Automotive OBD-Il Simulator

A Major Qualifying Project Report
Completed in Partial Fulfillment of Requirements for the
Bachelor of Science Degree in
Electrical and Computer Engineering at
Worcester Polytechnic Institute, Worcester, MA

Report Submitted by:

Adam Shaw

June 8th, 2011

Report Submitted to the Faculty and Advisor:

Professor Robert Labonte, Major Advisor

Executive Summary

As automobiles have become more complicated, they have included more
complicated computer systems to help manage a growing list of functions. Part of
that computer system is the diagnostic subsystem that is responsible for
monitoring the status of the vehicle's various systems and providing automotive
professionals with the information they need to deal with these complex systems.
Without a complex diagnostic system, professionals would likely find themselves
ill equipped to deal with the growing list of components in the automobile and
the ever growing demands of Government regulators to monitor those
components. Automotive professionals are thus in need of both the tools to make
full use of the diagnostic system and the tools and materials to teach newcomers
to the field how to use the diagnostic system.

One set of tools professionals can use are diagnostic scanning and
monitoring devices that provide them with human readable translations of the
complex codes the system outputs, allowing them to quickly and efficiently
diagnose and repair problems. Another set of tools are those that allow those
professionals to take on the roll of the engine itself, to simulate scenarios and
problems so they can be ready to handle them. The goal of, and any continuation
of, this project is to construct such a simulator. Individual goals for the simulator
include being cost competitive with other products that provide similar
functionality, user friendliness, completeness with regard to the implementation

of applicable standards, and simplicity.

The simulator being constructed in this project revolves around an Atmel
ATmegal68 AVR microcontroller. This microcontroller is an 8bit general purpose
microcontroller with 16kB of code memory, three 8-bit general purpose data I/O
ports, a 10bit resolution analog to digital converter (ADC), an industry standard
serial peripheral interface (SPI), and a 14MHz clock speed. The ATmegal68 was
chosen for its ease of use, low cost, robust community, and the availability of
chips preprogrammed with a bootloader which eliminates the need for an
expensive hardware programmer during development. The simulator is rounded
out by a Hitachi HD44780U based LCD and a Grayhill 4x4 matrix keypad. The
LCD and keypad provide the simple, friendly user interface for the project while
the microcontroller handles “everything under the hood.”

This project was successful in meeting a number of the goals set forth
including building a simulator device and a simple user-friendly interface.
Unfortunately, working with actual automotive systems turned out to be too
ambitious for a one student project and the CAN interface was unable to be
completed. Furthermore, the availability of information regarding the industry
OBD-II diagnostic standard turned out to be very limited, at least in terms of
freely available information, which hampered the meeting of some of the project
goals. Ultimately, a great deal of work with both the hardware and software of
such a simulator was successfully accomplished in what has resulted in an
excellent learning opportunity, with many new skills learned and many old ones

sharpened.

Abstract

This project aims to create a user-modifiable simulator of the OBD-II
diagnostic system of a modern automobile. Such a simulator is designed to help
automobile professionals train new employees and to test and calibrate their
equipment. The diagnostic system is implemented with the help of an
ATmegal68 AVR microcontroller. The device includes an LCD screen and input
keypad for the end user to modify and verify changes to the diagnostic

information.

Table of Contents

Table of Contents

Automotive OBD-IT SIMUIALOT.viiiiiiiiie e et e e e e e s e e e satteeeeennsreaeaeeeens 1
EXECULIVE SUMIMATYcuutiiiiiiiiiiieiitee ettt et e et e et e e ettt e st eesabteesabteesabeeesannsbaeeesesnnnbeeeeenns 2
AADSITAC. ¢ttt ettt ettt e a e bt e bt e a bt b et e a e e bt e eat e e be e e ettt e e nab et e e bt e e ennes 4
L B0 § Y8 06 101 5 o) 4 SR UPRRUOUPPPR 8
L1 ODBJECHIVES ..cnviniiiieiiiiiteeteete ettt ettt ettt et ettt et s bttt et s bt e bt et e s bt et e et e eae e bt et e e bt e enbaeenanees 9
2.0 BACKGIOUNA.ccutiiiiiiiiiieee ettt ettt ettt e ettt e s bt e e s it e e sabee e s eaasbbaeeeesaasbbeeeeeenaas 10
2.1 MArKEt ANALYSIS...c.ueiiiieiieiieeiieete ettt ettt sttt sttt sat e et e it e et e s et st e e s bt e bt s et e e e e et e e eaenee 11
2.1.1 ECUsim 5100 Multiprotocol OBD-II ECU Simulator..........ccccvieriiiieniieeiiie e eeveeeeeeiieeee e 11
2.1.2 CAN BUs ECU STMUIALOT.cooutiiiiiiiiiiieiieeteee ettt sttt e e as 12
2.1.3 Xtreme OBDD 2.....ooiiiiieeeee ettt e e et e e et e e e e bt e e e e nbraeeeattaeeeennnnnnnnnnns 13
3.0 High Level DESIZN.....ccuiiiiiiiiiiieeiteee ettt ettt e e e e e eeneennneees 15
3.1 BIOCK DHAGIAM. c....tiiiiiiiiiiie ettt ettt ettt e et e e et e e s eesabaeesabeeesabeeesabeesnnbeesnnseaeeens 16
3.2 Software and HardwWare reqUITEIMENES.ueeruiierrireeriieerieeerieeesieeesteeenaeeesseeessnsseeeesssssssneeesssnnnns 16
TR B (11011 SO O S PRSP PP UR PP UPPTORUPPPPPPO 17
322 OULPUL. ettt ettt ettt e ettt e sttt e e ittt e e a et e ab e e bt e s bt e e e bt e e e bt e e e bt e e ettt e e bt e e ea bt e e et e e eeeeas 17
3.2.3 PrOCESSIINZ. c..veeeniteeiiieeeiite ettt ettt ettt e ettt e ettt e s et e e e abe e ettt e sabeesabbeeeabteesabaeeeabteesabteesabeeennbeeennbeeeeaas 17
3204 POWET ...ttt ettt ettt ettt et e s et e b e s at e et eea et e b e a et et e e et et e nat e e b e e e e ean e e e e naneees 18
4.0 COMPONENT SEIECTION.eeuiiiiiiiieette ettt ettt e sab e bt e sab e e st e e e eabteeeeabbeeeeaaes 19
T @ 4 11<) 4 b2 TR OO OO PP PPV PTOPRRROPPPRRt 19
AULT KEYPAG. ...ttt ettt et et s et e e e e e e e e eaneee 19
AUL2 LLCD ettt h et h e a bt e bt e e a bt e bt e eate e b eeehte e bt e ente et tee e nbeeeeanteeeaas 20
BT3B CAN . ettt b et e h ettt h e et h e e a bt bt e e a e e bt e eat e e bt e eab ettt e et aeeeaeee 21
4.1.4 MICTOCONTIONIET ...ttt ettt et ettt ettt e bt e et e e et eeeaaeee 21
4.1.5 POWET SOUICTE......uviiieiiiiieeeiiieeeeeitteeeeeiteeeesiteeeeesaaaeeeeestaeeeessssaeeeassseeesassseesannsseeesanssssssnnseeaaeaaseeenns 22
4.1.6 VOItage REGUIALOT......cccuiiiiiiiiiieeite ettt ettt ettt e et e e e e s abtaeee e e eaeeeee 22
4.2 HArdWAare CROICES.covtiruiiiieeiieeiteeit ettt ettt sttt et et st e bt e s it e e bt e s ateesteeesabaeeesbneeenas 22
421 KEYPA. ..ttt ettt ettt st e et et e e bt e e e bt e e e bt e e abte et e e ennbee e nteeennteeeennns 23
A2 2 LUCD et h et h e bt b e et e e bt e bt e bt e e ab e e bt e e abe e bt e et e e nbeeas 24
423 CAN ettt ettt e b e e a e e bt e e h et bt e e h et e bt e e h bt e bt e eh bt e bt e e ebb e e e eabaeeeabaeenaa 24
4.2.4 MICTOCONITOIIET ...ttt sttt et sat e e et e e ebne e e sineeeean 25
A.2.5 POWET ...ttt ettt et et st ettt a e sttt e e et e b e st e bt e e ane e enreeenn 26
5.0 Hardware CONSIIUCTION.corutiriiiiieeieesite ettt ettt ettt et stt e et esbteebeesbbeeabeeesasbteesaabeeesanbeeenans 28
5.1 MICTOCONIIONIET ...ttt ettt et e e bt e bt e bt e st e bt e eabeenbeesaneeeeas 28
5.2 LUCD ettt at e bt at e bt e eh e e e bt e ht e et e e bt e eabeeehteeabeeehteenbeenteeeteeean 29
5.3 KEYPAQ... ittt ettt s et e r e san e e e e e e e e naes 31
S POWET ..ttt ettt ettt et e h e et b e e et e be e et e bt e et bt et e e bt e e st e nbeeebaeeenan 32
5.5 Programming Cable and SWItCh..........oociiiiiiiiiiiiiieeeee et 33
5.0 CAN-SPLL...cc ettt et a bttt eea bt et e s a bt et e e e he e e bt e sate e bt e eabeeeeabeeeeanbeeeeaa 33
6.0 Software IMPlemMENtatiON.eiuiiiiiiiieie ettt ettt et e st e et esiteeabeeessbeeeaaes 35
6.1 SUDCOMPONEILS.eiiiiieiiiieeitie et ee ettt ettt ettt e sttt et e s st e e e bt e e satee s beeeeabaeesabaeesabaeeesennnsbeeeesananseeeeeens 35

6. 1.1 LCD .. e ettt st et et 36

0.1.2 KEYPA.....eeiiiiiiiieete ettt st ettt et st sae e e e e e e ean 38
6.2 MAIN PrOZIAM....cc.uiiiiiiiiiiieeeeee ettt ettt ettt et san e e st e e s et e e s neeeenanee 40
7.0 PrOJECE RESUILS.....ceiuiiiiiiiieiiie ettt ettt ettt e e e st e e st e e tbeeeabeesabeeensaeesasaeesasaeesnbeeeeeanssenaeens 42
8.0 COSE ANALYSIS .uvvteeuviieeiieeetieeeieeesteeestteesetteeiteestteesateeeasbeeesnseesasseeesseesnsseesnsseeansaeeanseeennseeennseeensseeens 44
9.0 RECOMMENAALIONS.ceuuttieiiieiiiee ettt ettt ettt e et e e bt e e e bt e sttt e sabbeesabbeesabeeesabaeeeeeeasneeees 45
1O.0 CONCIUSION. ..ttt ettt e et e sttt e et e e eab e e e bt e e bt e e e bt e e e bbeeebbeeeabaeeeanbseeeeeans 47
LS 10) FT0Tod 21 o] 1| 2O TP PUR PP 48
APPENAIX A: SOUICE COUE....couiiiiiiiiiiiie ettt ettt e e st e et eeeabeeetbeesbbeeeeseabbaeeeessnnseaeeens 50
D ettt ettt h et h e bt e bt e e a bt e bt e et e e bt e et e e bt e ettt e enabeeean 50
LUCD Nttt e h et b et b et e b e e bt e bt e e a bt e bt e eab e e bt e e abeenaaeas 53
KEYPAA.C ...ttt et ettt et e et e e bt e e bt e e et e e st e e e bt eeeabteeeabee e e e naene 54
KEYPAA. Nttt ettt ettt e et e et e e e e ettt e e e e et aeeeeeas 58
D] B | A TSRS 59
D] |+ RSP SPUPURRPSR 59
1LY 11 o B OO O OO PO PP PPPRRRR PP 60
Appendix B: OBD-IL PIDS......coouiiiiiiiiiieeceeee ettt sttt st e 64
AppPendix C: WEEKIY UPAAteS........ceevuiiiriiieiiiie ittt ettt et ste et e e sateeeeteessteeeessnbbaeeeesennnns 72
Week 1 WOTK SUMMATYcoiiiiiiiiieeiieee ettt ettt e ettt e et e e st e e sateessabbteeeessnssbeeeesennes 72
Week 2 WOTK SUIMMATYcoouviiiiiiiiiiee ettt et e et e e st e st eebeeesaeee 74
Week 3 WOTrK SUIMMATYcoouiiiiiiiiiiie ettt e s e et e e e s e abbaeee e e 76
Week 4 WOTK SUMMATYcoouiiiiiiiiiiiie ettt et e et e sttt e s ba e e s bt e e st eeeesenabbaeeeesannnee 78
Week 5 & 6 WOTK SUMMATY.....cooouiiiiiiiiiiiie ettt et e s bte e e e ettt e e e e esaibbeeeeeas 81
Week 8 WOTK SUMMATYccoiuiiiiiiiieiieeciee ettt ettt e et e st e e stee e s aaeeesnbeeensseeesensnnsaaeeeennssnes 82
Week O WOTK SUMIMATY ...ttt ettt ettt sat e e bt e et e e e bbeeeebteeeas 83

