_q31 ( const arm_cfft_radix2_instance_q31 S,
q31_t *  pSrc 
)

Processing function for the fixed-point CFFT/CIFFT.

Parameters:
[in]*Spoints to an instance of the fixed-point CFFT/CIFFT structure.
[in,out]*pSrcpoints to the complex data buffer of size 2*fftLen. Processing occurs in-place.
Returns:
none.

Definition at line 79 of file arm_cfft_radix2_q31.c.

void arm_cfft_radix4_f32 ( const arm_cfft_radix4_instance_f32 S,
float32_t *  pSrc 
)

Processing function for the floating-point Radix-4 CFFT/CIFFT.

Parameters:
[in]*Spoints to an instance of the floating-point Radix-4 CFFT/CIFFT structure.
[in,out]*pSrcpoints to the complex data buffer of size 2*fftLen. Processing occurs in-place.
Returns:
none.

Definition at line 1181 of file arm_cfft_radix4_f32.c.

arm_status arm_cfft_radix4_init_f32 ( arm_cfft_radix4_instance_f32 S,
uint16_t  fftLen,
uint8_t  ifftFlag,
uint8_t  bitReverseFlag 
)

Initialization function for the floating-point CFFT/CIFFT.

Parameters:
[in,out]*Spoints to an instance of the floating-point CFFT/CIFFT structure.
[in]fftLenlength of the FFT.
[in]ifftFlagflag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform.
[in]bitReverseFlagflag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output.
Returns:
The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if fftLen is not a supported value.
Description:
The parameter ifftFlag controls whether a forward or inverse transform is computed. Set(=1) ifftFlag for calculation of CIFFT otherwise CFFT is calculated
The parameter bitReverseFlag controls whether output is in normal order or bit reversed order. Set(=1) bitReverseFlag for output to be in normal order otherwise output is in bit reversed order.
The parameter fftLen Specifies length of CFFT/CIFFT process. Supported FFT Lengths are 16, 64, 256, 1024.
This Function also initializes Twiddle factor table pointer and Bit reversal table pointer.

Definition at line 77 of file arm_cfft_radix4_init_f32.c.

arm_status arm_cfft_radix4_init_q15 ( arm_cfft_radix4_instance_q15 S,
uint16_t  fftLen,
uint8_t  ifftFlag,
uint8_t  bitReverseFlag 
)

Initialization function for the Q15 CFFT/CIFFT.

Parameters:
[in,out]*Spoints to an instance of the Q15 CFFT/CIFFT structure.
[in]fftLenlength of the FFT.
[in]ifftFlagflag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform.
[in]bitReverseFlagflag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output.
Returns:
The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if fftLen is not a supported value.
Description:
The parameter ifftFlag controls whether a forward or inverse transform is computed. Set(=1) ifftFlag for calculation of CIFFT otherwise CFFT is calculated
The parameter bitReverseFlag controls whether output is in normal order or bit reversed order. Set(=1) bitReverseFlag for output to be in normal order otherwise output is in bit reversed order.
The parameter fftLen Specifies length of CFFT/CIFFT process. Supported FFT Lengths are 16, 64, 256, 1024.
This Function also initializes Twiddle factor table pointer and Bit reversal table pointer.

Definition at line 76 of file arm_cfft_radix4_init_q15.c.

arm_status arm_cfft_radix4_init_q31 ( arm_cfft_radix4_instance_q31 S,
uint16_t  fftLen,
uint8_t  ifftFlag,
uint8_t  bitReverseFlag 
)

Initialization function for the Q31 CFFT/CIFFT.

Parameters:
[in,out]*Spoints to an instance of the Q31 CFFT/CIFFT structure.
[in]fftLenlength of the FFT.
[in]ifftFlagflag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform.
[in]bitReverseFlagflag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output.
Returns:
The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if fftLen is not a supported value.
Description:
The parameter ifftFlag controls whether a forward or inverse transform is computed. Set(=1) ifftFlag for calculation of CIFFT otherwise CFFT is calculated
The parameter bitReverseFlag controls whether output is in normal order or bit reversed order. Set(=1) bitReverseFlag for output to be in normal order otherwise output is in bit reversed order.
The parameter fftLen Specifies length of CFFT/CIFFT process. Supported FFT Lengths are 16, 64, 256, 1024.
This Function also initializes Twiddle factor table pointer and Bit reversal table pointer.

Definition at line 75 of file arm_cfft_radix4_init_q31.c.

void arm_cfft_radix4_q15 ( const arm_cfft_radix4_instance_q15 S,
q15_t *  pSrc 
)

Processing function for the Q15 CFFT/CIFFT.

Parameters:
[in]*Spoints to an instance of the Q15 CFFT/CIFFT structure.
[in,out]*pSrcpoints to the complex data buffer. Processing occurs in-place.
Returns:
none.
Input and output formats:
Internally input is downscaled by 2 for every stage to avoid saturations inside CFFT/CIFFT process. Hence the output format is different for different FFT sizes. The input and output formats for different FFT sizes and number of bits to upscale are mentioned in the tables below for CFFT and CIFFT:
CFFTQ15.gif

Input and Output Formats for Q15 CFFT

CIFFTQ15.gif

Input and Output Formats for Q15 CIFFT

Definition at line 90 of file arm_cfft_radix4_q15.c.

void arm_cfft_radix4_q31 ( const arm_cfft_radix4_instance_q31 S,
q31_t *  pSrc 
)

Processing function for the Q31 CFFT/CIFFT.

Parameters:
[in]*Spoints to an instance of the Q31 CFFT/CIFFT structure.
[in,out]*pSrcpoints to the complex data buffer of size 2*fftLen. Processing occurs in-place.
Returns:
none.
Input and output formats:
Internally input is downscaled by 2 for every stage to avoid saturations inside CFFT/CIFFT process. Hence the output format is different for different FFT sizes. The input and output formats for different FFT sizes and number of bits to upscale are mentioned in the tables below for CFFT and CIFFT:
CFFTQ31.gif

Input and Output Formats for Q31 CFFT

CIFFTQ31.gif

Input and Output Formats for Q31 CIFFT

Definition at line 89 of file arm_cfft_radix4_q31.c.