

Freescale Semiconductor

KDS ADC Baremetal code

1 Freescale Semiconductor

ADC example in Kinetis Design Studio (KDS) with FDRM-K64f
By:

Paul Garate
Augusto Panecatl

Description

In this document you will find a detailed step by step guide of how to configure the ADC on Kinetis K

devices using Kinetis Design Studio, you will be reading a value from the microcontroller’s internal
temperature sensor.

1. Clock Gating
As in the previous examples, the first step is to enable the clock gate corresponding to the module we
will use, in this case ADC0

SIM_SCGC6_PORTn_MASK is defined as mask to enable the module’s clock, where “n” corresponds to

the specific port we wish to activate, i.e:

SIM_SCGC6 = SIM_SCGC5_ADC0_MASK;

By declaring the mask we are writing 0x8000000 to the SIM_SCGC6 register, setting up the 27th bit of

the System Clock Gating Control Register 6 which enables ADC0 ;

 SIM_SCGC6 |= SIM_SCGC6_ADC0_MASK; /*Enable the ADC0 Clock*/

KDS ADC Baremetal code

2 Freescale Semiconductor

2. ADC Configuration

The K64F’s ADC contains a lot of registers; you can see the section 35.3 in the Reference Manual

(page 829). In this particular case we will just use 2 registers which are ADCx_CFG1 and ADC0_SC1A.

The first one (ADCx_CGF1) selects the operation mode, clock source, clock divide, and configuration

for low power and long sample time.

We will first configure the conversion mode resolution.

The MODE register allows you to select the ADC’s resolution, in this example we will select a 16 bits

resolution, thus; we need to write 11 to the MODE field.

The second one (ADCx_SC1n) is used to select the ADC channel input, select the single ended or
differential mode, enable or disable the interrupt after conversion completion and it also contains the

conversion complete flag (COCO).

The ADCH field has 5 bits to fill, and a lot of options, but we will only use it just to disable the module.

KDS ADC Baremetal code

3 Freescale Semiconductor

Taking into consideration the table values we need to write 0x1F to the ADCH field n order to disable

the module.

Here are the two lines used to configure the ADC0_CFG1 and ADC0_SC1A registers:

ADC0_CFG1 |= ADC_CFG1_MODE(3); /*16bits ADC*/
 ADC0_SC1A |= ADC_SC1_ADCH(31); /*Disable the module, ADCH = 1111 */

*ADC_CFG1_MODE(3) = 0xC

*ADC_SC1_ADCH(31) = 0x1F

3. Measurement function

Once the module is configured we need create a function to perform the ADC readings. The function

used in the code example is shown below:

unsigned short ADC_read16b(void)
{
 ADC0_SC1A = 26 & ADC_SC1_ADCH_MASK; //Write to SC1A to start conversion
 while(ADC0_SC2 & ADC_SC2_ADACT_MASK); //Conversion in progress
 while(!(ADC0_SC1A & ADC_SC1_COCO_MASK)); //Wait until conversion complete
 return ADC0_RA;
}

KDS ADC Baremetal code

4 Freescale Semiconductor

The first line assigns selects the ADC channel assigned to the internal temperature sensor (channel 26)
by writing 0x1A to the ADCH field.

The second line is used to check if the conversion is still in progress. The code will remain in the wait
cycle until the ADACT flag is erased.

KDS ADC Baremetal code

5 Freescale Semiconductor

The third line checks if the conversion has been completed by checking the status of the conversion

complete flag COCO.

The last line reads the result register and returns the conversion data corresponding to the ADC

measurement of the selected channel.

KDS ADC Baremetal code

6 Freescale Semiconductor

4. Code

The main code implements a call to the ADC function, the bADCData variable stores the Data Result,
and the Delay function controls the time between measurements.

 for (;;)
 {
 bADCData = ADC_read16b();
 DelayFunction();
 }

void DelayFunction (void)
{
 unsigned long Counter = 0xFFFFF;
 do
 {
 Counter--;
 }while(Counter);
}

*The code also includes some UART configurations, to understand the UART module refer to the “Serial

(UART) example in Kinetis Development Software (KDS) with FDRM-K64f” Document.