Table of Figures

Figure 1: ECUSIM ST00......c..cooiiiiiiieeneee ettt sttt st et e e e e e e eanee 12
Figure 2: CAN Bus ECU SIMUIALOT........coouiiiiiiiiiiceiieeeeeeeeeeee ettt 13
Figure 3: BIOCK DIagraml........cccviiiiiiiiiiiieeiieeeiee ettt ettt e st e s e e st e e s taeesabaeeeeennnsseeas 16
Figure 4: Grayhill Series 96 4X4 KeYPad........cccouiieiiiiiiiiiiiiieeeiieeeiteesiee ettt esiae e e e e e 23
Figure 5: HD44780 Based LICD.....co.uiiiiiiiiiiieeee ettt ettt ettt e e e 24
Figure 6: CANSPI Development Board..............ooouiiiiiiiiiiiiiiiiccicceeeeteeete e 25
Figure 7: ATmMegalo8 MiCTOCONIIOIIET.ceitiiiiiieeeiie ettt ettt et eesabee e e e 26
Figure 8: L7805 Voltage REGUIALOT.........coiiiiiiiiiiiiiiieeite ettt et e st e e et e e e e e 27
Figure 9: ATmegalo8 DIagram........cccueeieriiiiiiiiiiieiiiicie ettt ettt sttt s 29
Figure 10: Keypad COAes.couiiiiiiiiaiieeieeite ettt ettt ettt e sttt esab e e ebbeeesbteeeens 32
Figure 11: Project PhOtOZIaPN.ooiiiiiiiiiieiie ettt sttt e s e e e e 42
Figure 12: FInal SChEMALIC......ccoouuiiiiiiiiiiiee ettt ettt e et esbae e 43

Table 1: LCD PINOUL......uiiiiiiiiiieeeee ettt et ettt e st e st e st e e s abb e e s abeeesabeeesaeaees 31
Table 2: LCD Character POSION MaP.....c..coocuiiiiiiiiiiieiiieicnieeeectt ettt e 38
TAbIE 32 COSt ANALYSIS. ..eeeiuiiieiiieeiiieesiee et ee et e ettt e st e e st e e st eesibeeesabeeeabeeesbeessteesasaeesnsbeesaseeesasaeennseeeas 44

1.0 Introduction

As automobiles have become increasingly sophisticated in the past few
decades, they have included computer control systems of ever increasing
complexity. Almost all modern vehicles contain an on-board computer called the
Engine Control Unit (ECU). This computer is paired with an array of subsystems
and sensors to allow it to adjust and control a variety of performance
parameters, including the amount of fuel to use and ignition timing. The rising
complexity of the automobile and the inclusion of complicated embedded
computing systems poses further challenges for mechanics and technicians
tasked with vehicle repair and maintenance. To aid people who service modern
automobiles, the on-board computing and sensing resources were made available
to the user via a system called On-Board Diagnostics (OBD).

The current system of On-Board Diagnostics is called OBD-II. OBD-II gives
the user access to a variety of sensor values, stored data, and threshold statuses
that the ECU keeps track of. The user interfaces with the OBD-II system by using
either a stand-alone or PC-integrated diagnostic scanning device, colloquially
known as a scan tool. The scan tool helps to simplify basic interaction with an
automobile's computer system, but still presents a need for significant training
and experience to be an effective aid. The process of training users for all sorts
of situations involving on-board computer systems would be unwieldy if actual
vehicles that had experienced the desired situation were needed for each such

situation. To provide a robust training capability, an additional device, one that

can simulate different situations from the perspective of a vehicles on-board
computer systems, becomes necessary. The goal of this project is to build a
single protocol (CAN Bus) OBD-II simulator that potentially supports all available
generic PIDs.

Background information and market analysis of competing products can be
found in section 2. High level design, including a block diagram, can be found in
section 3. Specific component selections can be found in section 4. Hardware
construction and assembly can be found in section 5. Software implementation
can be found in section 6. Project results can be found in section 7. Cost analysis
can be found in section 8. Recommendations can be found in section 9. The
conclusion can be found in section 10. Datasheets, code and other technical

details can be found in the bibliography and appendices following the conclusion.

1.1 Objectives

The objectives of this project are to create a microcontroller driven OBD-II
simulator device that allows a user to simulate working on an automobile from
the perspective of an electronic diagnostic scanner; to provide a visual
programming interface that works completely without the aid of a personal
computer; to support the full range of OBD-II generic Parameter IDs (PIDs); and
to be easy enough to use and affordable enough to be competitive or to at least
provide the building blocks to reach that goal if the project continued beyond its

known scope.

2.0 Background

OBD-II is the second generation of on board diagnostic systems for use in
automobiles. It is an improvement in both its capability and degree of
standardization over the previous OBD-I specification. The OBD-II specification
defines the connector used for connecting devices to the diagnostic system, the
pin functions of that connector, the electrical signaling protocols that can be
used, the format of messages sent and received, and a list of generic parameters

that a vehicle might monitor.

OBD-II includes five different signaling protocols. SAE J1850 PWM is a
pulse-width modulation protocol used primarily in vehicles manufactured by the
Ford Motor Company. SAE J1850 VPW is a variable pulse width protocol used
primarily by General Motors. ISO 9141-2 is a serial protocol similar to RS-232
that is used primarily in Chrysler, European, and Asian vehicles. ISO 14230
KWP2000 is another serial signaling protocol but is not commonly used. Finally,
ISO 15765 CAN is a popular protocol used outside of the United States. All
vehicles manufactured in the United States after 2008 are required to support
the CAN protocol, effectively reducing the five competing protocols to a single

dominant one.

The message format used in OBD-II is based on Parameter IDs (PIDs). A
PID identifies a quantifiable property that can be measured and monitored in an
automobile and defines how that information is requested and provided. A table

of PIDs is shown in Appendix C.

10

2.1 Market Analysis

Before launching into any venture, an entrepreneur must take a survey of
the market landscape in order to determine if and how his services will be of use.
The successful entrepreneur is someone who both correctly identifies gaps in a
market, where the more urgent needs of consumers are not being satisfied, and
makes the correct decisions in order to satisfy those needs. Entrepreneurs that
succeed are rewarded with profit and opportunity. Engineers must also look at
the status of the market to determine what efforts are worthwhile in undertaking
and are not wasteful duplications of what has already been achieved. The
engineer also must understand what has come before their efforts, so that they
can strive to achieve something novel and useful.

This project strives to construct an easy to use and affordable stand-alone
OBD-II simulator. Potential competitive products include other OBD-II simulator
class devices, but are not limited only to stand-alone or affordable models. Three
different competing products that are representative of potential competition
with the objective of this project have been chosen for comparison. They include
a feature rich, expensive stand-alone device with the ECUsim 5100 Multiprotocol
OBD-II ECU Simulator; a feature light, low cost stand-alone device with the CAN
Bus ECU Simulator; and a PC tethered device that is limited only by its software

in the Xtreme OBD 2.

2.1.1 ECUsim 5100 Multiprotocol OBD-II ECU Simulator

The ECUsim 5100 is a high end OBD-II simulator that retails for $850 for

11

the base configuration. It supports all five of the OBD-II signaling protocols and
can interface with up to three of them at a time using Plug In Modules (PIMs).
The unit comes with a single PIM and can be upgraded to two or three PIMs for
$150 per additional PIM. The total cost for this product thus ranges from $850

for the base setup to $1,150 for all the bells and whistles. The ECUsim 5100

supports all OBD-II modes except for oxygen sensor monitoring, and supports all

fixed and user adjustable Parameter IDs (PIDs). The ECUsim represents the all

inclusive, high end product in the OBD-II simulator market.

Figure 1: ECUsim 5100

2.1.2 CAN Bus ECU Simulator

The CAN Bus ECU Simulator is the CAN Bus protocol version of a set of
simulators, each tailored specifically for one of the OBD-II signaling protocols.
This product retails for $250. The CAN Bus ECU Simulator and all of its

corresponding products only support and target a single OBD-II protocol. Use

12

with multiple protocols would require purchasing multiple devices. The CAN Bus
ECU simulator supports a small subset of the available modes and PIDs that the
OBD-II specification defines. The modes and PIDs supported represent the most
commonly used ones, including thirty-nine fixed-value PIDs and five user
adjustable ones. The CAN Bus ECU Simulator represents the low cost, limited

capability product in the OBD-II simulator market.

L
-

Figure 2: CAN Bus ECU Simulator

2.1.3 Xtreme OBD 2

The Xtreme OBD 2 was a software based OBD-II simulator that required a
direct connection to a PC to be used. It retailed for $169 at the time this market
research was conducted. This product is no longer available. This product was
potentially removed from the market for legal reasons, as it was capable of easily
simulating proprietary automotive technology. This product will no longer be

13

regarded as a competitor, but will remain in the report as lessons can still be
drawn from it.

The goal of this project is to build a single protocol (CAN Bus) OBD-II
simulator that potentially supports all available generic PIDs. Based on that goal,
this project is similar to the CAN Bus ECU simulator in protocol limitations, but
aims to exceed it in functionality and ease of use. Compared to the ECUsim 5100,
this project aims to provide a reduced level of functionality in all areas, but
combined with an easier to use interface. Based on the current market for OBD-
IT simulators, it is reasonable to place a product based on the goals of this
project somewhere above the $250 price range of the CAN Bus ECU Simulator,
but below the $850 price range of the ECUsim 5100. Something in the $400-500

may be appropriate for a finished and marketable product.

14

3.0 High Level Design

Recall from the objectives that the aim of this project is to create a
microcontroller driven OBD-II simulator that interfaces with a diagnostic tool
and provides a stand-alone user interface. Based on these objectives, the general
criteria for the hardware of this project and the definition of functional blocks
can be made. This project must include three major component blocks: input,
output, and processing. The input block must include sub-blocks for an LCD
display, keypad, and power. The output block must include a CAN bus system.
The processing block must include a microcontroller. Figure 3 shows the block

diagram for this project.

15

3.1 Block Diagram

Power
Source

5V

LCD

Regulator

CAN

DB

Figure 3: Block Diagram

AVR

3.2 Software and Hardware requirements

As with any computing device, there are two facets to the design. In one

Keypad

hand lies the physical hardware and in other the software that makes the

hardware run. Each facet must be adequately planned for to effectively design

and build any computer system. In the following sections the basic requirements

for each area of the project will be laid out. Each requirement refers to both

hardware and software, as they must act together to provide the required

functionality.

16

3.2.1 Input

The OBD-II simulator must provide a basic power switch to allow the user
to turn the device on and off. The device must also provide a user interface,
which includes an LCD and keypad. The LCD, while technically being an output
component, is a part of the user input functionality and is thus included in the
input definition. The keypad allows the user to easily navigate various
informative and interactive screens that will be displayed on the LCD, as well as

to enter data for programming the various PIDs.

