

・重い腰を上げてやっとmbedに対応に乗り出したST。mbed対応は、 数年前から水面下で進めていたSTM32マイコンエコシステムのリ ニューアルの一部という位置付けです。実際に対応されたものが出 てくると、どう使っていけるか?というところで悩んでいます。導 き出したひとつの答えと、それをもとにした作業の中で、いちユー ザーとして体験・会得した事柄をご紹介したいと思います。話のタ ネは、mbed SDKを使って何かをつくった、というよりも、設定を 調整してmbed SDKライブラリをビルドした事例、開発環境エクス ポート形式の追加など、STM32-NUCLEOをmbedのプラットフォー ムとして使ってもらうためのオフライン作業結果です。

2

• 自己紹介

- 矢郷 洋一 (やごう ひろかず)
- STマイクロエレクトロニクス(株)マイクロコントローラ製品部
- ST製マイコン製品の技術サポート、邦訳マニュアルの校正をしています。といってもマイコン担当部署に異動してからまだ3年目です。経験豊富な「マイコンマスター」たちに圧倒されながら腕を磨く日々です。以前は、テレビ放送受信機向けアプリケーションプロセッサの分野で似た仕事をしていました。

STM32 Ecosystem: News summary

mbed対応プラットフォーム

NUCLEO – Arduino Headers

(Arduino UNO R3互換ピンヘッダ)

この3つPWMだけ割り当てられているTimerペリフェラルが基板ごとに異なります。

NUCLEOシリーズ

6

* Support for STM32 L0, STM32 F3 and more STM32 F0 coming soon

念願のCortex-M0+搭載STM32マイコン。L1シリーズに対する 製品フィードバックをもとにして低消費電力をテーマに設計。

mbed、どう使えるだろうか? 7

- mbed SDKはマイコンファームウェア開発の敷居を下げるという特長があるので:
- ・平常業務でのソフトウェアプラットフォームとして使え ないか
 ?
 - デモ環境の構築、トラブルシューティング時の再現環境の構築に 役立ちそう・・・
 - ==> ブレークポイントを張りたい。デバッガを使えるようにしたい。
- マスマーケットに使えそう?
 - ==> LPCXpresso IDEのような無償IDEがあるといいなあ・・・。
 そういえば事業本部が無償IDEとして「CooCox CoIDE」というのを紹介してたな・・・。

オフラインコンパイル・デバッグ

- 現時点のmbedクラウド開発環境では、NUCLEO向けにオンライン IDEからKeil-uVisionプロジェクト形式でexport可能。exportすると コンパイル済のmbed SDKライブラリとアプリケーションのソース ファイルmain.cppがローカルPCにダウンロードされるので、 Nucleo_blink_led/サンプル+NUCLEO-F401REでやってみたとこ ろ、見事につまづく。exportされるmbed SDKライブラリはハード ウェアFPU設定 = "無効"設定でコンパイル済なのに、exportされる uVisionプロジェクトオプションがハードウェアFPU設定 = "有効"に なっている・・・。
- main.cpp: ハードウェアFPU使用でコンパイルされる。
- mbed SDKライブラリ: ハードウェアFPU非使用でコンパイル済。
 - SystemInit()実行後もCPACRレジスタが0のまま。

- ひとまずuVisionのプロジェクトオプションを調整。
- [Porject] [Options for Target …] [Target]タブ
- Floating Point Hardware = Not Used

• 「Hard FPUを使えるようにしたいんですけどー、」と言われたらどうしよう・・・・・。

mbed SDKフルビルドにチャレンジ

・必要なもの

- Python ==> 2.7.6をインストール。
 - C:¥Python27;を環境変数PATHに追加。
- mbed masterブランチ ==> .zipスナップショットをダウンロード @ <u>https://github.com/mbedmicro/mbed</u>。
- mbed-master/workspace_tools/private_settings.py ==> <u>http://d.hatena.ne.jp/va009039/20130809/p1</u>を参考に追加。
- 達成目標
 - ハードウェアFPU = "有効"設定でmbed SDKライブラリを NUCLEO-F401RE向けにビルドする。

課題

- どうやれば「ハードウェアFPU = 有効」設定になるんだろ
- う・・・? SystemInit()から地道に遡る。

mbed SDKフルビルドにチャレンジ

- 編集が必要なファイル:
 - mbed-master/workspace_tools/targets.py
- [workspace_tools/targets.py]:
 - class NUCLEO_F401RE(Targets):
 - self.core = "Cortex-M4" ==> "Cortex-M4F"に変更
 - この変更がworkspace_tools/toolchains/__init__.pyに影響する。
- [workspace_tools/toolchains/__init__.py]:
 - class mbedToolchain:
 - . . .