3.2.2 Output

The output section includes only the CAN BUS interface hardware since
the LCD has been defined as part of the input. The purpose of the CAN BUS
hardware is to provide an interface with a CAN network, which is commonly
used by automobiles for communication between various subsystems and is also
used by diagnostic devices to communicate with those same automobile systems

and subsystems.

3.2.3 Processing

The processing section includes the microcontroller. The microcontroller
handles two distinct tasks. The first to to tie everything, all of the inputs and
outputs, together into a cohesive unit. The second is to provide a program

platform with which to create the bulk functionality of this project.

17

3.2.4 Power

The final element of this device is its power supply. The power section is
responsible for providing each other element with the electricity necessary for
them to operate. All of the digital components in this project require a 5V power
supply, which makes the power element fairly simple. A 12V power supply may

also be necessary depending on the diagnostic tools used, but is not required.

18

4.0 Component Selection

Once the basic requirements for the hardware has been laid out, we can
turn to the search for specific components to meet those requirements. The
search begins by laying out specific criteria for each of the hardware
requirements that need to be met. Once the criteria for each component is

determined, components that best match those criteria can be selected.

4 1 Criteria

The hardware components for this project include a keypad, LCD screen,
CAN interface, microcontroller, and power system. Each component has a
corresponding set of criteria that must be met by whatever parts are ultimately

purchased. Those criteria are described in detail in the following sections.

4.1.1 Keypad

Keypads are fairly standard components, with few variations between the
different models that have any bearing on this project. The primary criterion that
has to be considered is simply how many buttons are needed on the keypad.
Keypads are wired into a matrix of rows and columns, thus each row and column
a keypad has constitutes an I/O line that will have to be connected to the
microcontroller. A keypad with a larger number of buttons, and thus columns
and/or rows, will require more microcontroller I/O real estate, and will likely

come at a cost premium. On the other hand, since keypads are connected by

19

column and row directly, any keypad can be used as a keypad with fewer buttons
by merely not connecting one or more of the rows and/or columns. In that way, a
more functional keypad is also more versatile.

This project requires at the very least the ability to input numeric data, and
at least two other buttons for other functions, including acknowledgment and

input clearing.

41.2 LCD

LCDs typically come in two flavors, character and pixel based displays.
Obviously all LCDs are based on pixels, but the two flavors differ in how the user
interacts with them. A character LCD has a set number of character rows and
columns and usually includes some internal font table. The user sends commands
to the LCD telling it to display a certain character; how that is accomplished in
terms of the screen's pixels is handled by the LCD itself. Pixel LCDs expose the
full pixel array to the user. A pixel LCD requires the user to send it a data array
specifically indicating whether each pixel is on or off. A pixel LCD is more
versatile, able to display virtually anything imaginable. A character LCD is far
more limited in capability, but is much easier to use, as it does not require
arduously programming code for displaying characters on the pixel display.

This project does not require the use of images or graphics on the LCD

display; it only needs to display characters.

20

4.1.3 CAN

There are two ways to provide CAN BUS access to a microcontroller
project. The first is to use a microcontroller that has a CAN interface built in,
usually an automotive variant. The second is to use an external CAN controller
chip. Using a microcontroller with built in CAN functionality is easier, but
increases the cost of the microcontroller and is usually provided at the expense
of other features, reducing the versatility of that microcontroller. Using an
external chip via the Serial Peripheral Interface (SPI) is more complicated both
in hardware and software, but allows the use of a generic microcontroller that
includes additional functionality (such as an SPI interface) and leaves more 1/O
pins open for other components.

This project requires a large number of microcontroller I/O pins, thus

solutions that provide more versatility in hardware layouts are preferred.

4 1.4 Microcontroller

Unlike the other components, microcontrollers are not easily divided into a
small number of categories; there are many different companies building
microcontrollers based on many different architectures. Even within a single
company and a single architecture, there are often dozens of choices that vary in
features.

This project calls for a microcontroller that has a number of specific
features. The microcontroller must come in a DIP package so that it can be used

with a solderless breadboard. It must have as many I/O pins as possible. Those

21

I/O pins must include a large number of general purpose 1/O pins and an SPI
interface. It must be easily programmable without having to invest in expensive
programming hardware. The microcontroller must be well known and used so

that it will have a robust user community from which to draw support.

41.5 Power Source

All of the digital components of this project will need a steady 5V supply.
There is the potential for a 12V supply to be used in order to provide a simulated
car battery source to a diagnostic tool that cannot power itself. Thus this project
should be able to handle a variety of power input scenarios, including battery
power for mobility and ease of use in development, and a grid based 12V supply

for full functionality.

4.1.6 Voltage Regulator

Providing a steady 5V power source is easily accomplished with a voltage
regulator. The regulator for this project must provide a 5V output and accept at

least up to 12V of input.

4.2 Hardware Choices

After the specific criteria for each hardware component are determined,
real parts can be matched up to those criteria. The following sections identify the
specific component selections that were chosen to meet the criteria laid out in

the previous sections. Datasheets for these components can be found in the

22

bibliography.

4.2.1 Keypad

For the keypad it was decided that selecting a more versatile 4x4, 16 key
model was the right choice. A 4x4 keypad provides 16 buttons with 4 row and 4
column pins for a total of 8 I/O pins needed. It can, however, be configured to use
fewer buttons by simply not using one or more of the row and/or column pins.
For example, if we choose to only use three of the four available columns, we
essentially have a 3x4 'telephone' keypad in terms of functionality. The 4x4 model
can act as a 12 button 3x4 model and is also expandable to a full 16 buttons,
resources permitting. A Grayhill Series 96 4x4 16 button non-backlit keypad was
purchased from Digikey to meet this component requirement; these have a unit

cost of $14.30.

Figure 4: Grayhill Series 96 4x4
Keypad

23

42.21LCD

A character LCD display was chosen as more appropriate for this project
over a pixel display. Character LCD displays come in flavors that usually differ in
how many rows and columns they provide. The maximum size that is typically
available is 80 characters in either a 2x40 or a 4x20 row and column
configuration. It was decided that a 4x20 character display would best suit this
project by providing both the maximum number of characters available in
displays of this sort, 80, and also providing the versatility of four rows. To satisfy
this requirement a Hitachi HD44780U based 4x20 80 character display was
chosen. This display can be purchased individually for $15, but was purchased as

part of a microcontroller kit from Nerdkits Inc. for a kit cost of $80.

Figure 5: HD44780 Based LCD

4.2.3 CAN

In order to ensure that the maximum number of I/O pins were available for
other functions, it was decided that an external CAN controller should be used
instead of purchasing a microcontroller with built in CAN functionality. The CAN

controller must interface with the microcontroller via the SPI. The Microchip

24

MCP2515 was originally purchased for this purpose at a cost of $1.98 from
Digikey, but it turned out that this part alone was not sufficient to provide a CAN
interface for the project. A complete CAN to SPI adapter was purchased from
mikroElektronica for $25 to provide a CAN interface for this project instead. This
complete adapter includes a Microchip MCP2515 in addition to a CAN BUS

driver and a dedicated oscillator required by the MCP2515.

Figure 6: CANSPI Development Board

4.2.4 Microcontroller

Finding a specific microcontroller for this project was particularly difficult
given the endless choices and options available. The Atmel ATmegal68 was
chosen. The ATmeg168 is a rather large DIP packaged chip with a full 28 pins,
including 23 for various I/O purposes. The ATmegal68 is one of Atmel's popular

AVR class of microcontrollers and thus has a robust hobby and support

25

community available online. This chip supports the SPI interface necessary to
connect the CAN adapter and has about as many I/O pins as needed. The
ATmegal68 can be purchased separately for $2.78 from Digikey but was

purchased as part of a microcontroller kit from Nerdkits Inc. for a kit cost of $80.

Figure 7: ATmegal68 Microcontroller

4.2.5 Power

Power is provided by an L7805 voltage regulator, which receives input from
a standard 9V battery. The L7805 can be purchased from Digikey for under $1,

but was included with the microcontroller kit from Nerdkits Inc.

26

Figure 8: L7805 Voltage Regulator

27

5.0 Hardware Construction

The construction of all of the hardware that was purchased must be done
in a particular order to make verification of operation easier. The microcontroller
and power elements must come first, as they are the heart of the system. The
LCD should logically follow as it provides an excellent way to easily test all of the
other hardware by providing visual responses to stimuli. All other components
should then follow. The details of how each component is assembled and

integrated with the system are included in the following section.

5.1 Microcontroller

The microcontroller is an Atmel ATmegal68, a part of their AVR line of
products. The version being used for this project is a 28pin DIP package for
usage in a solderless breadboard development environment. The ATmegal68
includes 23 pins of I/O space, of which two are required for an external oscillator
to drive the chip's clock signal. A 14.7465MHz crystal is being used in this
project, running the microcontroller at the same frequency. The pin definitions of
the ATmegal68 are shown in Figure 9. The crystal is connected to pins 9
(TOSC1) and 10 (TOSC2) of the microcontroller. Pin 7 (VCC) is connected to the
+5V rail and provides the microcontroller with the power needed for its
operation. Separate voltage sources exist to power and reference the analog to
digital converter (ADC) present on the chip on pins 20 (AVCC) and 21 (AREF)

respectively. Since the ADC is not being used for this project, both pins are

28

simply connected to the +5V rail. Pins 8 (GND) and 22 (GND) are the ground
pins for the chip and the ADC and are both connected to the ground rail. Pin 1
(RESET) is the reset pin and will trigger a reset of the microcontroller when held
low for a sufficiently long time. A power cycle was found to provide a sufficient
reset capability for this project. The reset pin is held high by connecting it
directly to the +5V rail. The remaining 20 I/O pins are available for other

functions, as shown in the following sections.

‘__/

(PCINT14/RESET) PC6 [] 1 28 [0 PC5 (ADC5/SCL/PCINT13)
(PCINT16/RXD) PDO [2 277 PC4 (ADCA/SDA/PCINT12)
(PCINT17/TXD) PD1 [] 3 26 [0 PC3 (ADC3/PCINT11)
(PCINT18/INTO) PD2 [| 4 25 PC2 (ADC2/PCINT10)

(PCINT19/0C2B/INT1) PD3 [5 24[7PC1 (ADC1/PCINTY)

(PCINT20/XCK/T0) PD4 [6 23| PCO (ADCO/PCINTS)

vee 7 22[1GND
GND[]8 21| AREF
(PCINT6/XTAL1/TOSC1) PB6 [] 9 20[J AVCC
(PCINT7/XTAL2/TOSC2) PB7 [] 10 19| PB5 (SCK/PCINTS)
(PCINT21/0OCOB/T1) PD5 [11 18| PB4 (MISO/PCINTA4)
(PCINT22/OCOA/AINO) PD6 L[] 12 17 |2 PB3 (MOSI/OC2A/PCINTS)
(PCINT23/AIN1) PD7 [] 13 16 [J PB2 (SS/OC1B/PCINT2)
(PCINTO/CLKO/ICP1) PBO [14 15[PB1 (OC1A/PCINT1)

Figure 9: ATmegal68 Diagram

5.2 LCD

The LCD is a Hitachi HD44780U based four row by twenty column (4x20)
80 character display. The LCD has 16 I/O pins that are used to support its various
capabilities; including data transmission, contrast adjustment, and backlight

illumination. Table 1 includes the pin definitions for the LCD. Pins 1 (GND) and 2

29

(VCC) connect to the ground and +5V rails respectively, providing power for the
LCD circuitry. Pin 3 (Contrast) is the contrast control pin. Contrast is controlled
by varying the resistance present between pin 3 and ground. A potentiometer
can be used to provide adjustable contrast, but this project does not require
adjustable contrast and thus a simple 1kQ resistor is used to set a static contrast
level. Pin 4 (Data/Command) is the data mode indicator pin and is connected to
pin 13 (PD7) of the microcontroller. When pin 4 is set high, the LCD will interpret
incoming data as being information to display and when it is set low, the LCD will
interpret incoming data as being commands for the LCD to process. Pin 5 (GND)
is another ground connection and is connected to the ground rail. Pin 6 (Data
Ready) tells the LCD when a new nibble or byte of data is ready to be read from
the data bus and is connected to pin 12 (PD6) of the microcontroller. When pin 6
is driven high, the LCD will automatically read all data present on the data bus.
Pins 7-10 are the lower four bits of the LCD's 8bit data bus and are unused in
this project. Pins 11-14 are the upper four bits of the LCD's 8 bit data bus and
are connected to microcontroller pins 4 (PD2), 5 (PD3), 6 (PD4), and 11 (PD5)
respectively. This LCD can be operated in either 4bit mode or 8 bit mode. In 8bit
mode the LCD reads and writes a full byte of data at a time, and in 4bit mode it
must read or write two sets of 4bits (a nibble) to achieve the same result. The
advantage of 4bit mode is an I/O savings of 4 pins on the microcontroller, and as
microcontroller I/O pins are scarce for this project, 4bit mode is the preferred
method of operation. Pins 15 (BL VCC) and 16 (BL GND) are the backlight power

and ground pins, respectively.

30

Pin # Function

1 GND

2 VCC

3 Contrast

4 Data/Command
5 GND

6 Data Ready
7 DATA

8 DATA

9 DATA

10 DATA

11 DATA

12 DATA

13 DATA

14 DATA

15 Backlight VCC
16 Backlight GND

Table 1: LCD Pinout

5.3 Keypad

The keypad is a Grayhill Series 96, 16 button 4x4 non-backlit pad. The rows
and columns of the keypad form a wire matrix that enables us to determine
which button or buttons are being pressed, as shown in Figure 10. The keypad
has 8 pins, 4 corresponding to each row, and 4 corresponding to each column.
Keypad pins 1-4 correspond to the rows, starting from the top, and pins 5-8
correspond to the columns, starting on the left. When a button is pressed, it
creates a connection between the row and column wires that meet at that
button. For example, if the first button is pressed, the first row becomes
electrically connected to the first column, connecting pins 1 and 5 together.

Thus, if we drive a signal down the first column on pin 5, we can detect if button

31

1 has been pressed by monitoring the level of pin 1. For this project, due to an
insufficient number of I/O pins on the microcontroller, the keypad is used in 3x4
mode by simply not connecting the fourth column. Pins 5-7, corresponding to
columns 1-3, are connected to pins 26 (PC3), 27 (PC4), and 28 (PC5) of the
microcontroller respectively. Pins 1-4, corresponding to rows 1-4, are connected

to pins 15 (PB1), 23 (PCO0), 24 (PC1), and 25 (PC2) respectively.

Ax4 MATRIX CODES
Standard Shielded/Backlit
1le] [®
2 L] [] L] L]
3 ® ® ® ®
E 4 e e el
IE 5|e ® [®
Q6 ® ® ® ®
9 7 [® o ®
=Z|(8 ® ® [®
E 91e ®] L]
=|10] |e d ® ® 1
@ 111 e . ® hd
12 ® ® ® ®
13] e o |e ®
14 [o [®
15 ® ® o ®
16 ® [®]
5(617/8(112/3/4[|6|7|8]19]2|3]|4]5] 1[10{11
TERMINAL LOCATION

Figure 10: Keypad Codes

5.4 Power

As mentioned before, all of the digital components in this project require a

+5V source to operate. To provide a steady +5V supply, a standard L7805

32

voltage regulator is being used. This regulator provides a 5V output given an
input between about 8V and 35V. For prototype purposes, the input power to the
voltage regulator is being provided by a standard 9V battery, but a final version

would be expected to use a 12V DC wall supply.

5.5 Programming Cable and Switch

The biggest advantage to purchasing the microcontroller kit is that the
ATmegal68 that comes with the kit is pre-flashed with a bootloader and thus
does not require an expensive programming unit to make it usable. All that is
required to load code onto the chip is a special USB cable provided with the kit.
This cable contains an internal USB to serial adapter that enables any USB
capable computer to connect to the microcontroller. The cable has four leads,
two data leads and two power leads. The two data leads are connected to pins 2
(RXD) and 3 (TXD) of the microcontroller. The power leads source power from
the USB hub of a computer and are not connected, except for the ground lead.
The USB cable can be used to provide the +5V source necessary for this project,
but it would only be useful during development and loses in versatility compared

with the 9V battery.

5.6 CAN-SPI

The CAN Bus interface being used is a packaged solution from
mikroElektronica. This package combines the Microchip MCP2515 CAN

controller with a CAN Bus driver chip and a crystal oscillator necessary for a

33

complete CAN to microcontroller communication device. Unfortunately
mikroElektronica changed the model of this device shortly after purchase and
the original schematics are no longer available. It was not possible to discern the
pin associations of the 10pin header that is used on the device, thus it could not

be connected to the project.

34

6.0 Software Implementation

The programming for this project is divided into several parts. All of the
code is written in C and is compiled for the microcontroller using an AVR specific
build of the GNU C Compiler (GCC). All development is done on a PC running a
distribution of the GNU/Linux Operating System (OS), Arch Linux. The main
program, which includes all OBD-II PID functionality and everything the user
sees on the screen, lies in the main C file and is executed in the main loop. The
other major code portions are implemented as separate libraries and include all
functions for using and interacting with the LCD and the keypad. Source code for
this section can be found in Appendix B. This section will discuss how various

functionalities are implemented, but will not include verbose code declarations.

6.1 Subcomponents

Each subcomponent library is a collection of functions that make using the
associated hardware easier. Once some common function has been achieved,
packaging it up for easy use in the future is a standard programming practice
and allows large, complex problems to be solved incrementally. Each library
includes an initialization function that sets up the hardware, readying it for use,
and other functions that abstract the difficulties of the hardware away. Each
initialization function must perform two tasks; the first is to setup the I/O pins
and parameters on the microcontroller to correctly interface with the peripheral,

and the second is to send the relevant commands to the peripheral to bring it

35

into a usable state.

6.1.1 LCD

As indicated in the hardware section, the LCD is connected to the
microcontroller using microcontroller pins PD2 through PD7, which are the top
six of eight total pins assigned to the microcontroller's PORT D 8bit I/O port. The
LCD is always a data sink and never a source, that is, we are always sending
information to it and never reading information from it. This means that all of the
pins that interface with the LCD will need to be set as output pins. Setting pins
PD2 through PD7 to output is accomplished by setting the corresponding bits in
the PORT D data direction register, DDRD, to high. To set DDRD to high for the
bits we want, and leave the other bits alone, we perform a bit-wise OR operation
of the register with Oxfc (1111 1100) which will change bits 2-7 to 1 regardless
of their current state and will leave the current state of bits 0 and 1 alone. Once
the microcontroller pins are setup for the right direction, we can write data
directly to the LCD. Initialization continues by switching into command mode
(more on that in the next section) and sending the appropriate codes to enable
the LCD and configure it for 4bit operation, setup the font size (5x8 pixels in our
case), and set the cursor.

In addition to the initialization function, there are a number of other useful
functions for dealing with the LCD. The LCD operates in one of two modes,
command and data. In command mode the LCD treats all data it receives on the

data bus as a command code and performs the associated function. In data mode

36

the LCD treats all data it receives on the data bus as a character code, and
displays it at the current cursor position. We need to be able to switch into either
mode and as the mode is determined by the status of a single pin, setting
microcontroller pin PD7 high or low puts the LCD in data or command mode
respectively.

As mentioned before, the LCD is being used in 4bit mode to save I/O pin
space on the microcontroller, which means we need functions that make it easy
to write full bytes. Writing a byte is as simple as writing two 4bit nibbles in
succession. First the high nibble (bits 7 through 4) is placed on the data bus,
then the data ready pin of the LCD is driven high by setting microcontroller pin
PD6 high, which tells the LCD that data is ready to be read and causes the LCD
to store the nibble and wait for a complete byte to be sent. The data ready pin is
then returned low, the lower nibble is placed on the data bus, and the data ready
pin cycle is repeated. Once the LCD has a full byte, it handles it appropriately.

Other useful features for the LCD include string and character writing
functions. To write a character to the LCD, the LCD needs to be placed into data
mode and a byte code corresponding to a character in the font table, which
corresponds to ASCII for most basic characters, needs to be written to the LCD.
The character will appear at the current cursor location and the cursor location
will be automatically incremented. To write multiple characters, representing a
string, each character of the string is simply written one at a time, the auto-
incrementing feature of the LCD makes string writing seamless.

Being able to write arbitrary characters and strings anywhere on the

37

screen easily is the ultimate goal of the LCD programming. The final feature
then, must be functions to handle the location of the cursor. The cursor can be
moved to any position on the screen by entering command mode and issuing the
cursor position command, 0x80, bit-wise OR'd with the new location desired.
This can be packaged into a row function that sets the cursor at the start of a
given LCD row and allows easy setting of the desired LCD row. By breaking the
LCD programmatically into rows, the LCD is broken up into four distinct areas,
allowing four pieces of information to be displayed at once. The LCD character
positions pose a bit of challenge, however, as they are not implemented in serial
order. Each character space follows a somewhat orderly and somewhat random
arrangement that is shown in Table 2 below. With the given functions, it is
possible to write any character or string to any position on the LCD desired, thus

full functionality is achieved.

0 1 23456789 1 11 12 13 14 15 16 17 18 19
40 41 4243444546474849 50 51 52 53 54 55 56 57 58 59
20 21 2223242526272829 30 31 32 33 34 35 36 37 38 39
84 85 8687888990919293 94 95 96 97 98 99 100 101 102 103

Table 2: LCD Character Position Map

6.1.2 Keypad

The keypad is connected to the microcontroller using pins PCO through
PC5 and also PB1. However, unlike the LCD, the keypad requires both the

reading and writing of data. The basic operation of the keypad is fairly simple.

38

For example a column is driven low and checked to see which rows have been
pulled low. A low-pulled row indicates that that row has been electrically
connected to the driven column, revealing exactly which button has been
pressed. Initially, the keypad's microcontroller ports have to be configured.
Microcontroller ports PC3 through PC5 are set as outputs in the same fashion as
described with the LCD, the corresponding register will have those bits set high.
These pins are connected to the three usable columns of the keypad.
Microcontroller ports PB1 and PCO through PC2 are connected to the four rows
of the keypad and their direction registers are set low for those bits to indicate
that they are inputs.

The full functionality of the keypad includes being able to discern which
key is being pressed when a key is pressed. To start off, the first column of the
keypad, PC3, is driven low by writing a zero to bit 3 of PORT C. The values
present on all four of the rows are read in. If any of the rows read as set, then
the function returns the value of the button detected, if no buttons are detected,
then the next column is driven and the process is repeated for all columns. The
keypad code checks for button presses many times a second, and will not
register a press unless it has detected a sufficient number of non-presses. This
extra feature sufficiently protects against a phenomenon known as bounce that
causes a button press to be registered many times due to the physical bouncing

of the button.

39

6.2 Main Program

The main program leverages the LCD and keypad and implements the full
functionality of the OBD-II simulator. The program begins by initializing the LCD
and keypad, making them both available for use. It continues by setting up all of
the variables that are needed, including the default values for the stored OBD-II
Parameter IDs (PIDs). The first part of the program the user will see then
follows, a display of the start up and welcome screen. The welcome screen
prompts the user the press the '#' key on the keypad to begin. Once this button
is pressed, the program enters into listening mode. The OBD-II simulator has two
primary functions from the perspective of a user. First, it operates in a listening
mode, waiting for an external diagnostic device to send a request for information
to which it may reply. Second, it provides a programming interface by which a
user may change the values of any of the parameters the simulator supports.

The program operates as a loop that is constantly checking for incoming
information from the SPI connected CAN controller. If information is detected,
the program determines which PID is being requested and returns the
information or a not implemented code if the requested PID is either not
implemented or not valid. Once the PID request has been handled, the program
continues listening for additional requests. If at any time the user presses the '#'
button, the program leaves listening mode and enters programming mode.