• }

• ...

- CORTEX_SYMBOLS = {
 - ...
 - "Cortex-M4" : ["__CORTEX_M4", "ARM_MATH_CM4"],
 - "Cortex-M4F" : ["__CORTEX_M4", "ARM_MATH_CM4", "__**FPU_PRESENT=1**"],

mbed SDKフルビルドにチャレンジ

- ・ビルド。
 - > cd ...¥mbed-master¥workspace_tools
 - > python build.py -t uARM -m NUCLEO_F401RE
- ビルドしたmbedがmbed-master/build/mbedに出力される。
- オンラインコンパイラからエクスポートしたmbed/を mbed-master/build/mbed/で置き換えて、uVisionの ハードウェアFPU設定="有効"にしてNucleo_blink_led プロジェクトをリビルド。

対応エクスポート形式

		life.augmented		founded by Philips
	(platform example)	NUCLEO-F401RE	FRDM-KL05Z	mbed LPC1768
W 4	Keil uVision 4	ОК	ОК	ОК
PC PRESSO	LPCXpresso	N/A	N/A	ОК
	GCC 🎸 CODESOURCERY	NG	NG	ОК
GCC	GCC (GNU)	NG	ОК	ОК
EIAR SYSTEMS	IAR Systems	NG	NG	ОК
	CooCox IDE	NG	ОК	NG
-	Codered	N/A	N/A?	ОК
mbed	mbed Online IDE	ОК	ОК	ОК
	ZIP Archive	ОК	ОК	ОК
_				

うーん・・・まずいなあ・・・・

対応エクスポート形式

		life.augmented		founded by Philips
	(platform example)	NUCLEO-F401RE	FRDM-KL05Z	mbed LPC1768
W 4	Keil uVision 4	ОК	ОК	ОК
PC PRESSO	LPCXpresso	N/A	N/A	ОК
	GCC 🎸 CODESOURCERY	NG <mark>運风</mark>	<u>目標</u> NG	ОК
GCC	GCC (GNU)	NG ==> OK	↔ OK	ОК
©IAR SYSTEMS	IAR Systems	NG	NG	ОК
	CooCox IDE	NG ==> OK	↔ OK	NG
-	Codered	N/A	N/A?	ОК
mbed	mbed Online IDE	ОК	ОК	ОК
	ZIP Archive	ОК	ОК	ОК

無償IDEが使えた方がいいだろうなあ。ターゲットはここだな・・・。

無償IDE(CoIDE)への対応にチャレンジ

• CoIDEには下記の外部ツールチェーンを使ってみます。

- GNU Tools for ARM Embedded Processors (GCC_ARM)
 - そのためCoIDEプロジェクトでこのツールチェーンのコンパイル・リンクオプションを設定することになります。Makefileがあれば容易。

・必要な作業:

- workspace_tools/export/coide.pyを編集。
 - workspace_tools/export/gccarm.pyも編集。
- workspace_tools/export/coide_nucleo_f401re.coproj.tmplを 追加。
- gcc_arm_disco_f407vg.tmplが既にあるので、これをもとに gcc_arm_nucleo_f401re.tmplをつくる。
- GCC_ARM形式でエクスポートしてMakefileを得る。
- Makefileでコンパイル・リンクオプションを把握する。

無償IDE(CoIDE)への対応にチャレンジ

•エクスポート。

- Python jinja2パッケージが必要。インストール後、project.py。
 - > cd ...¥mbed-master¥workspace_tools
 - > python project.py -m NUCLEO_F401RE -p 38 -i coide
- -p 38: テスト番号38 = [38] MBED_10: Hello World
- main()実行時に"Hello World"をシリアル出力した後、LED点滅。
- CoIDE v1.7.6をインストール。外部ツールチェーンの bin/ディレクトリパスをツールに理解させる。
- CoIDEからターゲットへの接続時にEclipse環境で必要な オンチップデバッガのOpen-OCD不要。
 - CoIDE内蔵デバッガがST-Link & J-Linkに対応している。

サポート業務で使っているソフトウェア治具のmbedへの ポーティング。

以上です。