In programming mode, the user is able to modify the stored values of each
PID, changing how the simulator will respond to a request for those PIDs. When

programming mode is activated, each PID is displayed individually. The top line

40

of the LCD displays the name of the parameter being modified, the second line
displays the range of values which are valid for that parameter, the third line
shows the current value, and the last line is an input field that shows the user
what they've entered in on the keypad so far. Pressing any numeral on the
keypad results in that number being appended onto the input field. Pressing "*'
clears the input field, allowing the user to correct mistakes. Pressing '#' saves

the new value and moves on to the next PID. If nothing is entered, or if

everything in cleared, and then the '#' key is pressed, no new value is stored and

the previous value is retained. Once every PID has been confirmed, the simulator

enters listening mode with the new values.

41

7.0 Project Results

Below the full schematic and image of the final project result can be found:

7
i 8
|

UnIversay |

e et

Figure 11: Project Photograph

42

)

kS

K1

-~ NUMERIC_KEYPAD_4X4

:\;3""":::U'1:::::::::::::f
;_—_55\,:|_ p——

L0 00 -] o O e 0 D
[
S

h]

Figure 12: Final Schematic

14- - -15

[S sl)
[I E)
ITT1
o ,”_|

| ATmega168 -

S V1
LT

43

8.0 Cost Analysis

Part

ATmega168 AVR Microcontroller

HD44780U based LCD
Grayhill 96 Series 4x4 keypad
Mikroe CANSPI board

10k 1/4W Resistor

14.74MHz Crystal Oscillator
L7805 Voltage Regulator

0.1 pF Capacitor

SPDT Switch

9V Battery

TOTAL

Table 3: Cost Analysis

B S S T S e N @ s I S

Unit Price

$4.43
$15.00
$14.34
$25.00
$0.08
$0.40
$0.60
$0.24
$0.50
$2.37

$4.43
$15.00
$14.34
$25.00
$0.24
$0.40
$0.60
$0.24
$1.00
$2.37
$63.62

$2.51
$15.00
$7.74
$25.00
$0.02
$0.26
$0.21
$0.07
$0.50
$0.95
$52.26

1000ct Price Total

$2,510.00
$15,000.00
$7,740.00
$25,000.00
$20.00
$260.00
$210.00
$70.00
$500.00
$950.00
$52,260.00

The total cost of buying all of the parts used individually comes to $63.62,

and buying those same parts in quantities of a thousand brings the unit price

down to about $52.26, or $11.36 less than the singular cost. These prices are for

purchasing the parts separately instead of in a kit as was done here. This cost

comes in well below the nearest competitor's $250 price and leaves a large

margin for both profit and further development needed to make this project

marketable. Even if we assume that the unit cost for thousand quantities was to

rise to $150, the product could still be sold competitively at $200 for a profit of

$50,000 per thousand.

44

9.0 Recommendations

As this project was unsuccessful in meeting all of the original objectives,
the primary recommendation to any future effort is to complete those objectives.
The ATmegal68 microcontroller turned out to be ill-suited for this project in its
stock configuration due to its lack of I/O pins. Future efforts should consider
either using a microcontroller with more I/O space, or looking into methods of
expanding the I/O space of a DIP AVR microcontroller such as the ATmegal68.
Automotive versions of the AVR line of microcontrollers exist that include a CAN
interface. Those microcontrollers were not considered for this project because
they were not available with a preloaded bootloader and thus required expensive
programming hardware. If any future effort could afford or possess a proper
programmer, more suitable options would likely be available.

The LCD is limited in what it can display due to the 80 character limit.
While it is certainly possible to work within this limit, it requires some creativity
and ultimately tough decisions regarding what can and cannot be displayed on
the screen. A larger LCD, perhaps a pixel based one instead of the character
based one used here, might better suit this project. The keypad, on the other
hand, was well suited and provided all of the buttons that were necessary. The
only issue regarding the keypad was the fact that the microcontroller could not
handle the full 16 buttons due to I/O pin limitations. If the I/O space of the AVR
microcontroller is expanded or if a microcontroller with more I/O space is used,

the keypad issues would be rendered moot.

45

The CAN interface proved to be too ambitious for this project, any future
effort would want to ensure that ample time and effort is spent on that element,
and to not underestimate the task. Much of the documentation and information
regarding the actual automotive standards and implementations are locked up in
standards that are expensive to gain access to. If that access can be afforded, the
task of designing and building the automotive interfaces and related systems
could be greatly simplified.

This project is operated off of a 9V battery for development convenience,
but uses a voltage regulator to provide for versatility. The original design called
for a 12V wall adapter that could also serve power to a connected scanning tool,
simulating the ability of an actual car to provide that power. Also, the +5V power
required by all of the components can be supplied via USB and in fact is capable
of being used as such during programming with the USB programming cable.
Any future effort may want to explore these or other options in powering the

device.

46

10.0 Conclusion

Most of the project and most of the progress towards meeting the goals of
this project were achieved. Specific problems, however, prevented all of the
objectives from being met. A device designed for automotive diagnostic
simulation was constructed and provided a relatively good level of simplicity and
ease of use. Hardware limitations prevented the project from being as easy to
use as intended. The CAN subsystem proved to be too ambitious to complete,
thus the interface with a scan tool could not be constructed and full functionality
of the project was unable to be achieved. Despite the problems that were
encountered, this project has been a tremendous learning opportunity that
afforded a hands on and in depth experience with both the hardware and
software of designing an embedded class system, as well as attempting to design
a product that interfaces with existing standards and hardware. Ultimately this
project was not what it could have been due to being worked on by only a single
student with limited resources; a more robust team effort would likely have

achieved more.

47

Bibliography

“ATmega48/88/168 Datasheet.” Atmel Corporation. July 2009.

<http://www.atmel.com/dyn/resources/prod_documents/doc2545.pdf>

“ATmegal68.” Atmel Corporation. 24 August 2010.

<http://www.atmel.com/dyn/products/product_card.asp?part_id=3303>

“HD44780 Datasheet.” Hitachi, Ltd. 24 August 2010.

<http://www.nerdkits.com/accounts/downloads/get/NK0O03USB/HD44780.pdf>

“L7805 Datasheet.” STMicroelectronics. 24 August 2010.
<http://www.nerdkits.com/accounts/downloads/get/NKO0O3USB/L7805C.pdf>

Evans, Humberto, and Michael F. Robbins. “The Nerdkits Guide.” 2009.
<http://www.nerdkits.com/accounts/downloads/getpdf/NKOO3USB__4527n6443w67c6599¢99
.pdf>

“Nerdkits.” 24 August 2010.
<http://www.nerdkits.com/>

“Standard Keypads Series 96 Datasheet.” Grayhill Inc. 24 August 2010.
<http://1grws01.grayhill.com/web/images/ProductImages/Series %2096 %20Standard

%20Keypads.pdf>

“MCP2515 Datasheet.” Microchip Technology Inc. 24 August 2010.
<http://ww1.microchip.com/downloads/en/DeviceDoc/21801e.pdf>

“MCP2515 Development Tool.” mikroElektronika. 24 August 2010.
<http://www.mikroe.com/eng/products/view/129/canspi-board/>

“On-board diagnostics.” Wikimedia Foundation Inc. 19 August 2010.

48

<http://en.wikipedia.org/wiki/On-board_diagnostics>
“OBD-II PIDs.” Wikimedia Foundation Inc. 24 July 2010.

<http://en.wikipedia.org/wiki/OBD-II_PIDs>

“ECUsim 5100 Multiprotocol OBD-II ECU Simulator.” ScanTool.net LLC. 24 August 2010.
<http://www.scantool.net/ecusim.html>

“CAN Bus ECU Simulator.” OBD2Cables.com. 24 August 2010.

<http://www.obd2cables.com/products/obdii-equipment/can-bus-ecu-simulator-with-12vdc-

power-supply.htmI>

49

Appendix A: Source Code

LCD.c

#include <avr/io.h>
#include <avr/pgmspace.h>

#include <inttypes.h>

#include "lcd.h"
#include "delay.h"

void lcd_set_type_data() |

PORTD |= (1<<PD7);

t

void lcd_set_type_command () {
PORTD &= ~ (1<<PD7);

void lcd_write_nibble (char c) {

PORTD &= ~ (0x0f << 2);
PORTD |= (c&0x0f) << 2;
PORTD |= (1<<PD6);

delay_us(1);
PORID &= ~ (1<<PD6) ;

delay_us (1) ;

void lcd_write_byte (char c) {
lcd_write_nibble((c >> 4) & 0x0f);
lcd_write_nibble(¢ & 0x0f);
delay_us (80);

void lcd_clear () {

50

lcd_set_type_command () ;
lcd_write_byte (0x01);
delay_ms (50);
lcd_write_byte (0x02);
delay_ms (50);

void lcd_write_data (char c) |
lcd_set_type_datal();
lcd_write_byte(c);

void lcd_write_intl6(intl6_t in) |
uint8_t started = 0;

uintl6_t pow = 10000;

if(in < 0) o
lcd_write_data('-");

in = —in;

while (pow >= 1) {
if(in / pow > 0 || started || pow==
lcd_write_data ((uint8_t) (in/pow)
started = 1;

in = in % pow;

pow = pow / 10;

void lcd_write_string(const char *x) {

while (pgm_read_byte(x) != 0x00)
lcd_write_data (pgm_read_byte (x++));

)
+

{
') ;

51

void lcd_goto_position(uint8_t col)
lcd_set_type_command() ;

lcd_write_byte (0x80 | col);

void lcd_row(char row) {

if (row == 2)
lcd_goto_position (40);
else if (row == 3)
lcd_goto_position (20);
else if (row == 4)
lcd_goto_position(84);
else

lcd_goto_position(0);

void lcd_init () {
// PD7,PD6, and PD2-5 as outputs
DDRD |= Oxfc;

// wait 100msec
delay_ms (100);

lcd_set_type_command () ;

// do reset
lcd_write_nibble (0x03);
delay_ms (6);
lcd_write_nibble (0x03);
delay_us (250);
lcd_write_nibble (0x03);
delay_us (250);

// write 0010 (data length 4 bits)
lcd_write_nibble (0x02);

// set to 2 lines, font 5x8
lcd_write_byte (0x28);

// disable LCD
//lcd_write_byte (0x08);
// enable LCD
lcd_write_byte (0x0c);
// clear display
lcd_write_byte (0x01);
delay_ms (5);

// enable LCD
lcd_write_byte (0x0c);
// set entry mode
lcd_write_byte (0x06);

// set cursor/display shift
lcd_write_byte (0x14);

// clear

lcd_clear();

LCD.h

#ifndef _ LCD_H
#define _ LCD_H

void lcd_set_type_datal();

void lcd_set_type_command() ;

void lcd_write_nibble (char c);

void lcd_write_byte (char c);

void lcd_clear();

void lcd_write_data (char c);

void lcd_write_intl6(intl6_t in);
void lcd_write_string(const char *x);
void lcd_row(char row);

void lcd_goto_position(uint8_t col);

void lcd_init ();

#endif

Keypad.C

#include <avr/io.h>
#include <avr/pgmspace.h>

#include <inttypes.h>

#include "keypad.h"
#include "delay.h"

void keypad_init (){
// Set PC3, PC4, and PC5 to output
DDRC |= 0b00111000;
// Set PB1, PCO, PCl, and PC2 to input with pullups
DDRB &= 0b11111101;
PORTB |= 0b00000010;
DDRC &= 0b11111000;
PORTC |= 0b00000111;

// keypad_getbutton returns the currently pressed key

char keypad_getbutton () {
//column 1 - PC3
delay_ms (5);
PORTC &= 0b11110111;

delay_ms (5);

if(bit_is_set (PINB, 1) == 0)
return 1;

if(bit_is_set (PINC, 0) == 0)
return 4;

if(bit_is_set (PINC, 1) == 0)
return 7;

if (bit_is_set (PINC, 2) == 0)

return 10;

delay_ms (5);
PORTC |= 0b00111000;

54

delay_ms (5);

//column 2 - PC4
delay_ms (5);

PORTC &= 0bl11101111;
delay_ms (5);

if(bit_is_set (PINB, 1) == 0)
return 2;

if (bit_is_set (PINC, 0) == 0)
return 5;

if (bit_is_set (PINC, 1) == 0)
return 8;

if(bit_is_set (PINC, 2) == 0)

return 0;

delay_ms (5);
PORTC |= 0b00111000;
delay_ms (5);

//column 3 - PC5
delay_ms (5);

PORTC &= 0b11011111;
delay_ms (5);

if(bit_is_set (PINB, 1) == 0)
return 3;

if (bit_is_set (PINC, 0) == 0)
return 6;

if (bit_is_set (PINC, 1) == 0)
return 9;

if(bit_is_set (PINC, 2) == 0)

return 11;

delay_ms (5);
PORTC |= 0b00111000;
delay_ms (5);

return 12;

55

// Main keypad function: Poll for user input;

print all numbers entered,

entered numbers if * is pushed, save entered numbers if # is pressed.

intl6_t keypad_main (intl6_t current) {

char button = 12;
char lastbutton = 12;
char input = 0;

intl6e_t x = 0;

intle_t vy current;
while (button != 11){
lastbutton = button;

button = keypad_getbutton () ;

if(lastbutton == 12){

if (button == 0){
// Print '0' to the screen
lcd_write_string (PSTR("O0"));
// Store and update
x = (10*x);
input = 1;

}

else if (button == 1){
// Print 'l' to the screen
lcd_write_string (PSTR("1"));
// Store and update
x = (10*x) + 1;
input = 1;

}

else if (button == 2){
// Print '2' to the screen
lcd_write_string (PSTR("2"));
// Store and update
x = (10*x) + 2;

input = 1;

clear all

56

else 1if (button == 3){

}

// Print '3' to the screen

lcd_write_string (PSTR("3"));

// Store and update
x = (10*x) + 3;
input = 1;

else 1if (button == 4){

}

// Print '4' to the screen

lcd_write_string (PSTR("4"));

// Store and update
x = (10*x) + 4;

input = 1;

else 1if (button == 5){

}

// Print '5' to the screen

lcd_write_string (PSTR("5"));

// Store and update
x = (10*x) + 5;

input = 1;

else 1f (button == 6){

}

// Print '6' to the screen
lcd_write_string (PSTR("6"));
// Store and update

x = (10*x) + 6;

input = 1;

else if (button == 7){

}

// Print '7' to the screen
lcd_write_string (PSTR("7"));
// Store and update

x = (10*x) + 7;

input = 1;

else 1if (button == 8){

// Print '8' to the screen

lcd_write_string (PSTR("8"));

57

// Store and update
x = (10*x) + 8;
input = 1;

}

else if (button == 9){
// Print '9' to the screen
lcd_write_string (PSTR("9"));
// Store and update
x = (10*x) + 9;
input = 1;

}

else if (button == 10){
// * is pressed, clear entered
x = 0;
input = 0;
// clear the screen
lcd_row(4);
lcd_write_string (PSTR ("

lcd_row(4);

if (input == 0){
return y;

}
else{

return x;

Keypad.h

#ifndef _ KEYPAD_H

#define _ KEYPAD_H

void keypad_init ();
char keypad_getbutton();

values

58

int keypad_main (int current);

#endif

Delay.c

#include <inttypes.h>
#include "delay.h"

inline wvoid delay_us (uintl6_t us)
uintle6_t i;
for (i=0; i<us; i++) {
NOP;
NOP;
NOP;
NOP;
NOP;
NOP;
NOP;
NOP;
NOP;

void delay_ms (uintl6_t ms) {
uintle6_t 1i;
for (i=0; i<ms; i++)

delay_us (1000);

Delay.h

#ifndef _ DELAY_H
#define _ DELAY_H

#include <inttypes.h>

#ifndef NOP

{

59

#define NOP __asm__ _ volatile__ ("nop")

#endif

void delay_us (uintl6_t us);

void delay_ms (uintl6_t ms);

#endif

Main.c

#define F_CPU 14745600

#include <avr/io.h>
#include <avr/pgmspace.h>
#include <inttypes.h>
#include "../libs/lcd.h"
#include "../libs/keypad.h"
#include "../libs/delay.h"
int main() {

// Setup the hardware

lcd_init ();

lcd_clear () ;

keypad_init () ;

// Initialize the variables

char button = 12;

char lastbutton = 12;

char loopstop = 0;

intl6_t pid_04
intl6_t pid_05

0; // Calculated engine load value (0-100)%

250; // Engine coolant tempterature (233-488)K

intl6_t pid_06 = 50; // Short Term Fuel % trim - Bank 1 (0-200)

intl6_t pid_07

50; // Long Term Fuel % Trim - Bank 1 (0-200)

// Display the starting screen

lcd_row (1) ;

lcd_write_string (PSTR("OBD-II Simulator MQP"));

60

lcd_row (2);

lcd_write_string (PSTR("Adam Shaw"));
lcd_row(3);
lcd_write_string (PSTR ("Defaults Loaded"));
lcd_row(4);

lcd_write_string (PSTR("Press # to begin"));

while (button != 11){
lastbutton = button;
button = keypad_getbutton();

h
button = 12;

// Main Program

while (1)
while (button != 11) {
lastbutton = button;

button = keypad_getbutton();

if (loopstop == 0) {
lcd_clear();
lcd_write_string (PSTR("Listening Mode"));
lcd_row(2);
lcd_write_string (PSTR("Press # to Program"));
}
loopstop = 1;
// Check for PID on SPI
// Respond to PID request if necessary
}
button = 12;
loopstop = 0;

// Clear the display

lcd_clear();

// Programming Mode
lcd_write_string (PSTR ("Programming Mode"));

61

delay_ms (1000);

lcd_clear();

// ### PID 0x04 - Calculated engine load value 0-100%

lcd_clear();

lcd_write_string (PSTR("Engine Load Value"));
lcd_row(2);

lcd_write_string (PSTR("Range: 0% — 100%"));
lcd_row (3);

lcd_write_string (PSTR("Current: "));
lcd_write_int16 (pid_04);

lcd_row(4);

pid_04 = keypad_main (pid_04);

// ### PID 0x05 - Engine Coolant Temperature

lcd_clear();

lcd_write_string (PSTR("Coolant Temp"));

lcd_row(2);

lcd_write_string (PSTR("Range: 233K - 488K"));

lcd_row (3);

lcd_write_string (PSTR("Current: "));

lcd_write_intl16 (pid_05);

lcd_row(4);

pid_05 = keypad_main (pid_05);

// ## PID 0x06 - Short Term Fuel % Trim - Bank 1

lcd_clear();

lcd_write_string (PSTR("Short Term Fuel Trim"));

lcd_row (2);
lcd_write_string (PSTR("Range: 0 — 200"));

led_row(3);

lcd_write_string (PSTR("Current: "));
lcd_write_int16 (pid_06);

lcd_row(4);

pid_06 = keypad_main (pid_06);

// ## PID 0x07 — Long Term Fuel % Trim - Bank 1

lcd_clear () ;

lcd_write_string (PSTR("Long Term Fuel Trim"));
lcd_row(2);

lcd_write_string (PSTR("Range: 0 — 200"));
lcd_row (3);

lcd_write_string (PSTR("Current: "));
lcd_write_intl16 (pid_07);

lcd_row(4);

pid_07 = keypad_main (pid_07);

// Put further PIDs here once CAN functionality is working

}

return 0;

Delay code and the basics of the LCD code are taken from the Nerdkits kit used for

this project and are © Nerdkits 2010

63

PID (hex)

0A

Appendix B: OBD-Il PIDs

Description

PIDs supported
[01 -20]
Monitor status
since DTCs
cleared.
(Includes
malfunction
indicator lamp
(MIL) status
and number of
DTCs.)
Freeze DTC
Fuel system
status
Calculated
engine load
value
Engine
coolant
temperature
Short term
fuel % trim—
Bank 1
Long term
fuel % trim—
Bank 1
Short term
fuel % trim—
Bank 2
Long term
fuel % trim—
Bank 2
Fuel pressure

Min value

-100 (Rich)

-100 (Rich)

-100 (Rich)

-100 (Rich)
0

Max value

100

215

99.22 (Lean)

99.22 (Lean)

99.22 (Lean)

99.22 (Lean)
765

Units

%o

°C

%

%

%

%
kPa (gauge)

Formula

Bit encoded
[A7.D0] =
[PID 0x01..PID
0x20]

Bit encoded.

Bit encoded.

A*100/255

A-40

(A-128) *
100/128

(A-128) *
100/128

(A-128) *
100/128

(A-128) *
100/128
A*3

64

PID (hex)

0B
0C
0D

OE

OF

10

12

13

14

15

Bytes
returned

Description
Intake
manifold
absolute
pressure
Engine RPM
Vehicle speed
Timing
advance
Intake air
temperature
MAF air flow
rate
Throttle
position
Commanded
secondary air
status

Oxygen
sensors present

Bank 1, Sensor
1:
Oxygen sensor
voltage,
Short term fuel
trim

Bank 1, Sensor
2:
Oxygen sensor
voltage,
Short term fuel
trim

Min value

0
-100(lean)

0
-100(lean)

Max value

255
16383.75
255

63.5

215

655.35

100

1275
99.2(tich)

1275
99 2(rich)

Units Formula
kPa (absolute) A
rpm ((A*256)+B)/4
km/h A
°relative to #1
cylinder A/2 - 64
°C A-40
((A*256)+B)/
g/s 100
% A*100/255
Bit encoded.
[AO..A3] ==
Bank 1,
Sensors 1-4.
[A4.A7]==
Bank 2...
A *0.005
(B-128) *
100/128 (if
B==0xFF,
sensor is not
Volts used in trim
Y% calc)
A *0.005
(B-128) *
100/128 (if
B==0xFF,
sensor is not
Volts used in trim
% calc)

65

PID (hex)

16

18

19

1A

1B

1C

Bytes
returned

Description

Bank 1, Sensor
3:
Oxygen sensor
voltage,
Short term fuel
trim

Bank 1, Sensor
4.
Oxygen sensor
voltage,
Short term fuel
trim

Bank 2, Sensor
1:
Oxygen sensor
voltage,
Short term fuel
trim

Bank 2, Sensor
2:
Oxygen sensor
voltage,
Short term fuel
trim

Bank 2, Sensor
3:
Oxygen sensor
voltage,
Short term fuel
trim

Bank 2, Sensor
4.
Oxygen sensor
voltage,
Short term fuel
trim
OBD standards
this vehicle
conforms to

Min value

0
-100(lean)

0
-100(lean)

0
-100(lean)

0
-100(lean)

0
-100(lean)

0
-100(lean)

Max value

1275
99.2(tich)

1275
99.2(rich)

1275
99.2(tich)

1275
99.2(tich)

1275
99.2(tich)

1275
99.2(tich)

Units

Volts
%

Volts
%

Volts
%

Volts
%

Volts
%

Volts
%

Formula
A *0.005
(B-128) *
100/128 (if
B=0xFF,
sensor is not
used in trim
calc)

A *0.005
(B-128) *
100/128 (if
B==0xFF,
sensor is not
used in trim
calc)

A *0.005
(B-128) *
100/128 (if
B==0xFF,
sensor is not
used in trim
calc)

A *0.005
(B-128) *
100/128 (if
B==0xFF,
sensor is not
used in trim
calc)

A *0.005
(B-128) *
100/128 (if
B==0xFF,
sensor is not
used in trim
calc)

A *0.005
(B-128) *
100/128 (if
B==0xFF,
sensor is not
used in trim
calc)

Bit encoded.

66

Bytes

PID (hex) returned
1D 1
1E 1
1F 2
20 4
21 2
22 2
23 2
24 4
25 4

Description

Oxygen
sensors present

Auxiliary
input status
Run time since
engine start

PIDs supported
21-40
Distance
traveled with
malfunction
indicator lamp
(MIL) on
Fuel Rail
Pressure
(relative to
manifold
vacuum)
Fuel Rail
Pressure
(diesel)
02S1_WR_la
mbda(l):
Equivalence
Ratio
Voltage
02S2_WR_la
mbda(l):
Equivalence
Ratio
Voltage

Min value

(=)

(e

Max value

65535

65535

5177.27

655350

Units

seconds

km

kPa

kPa (gauge)

N/A

N/A

Formula
Similar to PID
13, but
[AO.A7] ==
[B1S1,B1S2,
B2S1,B2S2,
B3S1,B3S2,
B4S1,B4S82]
AQ ==Power
Take Off (PTO)
status (1 ==
active)
[A1..A7] not
used

(A*256)+B
Bit encoded
[A7..DO] ==
[PID 0x21..PID
0x40]

(A*256)+B

(((A*256)+B)
*10)/ 128

((A*256)+B) *
10

((A*256)+B
)32768
(C*256)+D
)/8192

(A*256)+B
)/32768
(C*256)+D
)/8192

67

PID (hex)

26

27

28

29

2A

2B

2C

2D

2E

2F

30

31

Bytes
returned

Description
02S3_WR_la
mbda(l):
Equivalence
Ratio
Voltage
0254_WR_la
mbda(l):
Equivalence
Ratio
Voltage
02S5_WR_la
mbda(l):
Equivalence
Ratio
Voltage
02S6_WR_la
mbda(l):
Equivalence
Ratio
Voltage
02S57_WR_la
mbda(l):
Equivalence
Ratio
Voltage
02S8_WR_la
mbda(l):
Equivalence
Ratio
Voltage
Commanded
EGR

EGR Error
Commanded
evaporative

purge

Fuel Level

Input
of warm-ups
since codes
cleared
Distance
traveled since
codes cleared

Min value

-100

Max value Units
2 N/A
8 \"
2 N/A
8 \"
2 N/A
8 A"
2 N/A
8 \"
2 N/A
8 \"
2 N/A
8 \"
100 %
99.22 %
100 %
100 %
255 N/A
65535 km

Formula

(A*256)+B
)32768
(C*256)+D
Y8192

(A*256)+B
)32768
(C*256)+D
Y8192

(A*256)+B
)32768
(C*256)+D
)/8192

(A*256)+B
)/32768
(C*256)+D
)/8192

((A*256)+B
)/32768
((C*256)+D
)/8192

((A*256)+B
)/32768
(C*256)+D
)/8192
100%A/255
(A-128) *
100/128
100%A/255

100*A/255

(A*256)+B

68

PID (hex)

32

33

34

35

36

37

38

39

3A

3B

Bytes
returned

Description
Evap. System
Vapor Pressure
Barometric
pressure
02S1_WR_la
mbda(l):
Equivalence
Ratio
Current
02S2_WR_la
mbda(l):
Equivalence
Ratio
Current
02S3_WR_la
mbda(l):
Equivalence
Ratio
Current
02S4_WR_la
mbda(l):
Equivalence
Ratio
Current
02S5_WR_la
mbda(l):
Equivalence
Ratio
Current
02S6_WR_la
mbda(l):
Equivalence
Ratio
Current
02S7_WR_la
mbda(l):
Equivalence
Ratio
Current
02S8_WR_lIa
mbda(l):
Equivalence
Ratio
Current

Min value

-8192

-128

-128

-128

-128

-128

-128

-128

-128

Max value

8192

255

128

128

128

128

128

128

128

128

Units

Pa

kPa (Absolute)

N/A

N/A

N/A

N/A

N/A

N/A

mA

N/A

N/A

Formula
((A*256)+B)/4
(Ais signed)

A

((A*256)+B
)/32768
((C*256)+D
Y256 - 128

(A*256)+B
)32768
(C*256)+D
Y256 - 128

(A*256)+B
)327685
(C*256)+D
Y256 - 128

((A*256)+B
)/32768
((C*256)+D
)256 - 128

(A*256)+B
)/32768
(C*256)+D
Y256 - 128

((A*256)+B
)/32768
((C*256)+D
)256 - 128

(A*256)+B
)/32768
(C*256)+D
Y256 - 128

((A*256)+B
)32768
(C*256)+D
Y256 - 128

69

PID (hex)

3C

3D

3E

3F

40

41

42

43

44

45

46

47

Bytes
returned

Description
Catalyst
Temperature
Bank 1, Sensor
1
Catalyst
Temperature
Bank 2, Sensor
1
Catalyst
Temperature
Bank 1, Sensor
2
Catalyst
Temperature
Bank 2, Sensor
2

PIDs supported
41-60
Monitor status
this drive
cycle
Control
module
voltage
Absolute load
value
Command
equivalence
ratio
Relative
throttle
position
Ambient air
temperature
Absolute
throttle
position B

Min value

Max value

6513.5

6513.5

6513.5

6513.5

65.54

25700

100

215

100

Units

°C

°C

°C

°C

%o

N/A

%

°C

%

Formula

(A*256)+B
Y10 - 40

((A*256)+B
)10 -40

((A*256)+B
)10 - 40

((A*256)+B
)10 -40
Bit encoded
[A7.D0] ==

[PID 0x41..PID

0x60]

Bit encoded.
((A*256)+B
)/1000
((A*256)+B)
*100/255
((A*256)+B
)32768
A*100/255

A-40

A*100/255

PID (hex)

48

49

4A

4B

4C

4D

4E

51
52

53

Bytes
returned

Description
Absolute
throttle
position C
Accelerator
pedal position
D
Accelerator
pedal position
E
Accelerator
pedal position
F
Commanded
throttle
actuator
Time run with
MIL on
Time since
trouble codes
cleared

Fuel Type
Ethanol fuel %
Absoulute
Evap system
Vapour
Pressure

Min value

Max value

100

100

100

100

100

65535

65535

100

327675

Units Formula

% A*100/255

% A*100/255

% A*100/255

% A*100/255

% A*100/255

minutes (A*256)+B

minutes (A*256)+B
From fuel type

table

see below

% A*100/255
kpa 1/200 per bit

71

Appendix C: Weekly Updates

Week 1 Work Summary

Work Planned

Given that this is the first week of the project, scheduled work mostly includes basic research
topics and high level planning. Research topics include an analysis of the current market for OBD-1I
simulators, specifically regarding the state of products currently available; a patent search to attempt to
determine the licensing viability of an ODB-II simulator; and detailed information on the OBD-II
protocols and standards. Other work for this week includes defining the inputs and outputs for the
project and creating a high level sketch of the different components to facilitate hardware design and
component selection in the next week.

Work Accomplished
Market Research

In searching for available products similar to this project, I came across three different
offerings both directly and often mentioned on discussion boards by people looking for an
OBD-II simulator class device. These three devices are the '/ECUsim 5100 Multiprotocol OBD-
IT ECU Simulator,' the 'CAN Bus ECU Simulator (and protocol variants)," and the "Xtreme OBD
2.' These products are detailed below:

ECUsim 5100 Multiprotocol OBD-I1 ECU Simulator

http://www.scantool.net/ecusim. html

As it's name implies, the ECUsim 5100 supports all of the OBD-II protocols, enabled by
the use of plug in modules. The unit itself has five knobs to adjust the values of various
parameters as well as a USB port for further configuration on a PC. The ECUsim 5100 costs
$549.00 for the base unit and one plug in module and an additional $99 for each of up to two
more plug in modules.

CAN Bus ECU Simulator

http://www.obd2cables.com/products/obdii-equipment/can-bus-ecu-simulator-with-12vdc-power-supply. html

The CAN Bus ECU simulator is similar in design to the ECUsim 5100 and also includes
five knobs to adjust common parameters. Unlike the ECUsim 5100, it does not include any
alternative methods to provide for further configuration and only supports a small subset of the
standard OBD-II PID spec. This particular device specifically targets the CAN Bus protocol.
There are corresponding versions for each of the OBD-II protocols, but each one supports only a

72

http://www.scantool.net/ecusim.html
http://www.obd2cables.com/products/obdii-equipment/can-bus-ecu-simulator-with-12vdc-power-supply.html

single protocol. The CAN Bus ECU simulator and all of it's corresponding versions cost
$179.95 each.

Xtreme OBD 2

http//www.immensehardware.com/electronics/xtreme-obd-2. html

The Xtreme OBD 2 is a software based simulator, meaning that the device itself simply
interfaces software on a standard PC with and OBD-II scanner. This product is configured
entirely within a provided software package and supports the ten more common OBD-II PIDs,
the fewest of all products I found. The Xtreme OBD 2 supports two of the five OBD-II
protocols, including CAN Bus and ISO 9141-2. The Xtreme OBD 2 costs $169.00.

Patent Research

I was not able to find any patents for OBD-II simulators nor did any of the products I
found during market research include any patent numbers.

OBD-II Information

On Board Diagnostics II (OBD-II) is the current standard in automotive diagnostic systems.
OBD-II defines a standard connector and pinout, signaling protocols and protocol message
formats that all compliant devices must use. There are five signaling protocols currently in use
by OBD-II vehicles including SAE J1850 PWM, SAE J1850 VPW, ISO 9141-2, ISO 14230
KWP2000 and ISO 15765 CAN. The CAN protocol is popular outside of the US, and as of 2008
is required to be supported by all vehicles sold in the US.

ODB-II works using Parameter IDs (PIDs). A scanning or diagnostic device sends a message to
the vehicles Engine Control Unit (ECU) containing the operating mode and the ID of a
parameter that is being requested. The vehicle (or simulator) returns the requested information.

OBD-II defines a set of standard PIDs that vehicles may implement in addition to manufacturer
specific ones. Given that the licensing costs of obtaining manufacturer specific codes is
prohibitive, I intend to implement only these standard codes. Furthermore, since most of the
other signaling protocols, excluding CAN, are typically specific to manufacturers, and since
CAN is now mandated on all US vehicles, I also intend to implement CAN only initially and
will revisit the other protocols after everything else is complete, time permitting.

Inputs and Outputs

OBD-II Female 16 pin J1962 Connector
LCD Screen

Keypad

Potentiometer(s) (Potentially)

DC Power (Likely 12V)

73

http://www.immensehardware.com/electronics/xtreme-obd-2.html

Reset Switch

High Level Sketch

LCD

L]
DBD-II_ MC U m g

Problems Encountered

There are standards documents available for all of the standards involved in the OBD-II system,
but each of them costs in excess of $50 to obtain, so I do not think it will be feasible to access those
documents. Currently I'm not sure if not being able to access those documents will significantly affect
this project, but it is something I will keep in mind.
Schedule Status

I believe that I am currently on schedule. I intend to begin looking for the hardware components

that I will be using as my next order of business, followed by implementing them in schematic form
before purchase.

Week 2 Work Summary

Work Planned

During this second week of the project, scheduled work included beginning the search for

74

hardware components and beginning the hardware design based on the core components selected.
Work Accomplished
Components

There are four primary components involved in this project. The first two comprise the
primary user interface and include an LCD and a Keypad. The other two components are the
micro controller and a CAN bus controller chip that will provide the interface to the OBD-II
scanning device. Below each main component is listed along with an explanation of the criteria
being used to identify a suitable candidate for use in this project. All components are being
sought in a DIP format for easy integration onto a prototype board and are also being sought for
the lowest available price that meets all the necessary criteria.

LCD

The LCD in this project will be tasked with displaying only alphanumeric characters.
Any LCD capable of displaying a sufficient number of alphanumeric characters is a suitable
candidate. Looking over the kinds of data that will need to be displayed on the LCD, it has been
determined that an 80 character display is best suited for this application. Apart from those
requirements, an 8bit parallel interface is preferred, due to previous experience with such an
LCD.

Keypad

The keypad will only be required to enter numeric information, as well as perform
confirmation and deletion of information. As such, a standard “telephone” 3x4 keypad seems to
be a good choice.

CAN Controller

Browsing the inventory of electronics component supplier Digikey has yielded a number
of CAN controller chips that support the latest in CAN standards. All of these chips make use of
the SPI serial bus for communication.

Micro controller

I have narrowed down my search of micro controllers to the Atmel AVR family of chips.
The AVR chips have a wide and robust community of hobbyist and professional level users,
which provides a rich environment for support and information. The AVR devices are also
programmable using a relatively cheap programmer, which is often not the case for similar
competing products. The micro controller that is ultimately chosen will have to support the SPI
serial bus in order to interface with the CAN controller chip, as well as at least 12 general
purpose data lines to be able to make full use of both the LCD and Keypad.

75

Problems Encountered

Narrowing down the choice of micro controller has proven far more difficult than I had
imagined it would be. The number of choices and options available is simply mind boggling, and the
issue of programming the chip is not trivial and requires as much, if not more consideration that the
selection of the chip itself. More time will be necessary to be able to come to a final decision, and to
ensure that the hardware can be programmed and used.

Schedule Status

The unforeseen difficulty in component selection has resulted in an unexpected hold up of a full
hardware design, delaying the schedule somewhat.

Week 3 Work Summary

Work Planned

The goal for this week was to take a step back, layout the objectives and requirements for this
project, design a block diagram for the project, and use this information to choose parts for purchase.

Work Accomplished
Objectives

The objectives of this project are to create a microcontroller driven OBD-II simulator
device that allows a user to simulate working on an automobile from the perspective of an
electronic diagnostic scanner; to provide a visual programming interface that works completely
without the aid of a personal computer; to support the full range of OBD-II generic Parameter
Ids (PIDs); and to be easy enough to use and affordable enough to be competitive or to at least
provide the building blocks to reach that goal if the projected continued beyond its known
scope.

Requirements
Input

The OBD-II simulator must provide the user with a way to power on, power off, and
reset the device. More importantly, he or she must be able to enter in numerical values for each

of the Parameter Ids to input sensor values or bit encoded conditions. The user must also be able
to navigate through the various programmable PIDs.

76

Output

The OBD-II simulator must be able to display the currently selected PID and it's current
value to the user visually. The device must be able to listen for PID requests on a CAN BUS and
output the appropriate information to the CAN bus in response. Finally, the simulator must
provide a 12V output in order to drive scanning tools that assume a car battery will be present to
power them through the OBD-II port.

Power

The digital components of the project, including the AVR microcontroller, the LCD
screen, the Keypad, and other digital chips all require a 5V power supply, which should be
provided by stepping down the voltage of a 12V source, which is needed to provide power
output to external scanning devices as previously mentioned. Due to the fact that the simulator
may be required to power such external devices, it should be tethered to a wall source and not

powered by battery.
Block Diagram
12V
Power
Supply
OBD?2 — 5V
Connector LCD - Regulator
CAN [&——>» AVR |¢&—— Debounce [¢—— Keypad
Parts

77

I have located an AVR hobbyist kit that contains an Atmel AVR ATmegal68
microcontroller, a 20x4 LCD that is perfectly suitable for this application, programming tools,
and various other components needed by the microcontroller for proper operation, including an
oscillator crystal. I intend to purchase this kit, along with an extra microcontroller, the Atmel
ATmega328P, which is the double code memory version of the ATmegal68 in case the original
one proves to have insufficient space. I will also be buying a 4x4 16 key keypad for input. A 4x3
12 key one may suffice, but the 16 key version allows for added functionality, and mitigates
unforeseen issues with input. Finally I will be purchasing an SPI based CAN BUS controller and
OBD-II connector.

Problems Encountered

No serious problems were encountered this week.

Schedule Status

I am still a bit behind the original schedule, but I am now ready to purchase components and
begin assembling and programming this project so that I can get back on schedule.

Week 4 Work Summary

Work Planned

The goal for this week was to assemble and debug the hardware and begin the basic
programming and software setup for the project.

Work Accomplished

Hardware

78

NUMERIC_KEYPAD 4X4 ' .

7 8 9 +
3 4 5 6 =
1 .
g. .23 K1
. TG . 1 2 3 * o
S D G R 1 R B
v [T
f‘r.’.\":___.... ERNE =5\ c 0 = /
L N A - T
ATmega328P
R ' B
CTMCAM,
RHECAM R .
—i 1 v
S I B =5V
SESSEEE. b T
AR
9

H
[
III|

-

o MEP2stS
lllustration 1: Hardware Schematic

None of the hardware components have arrived yet, so construction of the hardware has
not begun, instead I have started building the hardware schematic so that I will be ready to begin
assembling the hardware immediately upon receipt. This schematic is shown below:

Currently included in this schematic are the four largest components: LCD, Keypad, and
the two ICs. The Atmega328P IC shown is the microcontroller in a 28pin DIP package, and the
MCP2515 IC shown is the CAN controller chip in an 18pin DIP package. The LCD is connected
to the microcontroller via PORT-D, an 8bit bidirectional data port. The MCP2515 is connected
to the microcontroller via the SPI bus, which is a four pin serial interconnect. Since there isn't
another 8bit port free for the Keypad, it's being configured to use the remaining bits of PORT-B,
the others of which are using for the SPI bus, to drive the columns, and the lower four bits of
PORT-C, a 7 bit bidirectional data port, to read in the status of each row. Below you'll find
images of both ICs for easy pin reference:

79

=
(PCINT14/RESET) PC6 [1 28 [1PC5 (ADC5/SCL/PCINT13)
(PCINT16/RXD) PDO [] 2 27 [1PC4 (ADC4/SDA/PCINT12)
(PCINT17/TXD) PD1] 3 26 [1 PC3 (ADC3/PCINT11)
(PCINT18/INTO) PD2 [4 25 [1PC2 (ADC2/PCINT10)
(PCINT19/0C2B/INT1) PD3 [] 5 24 [1PC1 (ADC1/PCINT9)
(PCINT20/XCK/T0) PD4 [6 23 [1 PCO (ADCO/PCINTS)
veer]7 22 [1GND
GND L[]8 21 [] AREF
(PCINT6/XTAL1/TOSC1) PB6 []9 20 [1AVCC
(PCINT7/XTAL2/TOSC2) PB7 [] 10 19 [1 PB5 (SCK/PCINTS5)
(PCINT21/0CO0B/T1) PD5 [] 11 18 [1 PB4 (MISO/PCINT4)
(PCINT22/0COA/AINO) PD6 [] 12 17 [1 PB3 (MOSI/OC2A/PCINT3)
(PCINT23/AIN1) PD7 [] 13 16 [1 PB2 (SS/OC1B/PCINT2)
(PCINTO/CLKO/ICP1) PBO [] 14 15 [1 PB1 (OC1A/PCINT1)

Hllustration 2: Atmega328P Microcontroller

TXCAN |1 - 18[] Vop
RXCAN]2 17 RESET

CLKOUT/SOF [|3 16[]CS

ORS¢ & 15[1S0

TXIRTS[]5 & 14[dsl

TX2RTS[]6 % 13[] sCK

0sc2[]7 12 INT
OSc1[]8 11] RX0BF
Vss[]9 10[] RX1BF

Hlustration 3: MCP2515 CAN Controller
Software

The start of any programming endeavor should begin with a good overview of what the
program is supposed to accomplish, and a broad flowchart of that activity. The software for this
project will have to contend with two separate modes of operation. The first is the programming
mode, where the user will be able to enter in the specific status of each parameter he wants the
simulated engine to have. The second is the operational mode, where the device will expect to
receive requests for information from a scanning or diagnostic tool, and will then respond to
those requests with the appropriate information. The basic flow is shown below in chart form:

80

PID Request?

Programming
Mode?

Output

User Input?

Information

Once the hardware has arrived, I can tackle more specific programming problems,

>

<

Update
Stored
Information

including functions and loops to write to the LCD, check for user input, check for messages on

the CAN BUS, etc.

Problems Encountered

My original schedule did not include any time for the shipping of components, so the most
significant problem encountered this week was simply not having the parts I assumed I would have.

Schedule Status

Since the original schedule did not account for shipping or processing times for component

purchase, I am a bit behind where I wanted to be at the moment. Hopefully parts will arrive shortly and

I can make up for lost time.

Week 5 & 6 Work Summary

Work Planned

The goal for this week was to assemble and debug the hardware and begin the basic

81

programming and software setup for the project.
Work Accomplished
Hardware

This week I assembled most of the hardware that I've purchased. Unfortunately shipping
turned out to be exceptionally slow and I've only had the microcontroller for about a week and
the other parts for just two days as of this writing. Both the LCD and keypad hardware have
been assembled, and the core programming functions have been written. The CAN controller
chip is all that's left to wire up, but it only requires a four bit bus for SPI. I'll connect that when
I'm ready to make use of it. It turns out that I am using every single pin available on the
Atmegal68 microcontroller, and I've even had to cut my 4x4 keypad down to a functional 3x4
keypad due to a lack of 1/0 pins.

Software
Peripheral setup and initialization routines, and core LCD and keypad functions have

been written. I'm ready to start tackling the main program and interfacing with the CAN bus

now.
Problems Encountered

Once again I've spent a good amount of time simply waiting for parts to arrive, delaying my
progress. As previously mentioned I've encountered a lack of I/O pins for my peripheral devices, but |
have been able to mostly mitigate this by using the LCD in 4bit mode instead of the full 8bit mode,
which does not reduce functionality, and only using 12 of the available 16 buttons on my keypad, which
shouldn't present any issues as the extra buttons are not needed.

Schedule Status

Shipping times have set me back quite a bit, but I've made good progress on the hardware in the
short time I've had it available to me, so I am not concerned about finishing by the end of summer.

Week 8 Work Summary

Work Planned

The goal for this week was to continue working on any hardware and software that required
work and to begin writing the project report.

Work Accomplished

82

Hardware

I am still waiting for the new CAN Bus interface hardware I ordered to arrive, all other
hardware is complete.

Software
Almost all the main functionality is complete, all that remains is to implement additional
PIDs, which is not difficult since the necessary structures and templates for PIDs has been
made. I am waiting for the CAN Bus interface hardware to come in so that I can easily test it
with a few working PIDs before I implement the rest of the PIDs and create headaches for
myself. Software relating to the CAN Bus interface is also awaiting hardware.
Report
I've completed a detailed outline of the report and I've started working on the initial
sections. Many of the other sections are complete or well developed elsewhere and will be easily added
to the report shortly. By the time of our meeting next week I expect a full draft of the entire report to be
complete.

Problems Encountered

As I noted above, the largest problem I encountered this week was discovering that my CAN
controller chip was not sufficient for actually building a CAN bus interface.

Schedule Status
All hardware and software components should be finished by the end of July as long as the new

parts I ordered arrive in a timely fashion, leaving early August for focusing entirely on writing a report.
If parts take longer than expected, I will have to deal with that scenario at that time.

Week 9 Work Summary

Work Planned

The goal for this week was to continue working on any hardware and software that required
work and to continue writing the project report.

Work Accomplished

Hardware

83

I am working on getting the CAN to SPI adapter I purchased functioning.
Software

I've been working on making improvements to the software, hopefully I will be able to
get the CAN interface working shortly so I can finish the programming for it.

Report

I've complete additional sections regarding the high level design and component
selection parts of this project.

Problems Encountered
An unexpected power outage and difficulties with the CAN to SPI chip.

Schedule Status

The rest of the report draft will be complete before our next meeting, hopefully a revised edition

that includes full figures and tables will also be available by then. I will do what I can to get the CAN
interface working, but my confidence in being successful in that endeavor in waning.

84

	Automotive OBD-II Simulator
	Week 1 Work Summary
	Week 2 Work Summary
	Week 3 Work Summary
	Week 4 Work Summary
	Week 5 & 6 Work Summary
	Week 8 Work Summary
	Week 9 Work Summary

